JPH03503141A - Device for generating focused shock waves - Google Patents

Device for generating focused shock waves

Info

Publication number
JPH03503141A
JPH03503141A JP1505186A JP50518689A JPH03503141A JP H03503141 A JPH03503141 A JP H03503141A JP 1505186 A JP1505186 A JP 1505186A JP 50518689 A JP50518689 A JP 50518689A JP H03503141 A JPH03503141 A JP H03503141A
Authority
JP
Japan
Prior art keywords
lens
shock wave
laser
spherical
focusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1505186A
Other languages
Japanese (ja)
Inventor
ドレイデン,ガリナ バレリアノフナ
オストロフスキ,ユリ イサエビチ
サムソノフ,アレクサンドル ミハイロビチ
セメノバ,イリナ フラディミロフナ
ソクリンスカヤ,エレナ ビタリエフナ
Original Assignee
フィジコ‐テクニチェスキー インスチチュート イメニ エー.エフ.イオフェ アカデミイ ナウク エスエスエスアール
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フィジコ‐テクニチェスキー インスチチュート イメニ エー.エフ.イオフェ アカデミイ ナウク エスエスエスアール filed Critical フィジコ‐テクニチェスキー インスチチュート イメニ エー.エフ.イオフェ アカデミイ ナウク エスエスエスアール
Publication of JPH03503141A publication Critical patent/JPH03503141A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/225Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • G02B17/086Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors wherein the system is made of a single block of optical material, e.g. solid catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/28Sound-focusing or directing, e.g. scanning using reflection, e.g. parabolic reflectors
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • G10K15/04Sound-producing devices
    • G10K15/046Sound-producing devices using optical excitation, e.g. laser bundle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/26Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor for producing a shock wave, e.g. laser lithotripsy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B2017/22027Features of transducers

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Multimedia (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)
  • Laser Beam Processing (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 集束衝撃波を発生するための装置 〔発明の分野〕 本発明は、応用物理に関し、特に透明な媒体内で集束衝撃波を発生する装置に関 する。これは、機械製造、工具製作、化学工学、及び局所的電圧を発生させるよ うな他の応用分野に使用され、診断及び非外科的砕石の目的で使用される時に医 学において非常に重要なものとなる。[Detailed description of the invention] Device for generating focused shock waves [Field of invention] The present invention relates to applied physics, and in particular to devices for generating focused shock waves in transparent media. do. This is used in machine building, tool making, chemical engineering, and for generating local voltages. It is used in other fields of application such as medical treatment when used for diagnostic and non-surgical lithotripsy purposes. It becomes very important in science.

〔発明の背景〕[Background of the invention]

対象物の特定の点に集束衝撃波を加える能力は、衝撃波の振幅、集束ユニットの 形態、使用するレーザの出力変数等の複数の要素の関数であり、この関数には装 置で使用される光学系の種類により決まる衝撃波の集束の正確さも含まれる。 The ability to apply a focused shock wave to a specific point on an object depends on the amplitude of the shock wave, the focusing unit's It is a function of multiple factors such as the configuration and output variables of the laser used, and this function includes It also includes the accuracy of the focusing of the shock wave, which is determined by the type of optics used at the site.

特に衝撃波を集束するように設計された光学系がより複雑である程、すなわちこ のような光学系を構成する一体でない光学要素の数が多い程、一般的に装置の運 転及び調整は難しくなる。これは光学要素のいかなる相対的変位も装置の集束の ずれを起こし、特定の点での衝撃波の集束を不可能にするためである。In particular, the more complex the optical system designed to focus the shock wave, the more Generally speaking, the greater the number of non-integral optical elements that make up an optical system, the better the performance of the device. rotation and adjustment becomes difficult. This means that any relative displacement of the optical elements will affect the focusing of the device. This is to cause a shift and make it impossible to focus the shock wave at a specific point.

集束衝撃波を発生するための装置は、技術的には良く知られており、この装置は 火花放電器の形式で設計された球面衝撃波を発生するための手段、及び楕円の先 端を切った形で作られたこの波を集束するための手段を備えている。この両方の 手段とも流体内に浸され、この火花放電器は楕円の第1の焦点に位置している( 西ドイツ国、出願3210919号。DB、 A。Devices for generating focused shock waves are well known in the art; Means for generating spherical shock waves designed in the form of a spark discharger, and an elliptical tip It has a means to focus these truncated waves. both of these Both means are immersed in the fluid, and this spark discharger is located at the first focus of the ellipse ( West Germany, Application No. 3210919. DB, A.

3210919)。3210919).

動作においては、火花放電器の位置している楕円の第1の焦点で起きた火花放電 により流体中で生じた球面衝撃波は、楕円の表面で反射され、第2焦点に集束さ れる。しかしながら衝撃波の発生及びその集束は、互いに離れた二個の一体でな い要素により行なわれるため、対象となる装置において使用される光学系はかな り複雑である。すなわち装置の運転及び調整も、かなり難しい、特に一方が球面 衝撃波の発生点であり、もう一方がその集束点であるあらかじめ固定された二個 の焦点を有する楕円反射体の使用には、放電ギャップと楕円の一方の焦点との非 常に正確な調整が必要である。しかしながら装置の動作中に、火花放電器の電極 はどんどん燃え尽き、楕円の焦点に対する火花放電器の移動を起こす。これによ り最初の衝撃波は歪み、特定の点に集束するのを不可能にする。In operation, a spark discharge occurs at the first focus of the ellipse in which the spark discharger is located. The spherical shock wave generated in the fluid is reflected by the elliptical surface and focused at the second focal point. It will be done. However, the generation of shock waves and their focusing must be done by two separate bodies. Since the optical system used in the target device is It is complicated. In other words, operating and adjusting the device is quite difficult, especially when one side is spherical. Two fixed points, one being the point of shock wave generation and the other being its convergence point. The use of an elliptical reflector with a focal point of Accurate adjustment is always required. However, during operation of the device, the electrodes of the spark discharger burns out more and more, causing a movement of the spark discharger relative to the focal point of the ellipse. This is it The initial shock wave is distorted, making it impossible to focus on a specific point.

更に衝撃波を発生するための手段としての火花放電器の使用は、特に医療目的の 装置等では、装置の操作者と患者の両方に対して危険であるため望ましくない。Furthermore, the use of spark dischargers as a means of generating shock waves is especially useful for medical purposes. This is undesirable in devices, etc., as it is dangerous to both the operator of the device and the patient.

集束衝撃波を発生するための装置も既知であり、その装置はパルスレーザ、液体 で満された槽、及びレーザビームを集束し球面衝撃波を集束するために槽内に配 置された手段を備えている(PCT/DE 85103631)。この手段は、 互いに離れた二個の一体でない要素、例えばレーザビームを集束するための放物 面鏡及び表面が球面衝撃波を集束するようにされている先端が切り取られた楕円 体で構成されており、放物面鏡の焦点は先端が切り取られた楕円体の焦点の一方 に合されていることが必要である。Devices for generating focused shock waves are also known, such as pulsed lasers, liquid a chamber filled with spherical shock waves, and a chamber placed within the chamber to focus the laser beam and focus the spherical shock wave. (PCT/DE 85103631). This means two non-integral elements separated from each other, e.g. a parabola for focusing a laser beam Face mirrors and truncated ellipses whose surfaces are adapted to focus spherical shock waves The focal point of the parabolic mirror is one of the focal points of the truncated ellipsoid. It is necessary that the

レーザ放射の集束は、フレネルレンズを使用して行なうことも、いくつかのレン ズを組み合せて行なうこともできる。Focusing of the laser radiation can also be done using a Fresnel lens, or some It is also possible to use a combination of methods.

以前の技術的解決方法と比較して、この装置においては球面衝撃波の発生は、楕 円体の一方の焦点に一致するようにされたレーザビームの集束点で起こされる媒 体の光学的破壊により行なわれる。Compared to previous technical solutions, in this device the generation of spherical shock waves is The medium generated at the focal point of the laser beam, which is made to coincide with one focus of the circle, It is carried out by optical destruction of the body.

球面衝撃波の集束は、前述の装置と同様に楕円体の表面での衝撃波の反射により 楕円体の第2の焦点になるよう行なわれる。すなわち球面衝撃波を発生するため のレーザビームの集束及びこの球面衝撃波の集束は、互いに離れた二個の一体で ない要素により起こされており、そのためこのような装置で使用される光学系も かなり複雑である。前述のように、このように複雑な光学系は、装置の運転及び 調整に問題がある。Focusing of the spherical shock wave is achieved by reflection of the shock wave on the surface of the ellipsoid, similar to the device described above. This is done to become the second focal point of the ellipsoid. In other words, to generate a spherical shock wave The focusing of the laser beam and the focusing of this spherical shock wave are achieved by The optical system used in such devices is also It's quite complicated. As previously mentioned, such a complex optical system is important for the operation and There is a problem with adjustment.

なぜならばレーザビーム及び球面衝撃波の集束のための一体でない要素のいかな る微小な移動も、装置の集束はずれを起こし、球面衝撃波を対象物の特定の点に 集束することを不可能にするためである。Because some non-integral elements for focusing the laser beam and spherical shock wave Even small movements caused by defocusing the device and directing the spherical shock wave to a specific point on the object. This is to make it impossible to focus.

更に楕円体の焦点の一方に合わされた衝撃波の集束点は、レーザ放射領域内に位 置しているため、治療中に装置を使用する時危険金レーザ放射に患者をさらすと いう危険があり、患者をこの放射から保護するためのシールドが必要になり、こ れにより衝撃波のエネルギがかなり減少することになる。Furthermore, the focal point of the shock wave focused on one of the focal points of the ellipsoid is located within the laser radiation region. When using the device during treatment, there is a risk of exposing the patient to gold laser radiation. This poses a risk of radiation and requires a shield to protect the patient from this radiation. This results in a considerable reduction in the energy of the shock wave.

〔発明の概要〕[Summary of the invention]

本発明の主要な目的は、レーザ放射を集束して球面衝撃波の発生を保証し、この 球面衝撃波を集束するための手段が、単一の要素によりレーザ放射の集束及び球 面衝撃波の集束が可能になるよう設計されている集束衝撃波を発生するための装 置を提供することである。これにより装置の光学系が簡単になり、その運転及び 調整も簡単になり、衝撃波の集束の正確さが改善される。 The main purpose of the invention is to focus the laser radiation to ensure the generation of a spherical shock wave and to A means for focusing a spherical shock wave is provided that focuses the laser radiation and the sphere by a single element. A device for generating focused shock waves that is designed to enable focusing of surface shock waves. The goal is to provide a This simplifies the optical system of the device and makes its operation and Adjustment is also simplified and the accuracy of shock wave focusing is improved.

この主要な目的を実現するため、集束衝撃波を発生するための装置は、パルスレ ーザ、レーザ放射に対して透明な媒体を有する箱(cell)、及びレーザ放射 と球面衝撃波を集束し球面衝撃波を集束するような表面を有する手段を備えてお り、本発明によればレーザ放射及び球面衝撃波を集束するための手段は、レーザ 放射に対して透明な材料より作られた異なる曲率の表面を有する凹凸レンズの形 をしており、球面衝撃波を集束する表面は凹面であるようになっている。To achieve this primary objective, devices for generating focused shock waves are a cell with a medium transparent to the laser radiation; and a cell with a medium transparent to the laser radiation. and means for focusing the spherical shock waves and having a surface for focusing the spherical shock waves. According to the invention, the means for focusing the laser radiation and the spherical shock wave are A concave and convex lens shape with a surface of different curvature made from a material transparent to radiation The surface that focuses the spherical shock wave is concave.

提藁した装置においては、レーザビームの集束はレーザ放射に対して透明な材料 で作られた凹凸レンズにより行なわれ、球面衝撃波の集束はこのレンズの凹面で 行なわれる。すなわちレーザ放射の集束及び球面衝撃波の集束は、単一要素によ り行なわれる。In the proposed device, the laser beam is focused on a material that is transparent to the laser radiation. The spherical shock wave is focused by the concave and concave lens made of It is done. That is, the focusing of the laser radiation and the focusing of the spherical shock wave are performed by a single element. will be held.

その結果この装置に使用される光学系は、特許PCT/DB85103631の 明細書に説明した装置の光学系よりも簡単であり、これにより集束ずれの可能性 が減り、その結実装置の運転及び調整が簡単になる。As a result, the optical system used in this device is based on patent PCT/DB85103631. The optical system of the device described in the specification is simpler and this reduces the possibility of defocusing. The operation and adjustment of the fruiting device is simplified.

発明者により見い出されたことによれば、レーザビーム及び球面衝撃波の集束を 同時に行なうためには、レンズの表面は異なる曲率値を有することが必要であり 、レンズ表面の曲率の比がレーザ放射の集束点と衝撃波の集束点の相対的位置を 決めている。According to the findings of the inventor, it is possible to focus a laser beam and a spherical shock wave. In order to do this at the same time, the surface of the lens needs to have different curvature values. , the ratio of the curvature of the lens surface determines the relative position of the focal point of the laser radiation and the focal point of the shock wave. I have decided.

その結果この装置においては、表面曲率の異なる比率を有する交換可能なレンズ の組を使用することが可能になり、これによりレーザ放射の集束点と衝撃波の集 束点との相対位置を変更することができるようになる。よって装置の運転は、更 に簡単になる。As a result, in this device, interchangeable lenses with different ratios of surface curvature This makes it possible to use a set of laser radiation focal points and shock wave focal points. It becomes possible to change the relative position with the bundle point. Therefore, the operation of the equipment should be becomes easier.

本発明の一実施例によれば、レンズの凹面はレーザに向い合っており、その凸面 にはレーザ放射を反射するようにコーティングがされている。According to an embodiment of the invention, the concave surface of the lens faces the laser and the convex surface is coated to reflect laser radiation.

この実施例においては、レーザビームはレンズの凸反射表面により集束され、球 面衝撃波はその凹面により集束される。In this example, the laser beam is focused by the convex reflective surface of the lens and is spherically The surface shock wave is focused by the concave surface.

球面衝撃波の集束点は、レーザとレンズとの間に位置している。The focal point of the spherical shock wave is located between the laser and the lens.

本発明の他の実施例においては、レーザに向い合うのはレンズの凸面である。In other embodiments of the invention, it is the convex surface of the lens that faces the laser.

これらの条件ではレーザ放射の集束はレンズ、すなわちこのレンズの両方の表面 である凸面と凹面、更にこれらを隔てる媒体により行なわれ、球面衝撃波の集束 はレンズの凹面により行なわれる。In these conditions the focus of the laser radiation is on the lens, i.e. on both surfaces of this lens. The convex and concave surfaces, and the medium that separates them, are used to focus the spherical shock wave. is performed by the concave surface of the lens.

球面衝撃波の集束点は、レーザに対して反対側のレンズ側にある。The focal point of the spherical shock wave is on the side of the lens opposite to the laser.

集束衝撃波を発生するための装置のこれらの二つの実施例は、解決される問題と いう観点からは同一である。すなわちレーザ放射の集束と球面衝撃波の集束を同 一の光学要素で行なうという点である。しかし動作において、衝撃波の集束点が レーザとレンズに対して異なる位置にあるということが違っており、これにより 実施例のような異なる応用分野が可能になる。These two embodiments of the device for generating focused shock waves solve the problem and From this point of view, they are the same. In other words, the focusing of the laser radiation and the focusing of the spherical shock wave are the same. The point is that it is performed using one optical element. However, during operation, the focal point of the shock wave is The difference is that the laser and the lens are in different positions, which causes Different fields of application are possible as in the embodiments.

本発明の提案された実施例のいずれにおいても、凸面及び凹面の主光軸は互いに ある角度にあっても良い。In any of the proposed embodiments of the invention, the principal optical axes of the convex and concave surfaces are mutually It may be at a certain angle.

レンズ表面の主光軸のこのような相対位置のため、衝撃波の集束点はレーザ放射 の領域を越えた外側にあることが可能になり、衝撃波エネルギのいかなる減少も 無しにレーザからの保護を容易に行なえる。Because of this relative position of the principal optical axis on the lens surface, the focal point of the shock wave is directly aligned with the laser radiation. It is now possible to be outside the region of Laser protection can be easily performed without the need for laser protection.

後者の事実により、この実施例に基づいて設計された集束衝撃波を発生する装置 を医療目的での使用に最適なものにすることができる。Due to the latter fact, a device for generating focused shock waves designed on the basis of this example can be made suitable for use in medical purposes.

〔図面の簡単な説明〕[Brief explanation of the drawing]

本発明の前述の利点及び特徴は、付属の図面を参照した好適な実施例の以下の詳 細な説明から更に明らかにされる。 The above-mentioned advantages and features of the invention will be explained in the following details of a preferred embodiment with reference to the accompanying drawings. This will become clearer from the detailed explanation.

第1図は、レンズの凸面にレーザ放射を反射するためのコーティングを施した実 施例に基づく集束衝撃波を発生するための装置を説明する光路図。Figure 1 shows an example in which the convex surface of the lens is coated to reflect laser radiation. FIG. 3 is an optical path diagram illustrating a device for generating a focused shock wave according to an example.

第2図は、第1図の装置でレンズ表面の主光軸が互いにある角度傾いた場合の光 路図。Figure 2 shows the light produced when the principal optical axes of the lens surfaces are tilted at a certain angle with respect to the apparatus shown in Figure 1. Road map.

第3図は、別の実施例に基づいて設計された集束衝撃波を発生するための装置の 光路図。FIG. 3 shows an apparatus for generating focused shock waves designed according to another embodiment. Optical path diagram.

〔発明を実施するための最良の形態〕[Best mode for carrying out the invention]

第1.2.3図を参照すると、本発明に基づ(集束衝撃波を発生するための装置 は、パルスレーザ1、レーザ放射に対して透明である媒質で満された箱2、及び 箱2内にありレーザ放射の集束及び球面衝撃波の集束のための手段3を備えてい る。 With reference to Figure 1.2.3, according to the invention (device for generating focused shock waves) consists of a pulsed laser 1, a box 2 filled with a medium that is transparent to the laser radiation, and in the box 2 and provided with means 3 for focusing the laser radiation and focusing the spherical shock wave. Ru.

例えば箱2は、レーザ放射に対して透明な液体又は気体で満された槽の形に作ら れている。レーザ放射の集束及び球面衝撃波の集束のための手段3は、異なる曲 率値で表わされる凹面4及び凸面5を有する凹凸レンズである。レンズ3は、レ ーザ放射に対して透明な材料から作られている。For example, box 2 is made in the form of a tank filled with a liquid or gas that is transparent to the laser radiation. It is. Means 3 for focusing the laser radiation and focusing the spherical shock wave can be of different curvatures. It is a concave-convex lens having a concave surface 4 and a convex surface 5 expressed by a ratio value. Lens 3 is made of a material that is transparent to laser radiation.

凹面4は、ここでは球面衝撃波を集束するようになっている。レーザ放射を集束 するためのレンズ3の集束点OI(第1゜2.3図)は、凹面4の前に位置して いる。表面4及び5は、例えば球面の形に作られている。これらの表面4及び5 は、楕円体のような異なる曲線形状で良いが、球面形状が製造するのにより容易 と思われる。第1図に示した本発明の第1の実施例によれば、凹面4はレーザ1 と向き合っており、凸面5にはレーザビームを反射するようにコーティング6が 施されており、コーティングは例えば銀メッキである。レーザ放射の集束点01 は、レーザ1と凹面4の間に位置しており、球面衝撃波の集束点Otは、レーザ 1とレンズ3の間に位置しており、レンズ3の凹面4から球面衝撃波の集束点0 □までの距離は、レンズ3の表面4及び5の曲率の比によって決まる。レンズ3 の表面4及び5が球面である場合、この距離は次の式から計算できる。The concave surface 4 is here adapted to focus the spherical shock wave. Focusing laser radiation The focusing point OI of the lens 3 (Fig. 1.2.3) is located in front of the concave surface 4. There is. The surfaces 4 and 5 are made, for example, in the form of a sphere. These surfaces 4 and 5 can be a different curved shape such as an ellipsoid, but a spherical shape is easier to manufacture. I think that the. According to a first embodiment of the invention shown in FIG. The convex surface 5 is coated with a coating 6 to reflect the laser beam. The coating is, for example, silver plating. Focus point 01 of laser radiation is located between the laser 1 and the concave surface 4, and the focal point Ot of the spherical shock wave is located between the laser 1 and the concave surface 4. 1 and the lens 3, and the convergence point 0 of the spherical shock wave from the concave surface 4 of the lens 3. The distance to □ is determined by the ratio of the curvatures of surfaces 4 and 5 of lens 3. lens 3 If surfaces 4 and 5 of are spherical, this distance can be calculated from the following equation:

但し式において、 R+ =m単位で表わした凸面50曲率半径、R,=m単位で表わした凹面40 曲率半径、γ”” n l/ n z 、但しnl及びR2は透明媒質及びレン ズ3の材料のそれぞれの屈折率であり、 L=m単位で表わしたレンズ3の平均厚み、d=レンズ3の凹面4と衝撃波の集 束点O3の間の距離をm単位で表わしたもの。However, in the formula, R+ = convex surface 50 radius of curvature expressed in m units, R, = concave surface 40 expressed in m units Radius of curvature, γ””nl/nz, where nl and R2 are transparent medium and lens is the refractive index of each of the materials in lens 3, L=average thickness of lens 3 expressed in m, d=concave surface 4 of lens 3 and collection of shock waves Distance between bundle points O3 expressed in meters.

関係式(1)は、球表面でビームの屈折及び反射におけるアツベ(Abbe)の 不変量に関する関係から導かれ(G、S、Landsberg著rOptika 」1976、 Nauka(Moscow)、 P、926参照)、レンズ3の 屈折率n、と衝撃波が発生する透明媒質の屈折率n1も考慮されている。Relational expression (1) is Abbe's equation for refraction and reflection of a beam on the spherical surface. derived from relations regarding invariants (G. S. Landsberg, rOptika '1976, Nauka (Moscow), P, 926), Lens 3 The refractive index n and the refractive index n1 of the transparent medium in which the shock wave is generated are also taken into consideration.

表面4及び5を球面に近位している非球面形状とする場合には、上記の条件(1 )はそのまま有効であり、この場合R。When the surfaces 4 and 5 have an aspherical shape that is close to a spherical surface, the above condition (1 ) remains valid as is, in this case R.

及びR2は表面5及び4の曲率の平均値と見なされる。例えば楕円体のような表 面4及び5の異なる形状により、凹面4から衝撃波の集束点Otまでの距離dは 、良く知られた技術(G、G、51usarev著rMetody rasch eta opticheskikh 5istesB +193’L 0NT1 . Glavnaya redaktsi fizikoteoretiche skoiliteratury (Leningrad−Moscow)、 p 、577参照)で決定できる。and R2 is taken as the average value of the curvature of surfaces 5 and 4. For example, an ellipsoid-like table Due to the different shapes of surfaces 4 and 5, the distance d from concave surface 4 to the focal point Ot of the shock wave is , a well-known technique (Metody rasch by G, G, 51usarev) eta opticheskikh 5istesB +193’L 0NT1 .. Glavnaya redaktsi fizikoteoretiche skoiliteratury (Leningrad-Moscow), p. , 577).

それゆえこのような装置においては、表面4及び5の曲率り異なる比率を示す交 換可能なレンズ3の組み合せを使用することが可能になり、これにより衝撃波の 集束点0−の異なる位置が得られ、装置の運転が簡単になる。レーザビームと衝 撃波を同時に集束するため、レンズはレーザ放射に対して透明な材料から作られ る必要があり、レンズ3の凹面4と透明媒質の界面において衝撃波に対して充分 高い反射係数を有する必要がある。このような材料は、透明媒質及びレンズ3を 作る固体のそれぞれの波抵抗ZI及びZtで特徴付けられ、波抵抗は次の式によ り互いに関係付けられる。Therefore, in such a device, the curvature of surfaces 4 and 5 is intersecting and exhibits different ratios. It is now possible to use a combination of interchangeable lenses 3, which reduces the impact of shock waves. Different positions of the focus point 0- are obtained, which simplifies the operation of the device. Laser beam and opposition To focus the bombardment waves simultaneously, the lens is made from a material that is transparent to the laser radiation. The interface between the concave surface 4 of the lens 3 and the transparent medium must be sufficiently protected against shock waves. Must have a high reflection coefficient. Such a material can form a transparent medium and a lens 3. Each of the solids made is characterized by the wave resistance ZI and Zt, and the wave resistance is calculated by the following formula: are related to each other.

但し、式(2)において、 σ、 =N/rrf単位で表わされるレンズ物質の耐力、P、=N/rrf単位 で表わされる透明媒質とレンズの界面での衝撃波における圧力振幅。However, in formula (2), σ, = proof stress of the lens material expressed in N/rrf units, P, = N/rrf units The pressure amplitude in the shock wave at the interface between the transparent medium and the lens is expressed as .

Z1=ρICI、Z2=ρZCZ         ・・・(3)但しく3)式 において、 R1及びR2は、単位kg/rrfで表わされる透明媒質及びレンズ材料のそれ ぞれの密度であり、 C3及びC2は、単位m/sで表される透明媒質及び固体内のそれぞれの音響速 度であり、衝撃波の反射係数の特別の最小値は強度の形で表わされる。Z1 = ρICI, Z2 = ρZCZ ... (3) However, formula 3) In, R1 and R2 are those of the transparent medium and lens material expressed in kg/rrf. The density of each C3 and C2 are the respective acoustic velocities in transparent media and solids expressed in m/s degree, and the particular minimum value of the reflection coefficient of the shock wave is expressed in the form of intensity.

固体の波抵抗Zlに関して条件(2)を解くと、(4)のようになる。When condition (2) is solved for the wave resistance Zl of the solid, it becomes (4).

このようにしていかなる透明媒質(液体又は気体)に対しても、パラメータσ1 .ρ1.ρ!+CI、及びC3に関するデータを有するテーブルを使い、各条件 (3)に合致するいくつかの材料を示すことが可能である。まず最初に、レンズ 3上の衝撃波の影響は、レンズにはいかなる損傷も与えない。これは圧力波振幅 は、固体の可塑性の閾値より低いためである。第2に衝撃波の集束効率が非常に 高いためである。In this way, for any transparent medium (liquid or gas), the parameter σ1 .. ρ1. ρ! Using a table with data regarding +CI and C3, set each condition. It is possible to indicate several materials that meet (3). First of all, the lens The impact of the shock wave on 3 does not cause any damage to the lens. This is the pressure wave amplitude is lower than the plasticity threshold of the solid. Second, the shock wave focusing efficiency is extremely high. This is because it is expensive.

レンズ3は、例えば鉛ガラス又は石英ガラスで作られている。Lens 3 is made of lead glass or quartz glass, for example.

対象物上のレーザ放射の影響が避けられるような医療のような応用に提案された 装置を使用する時、凹面4及び凸面5の主光軸は互いに傾いていなければならず 、衝撃波の集束点0□はレーザ放射の経路よりはずれた位置にあり、その点をレ ーザ放射から保護できるように遮蔽できるようになっている。Proposed for applications such as medicine where the effects of laser radiation on the object can be avoided When using the device, the principal optical axes of the concave surface 4 and convex surface 5 must be tilted to each other. , the focal point 0□ of the shock wave is located away from the laser radiation path, and that point is It can be shielded to protect it from laser radiation.

第2図は、集束衝撃波を発生する装置を示しており、この装置では5反射面5の 主光軸はレーザ1の光軸上に配置され、凹面4の主光軸はレーザ1に対しである 角度になるように位置している。凹面4の光軸の凸面5の主光軸に対する傾きは 、特に患者である対象物の配置に最大の配慮をするように、装置等の構造を考慮 して選定される。FIG. 2 shows a device for generating focused shock waves, in which five reflecting surfaces 5 are used. The main optical axis is located on the optical axis of the laser 1, and the main optical axis of the concave surface 4 is with respect to the laser 1. It is located at an angle. The inclination of the optical axis of the concave surface 4 with respect to the principal optical axis of the convex surface 5 is In particular, the structure of the device, etc. should be considered to give maximum consideration to the placement of the object, which is the patient. selected.

第3図は、本発明の別の実施例を説明しており、そこではレンズ3の凸面5がレ ーザ1に向い合っている。FIG. 3 illustrates another embodiment of the invention, in which the convex surface 5 of the lens 3 is facing the user 1.

レーザ放射を集束するためのレンズ3の焦点01は、第1の実施例におけるのと 同様に、レンズ3の凹面4に隣接した側にあり、衝撃波の集束点03はレーザ3 と反対側のレンズ3の側に位置するようになる。レンズ3の凹面4からある特定 の位置に衝撃波を集束するためには、表面4及び5が球形の場合には次の式を満 す必要がある。The focal point 01 of the lens 3 for focusing the laser radiation is the same as in the first embodiment. Similarly, on the side adjacent to the concave surface 4 of the lens 3, the focal point 03 of the shock wave is the laser 3 It comes to be located on the side of lens 3 opposite to . A certain characteristic from the concave surface 4 of the lens 3 In order to focus the shock wave at the position, if surfaces 4 and 5 are spherical, the following equation must be satisfied: It is necessary to

但し式において、 Rtは、m単位で表わされる凸面5の曲率半径であり、R2は、m単位で表わさ れる凹面4の曲率半径であり、Tは、n 1 / n zであり、n、及びn2 は透明媒質及びレンズ材料のそれぞれの屈折率であり、 Lは、m単位で表わされるレンズ3の平均厚みであり、dは、m単位で表わされ る凹面4と衝撃波の集束点02との間の距離である。However, in the formula, Rt is the radius of curvature of the convex surface 5 expressed in m, and R2 is expressed in m is the radius of curvature of the concave surface 4, T is n1/nz, and n and n2 are the respective refractive indices of the transparent medium and lens material, L is the average thickness of the lens 3 expressed in m units, and d is expressed in m units. It is the distance between the concave surface 4 and the focal point 02 of the shock wave.

前の実施例と同様に、上記の関係は球表面での屈折及び反射に対するアツベの不 変数の関係から得られる。Similar to the previous example, the above relationship is based on Atsbe's impairment for refraction and reflection at the spherical surface. Obtained from the relationship between variables.

表面4及び5の異なる形状により、凹面4から衝撃波の集束点02までの距離d は、第1の実施例同様に良く知られた方法で決定できる(GJ、51usare v著rMetody rascheta opti−cheskikh  si stew  」 +  1937+  0NT1.  Glavnaya  r edaktsiaftziko−teoreticheskoi  l1ter atury (Leningrad−Moscow)。Due to the different shapes of the surfaces 4 and 5, the distance d from the concave surface 4 to the focal point 02 of the shock wave can be determined by a well-known method similar to the first example (GJ, 51 usare). v authorMetody rascheta opti-cheskikh si stew” + 1937 + 0NT1. Glavnaya r edaktsiaftziko-teoreticheskoi l1ter atury (Leningrad-Moscow).

P、577)。P, 577).

第1図及び第3図に説明されたレーザ放射及び球面衝撃波の集束のための手段3 の実施例は、レーザ放射及び衝撃波の集束を単一の要素を使って行なう問題の解 決と同等であり、集束衝撃波を発生するための装置の光学系を簡単にしてその運 転及び調整が簡単になることは、本技術分野の者には明らかである。いずれの場 合においても、レーザ放射及び衝撃波は、レーザ放射を集光し衝撃波の集束を行 なう凹面4を有する凹凸レンズ3により集束される。本発明の前出の実施例は同 等であるから、レンズ3を作る材料に関するすべての考え、レンズ3の凸面5の 主光軸に対する凹面4の主光軸(第2図)の傾き、及び第1の実施例の装置に関 連して述べたレンズ3の組み合せを使用する可能性は、すべて第3図でも同様に 可能である。Means 3 for focusing of laser radiation and spherical shock waves as illustrated in FIGS. 1 and 3 The example solves the problem of focusing laser radiation and shock waves using a single element. The optical system of the device for generating focused shock waves can be simplified and its operation improved. It will be obvious to those skilled in the art that rotation and adjustment will be simplified. any place Even in the case of laser radiation and shock waves, laser radiation and shock waves are focused. The light is focused by a concave-convex lens 3 having a concave surface 4. The foregoing embodiments of the invention are the same. etc. Therefore, all considerations regarding the material for making the lens 3, and the convex surface 5 of the lens 3. Regarding the inclination of the main optical axis (Fig. 2) of the concave surface 4 with respect to the main optical axis and the device of the first embodiment, All the possibilities of using the combination of lenses 3 mentioned above are also shown in Fig. 3. It is possible.

本発明に基づく集束衝撃波を発生するための装置の異なる実施例に対する各種の パラメータの特定の数値を以下に示す。Various embodiments of the device for generating focused shock waves according to the invention Specific values for the parameters are shown below.

第1図の集束衝撃波を発生する装置。A device for generating focused shock waves as shown in Fig. 1.

ルビー結晶レーザ、 一ピーク放射エネルギ EI O,2J、−パルス長 r        15 −20nS。ruby crystal laser, 1 peak radiant energy EI O, 2J, - pulse length r 15 -20nS.

透明媒体−コロ蒸留水H80、 一屈折率 n+        1.33、−密度 ρI         1 03kg/ポ、−音響速度 Cr       1.43X103m/s、−波 抵抗 Z 11.43xlO’kg/ (イ・s)eレンズ3の凹面4は、レー ザ1に向い合っており、凸面5には反射コーティングが施されている。Transparent medium - Coro distilled water H80, -Refractive index n+ 1.33, -density ρI 1 03kg/Po, -Sound velocity Cr 1.43X103m/s, -Wave Resistance Z 11.43xlO’kg/(I・s) The concave surface 4 of the e lens 3 is The convex surface 5 is coated with a reflective coating.

レンズを作る材料−石英ガラス、 一屈折率 n Z        N、51、−密度 ρ、          2.5 X10”kg/イ、−音響速度 Ct       5.6 X 10 ”m / s、−波抵抗 Z z        14xlO’kg/ (rr f−s )、−レンズ材料の耐力 σt   7.8 X10’N/イ、−凸面 の曲率半径 R+     6X10−”m、−凹面の曲率半径 Rz     2.2 Xl0−”m。Materials for making lenses - quartz glass, -Refractive index n Z N, 51, - density ρ, 2.5 X10”kg/I, -Sound velocity Ct        5.6 X10 ”m / s, - wave resistance Z z 14xlO’kg / (rr f-s), - Yield strength of lens material σt 7.8 X10'N/a, - Convex surface Radius of curvature R+ 6X10-”m, -radius of curvature Rz of concave surface 2.2 Xl0-”m.

−レンズの平均厚み L    0.2 Xl0−”m。-Average thickness of lens L 0.2Xl0-”m.

レーザ放射は、レンズ3の凹面4から2.7 Xl0−”mの距離にある集束点 0.に集束される。球面衝撃波は、点0.から4ないし5mの距離の点Ot、す なわち凹面4から′2..3×104mないし2.2 Xl0−”mの距離の点 に集束される。パラメータE1.  τ、RI、Rtの特定の値により、液体( コロ蒸留水H20)と固体(レンズ3に使われる石英ガラス)の界面における圧 力P0は106N / rdに達する。The laser radiation is directed to a focal point at a distance of 2.7 Xl0-" m from the concave surface 4 of the lens 3. 0. focused on. A spherical shock wave is generated at point 0. A point Ot, at a distance of 4 to 5 m from That is, from the concave surface 4'2. .. A point at a distance of 3 x 104m or 2.2Xl0-”m focused on. Parameter E1. Depending on the specific values of τ, RI, and Rt, the liquid ( Pressure at the interface between Coro-distilled water H20) and a solid (quartz glass used for lens 3) The force P0 reaches 106N/rd.

第3図の集束衝撃波を発生するための装置。The apparatus for generating the focused shock wave of FIG.

ルビー結晶レーザ、 −ビーク放射エネルギ EI 0.2J。ruby crystal laser, -Beak radiant energy EI 0.2J.

−パルス長 r        15−20nS。-Pulse length r 15-20nS.

透明媒体−コロ蒸留水H20、 一屈折率 n+        1.33、−密度 ρ+           103kg /ボ、−音響速度 C+       1.43X10’m/s、 −波抵抗 Z +        1.43 X 10’kg/ (イ・S)。Transparent medium - Coro distilled water H20, -Refractive index n+ 1.33, -density ρ+ 103kg/Bo, -Sound velocity C+ 1.43X10'm/s, - Wave resistance Z + 1.43 X 10’kg/(I/S).

レンズ3の凸面5は、レーザ1に向い合っている。The convex surface 5 of the lens 3 faces the laser 1.

レンズ材料−石英ガラス、 一屈折率 n、        1.51、−密度 R2λ5 X10”kg/ ポ、−音響速度 Ct       5.6 X103m/ s、−波抵抗 Z  t        14 X 10’kg/ (rrf−s )、−レンズ材 料の耐力 σt   7.8X10’N/rrf。Lens material - quartz glass, -Refractive index n, 1.51, -density R2λ5 X10”kg/ Po, -Sound velocity Ct 5.6 X103m/s, -Wave resistance Z t 14 X 10'kg/(rrf-s), - Lens material Proof strength of material σt 7.8X10’N/rrf.

−凸面の曲率半径 R11,6X 10−”m 。- Radius of curvature of convex surface R11,6X 10-"m.

−凹面の曲率半径 Rz    O,15m、−レンズの平均厚み L     0.2 Xl0−”m。- Radius of curvature of concave surface Rz O, 15m, - Average thickness of lens L 0.2 Xl0-”m.

この実施例において、レーザ放射はレンズ3の凹面4から0.142mの位置に ある点01に集束される。点0+から発出される球面衝撃波は、凹面4により、 この表面から0.16mの距離にある点02に集束される。特定のパラメータE 1.τ。In this example, the laser radiation is located 0.142 m from the concave surface 4 of the lens 3. It is focused on a certain point 01. The spherical shock wave emitted from point 0+ is caused by the concave surface 4, It is focused at point 02 at a distance of 0.16 m from this surface. specific parameter E 1. τ.

R1,Rtにより、液体とレンズ3を形成する固体との界面での圧力P0は10 ”N/n(に達する。Due to R1 and Rt, the pressure P0 at the interface between the liquid and the solid forming the lens 3 is 10 ”N/n(reaches.

第1図の装置の動作は、次の通りである。The operation of the apparatus of FIG. 1 is as follows.

レーザ1から箱2に入るレーザ放射は、レンズ3に当り、透明なレンズ3の中に 入り、そしてミラー面である凸面5で反射され、最終的に透明媒質内の点OIに 集束される。その結果レンズ3の凹面4の側にある点O1で、媒質の光学的破損 が生じて球面衝撃圧力波を形成する。レンズ3の凹面4は集束面であることから 、球面衝撃波は、球面である凹面4で部分的に反射された後、レーザ1とレンズ 3の間にある点0□に集束される。このようにレーザ放射の集束と球面衝撃波の 集束は、同一の要素すなわちレンズ3により行なわれる。これにより特許PCT /DE 85103631の明細書で説明した装置の光学系に比べて、装置の光 学系が簡単になり、運転及び調整も簡単になる。The laser radiation entering box 2 from laser 1 hits lens 3 and enters transparent lens 3. It is reflected by the convex surface 5, which is a mirror surface, and finally reaches the point OI in the transparent medium. focused. As a result, optical damage to the medium occurs at point O1 on the side of concave surface 4 of lens 3. occurs, forming a spherical shock pressure wave. Since the concave surface 4 of the lens 3 is a focusing surface, , the spherical shock wave is partially reflected by the spherical concave surface 4, and then the laser 1 and the lens It is focused on the point 0□ between 3 and 3. In this way, the focusing of laser radiation and the spherical shock wave Focusing is performed by the same element, namely lens 3. This allows patent PCT /DE 85103631, compared to the optical system of the device described in the specification of The system becomes simpler, and operation and adjustment become easier.

第3図に示した装置は、次の通り動作する。The apparatus shown in FIG. 3 operates as follows.

レーザ放射が、レンズ3の凸面5に当てられる。レンズ3はレーザビームに対し て透明な材料から作られているから、レーザビームはレンズを通過し、レンズ3 の両面5及び4、更にそれらを隔てる材料により集束され、透明媒質の点01に 集束される。その結果、その点で光学的破損が生じ、球面衝撃圧力波が発生する 。レンズ3の凹面4は集束面であることから、球面衝撃波は、凹面4で部分的に 反射された後、レーザ1の反対側のレンズ3の凹面4の側にある点02に集束さ れる。Laser radiation is applied to the convex surface 5 of the lens 3. Lens 3 is for the laser beam. The laser beam passes through the lens 3 and is made from a transparent material. is focused by both sides 5 and 4 of focused. As a result, optical breakage occurs at that point and a spherical shock pressure wave is generated. . Since the concave surface 4 of the lens 3 is a focusing surface, the spherical shock wave is partially focused on the concave surface 4. After being reflected, it is focused at a point 02 on the side of the concave surface 4 of the lens 3 opposite the laser 1. It will be done.

それゆえ集束衝撃波を発生するための装置のこの実施例においては、レーザ放射 の集束及び衝撃波の集束は、同様に単一の要素、すなわちレンズ3により行なわ れる。Therefore, in this embodiment of the device for generating focused shock waves, the laser radiation and the focusing of the shock wave is likewise carried out by a single element, namely the lens 3. It will be done.

レーザ放射の集束点と球面衝撃波の集束点との相対位置を変更するためには、表 面4及び5の曲率半径の異なる比を有する交換可能なレンズ3の組を用いれば良 く、これにより装置の運転は更に簡単になる。To change the relative position of the focal point of the laser radiation and the focal point of the spherical shock wave, use the table It is possible to use a set of interchangeable lenses 3 with different ratios of the radii of curvature of the surfaces 4 and 5. This makes the device even easier to operate.

凹面4と凸面5の主光軸(第2図)が、互いにある角度にあるように設計された レンズ3を使用することもできる。特に凸面5の主光軸は、レーザビームの軸と 一致しても良いが、凹面4の主光軸はそれに対しである角度になるよう傾いてい る。The main optical axes of concave surface 4 and convex surface 5 (Fig. 2) are designed to be at a certain angle to each other. Lens 3 can also be used. In particular, the main optical axis of the convex surface 5 is the axis of the laser beam. They may coincide, but the main optical axis of the concave surface 4 is tilted at a certain angle with respect to it. Ru.

この場合、媒質の光学的破損はレーザビームの軸上で起き、この破損により発生 される球面衝撃波は、凹面4で反射された後、レーザ放射の領域の外側にある点 0□に集束される。In this case, optical damage to the medium occurs on the axis of the laser beam, and this damage causes After being reflected by the concave surface 4, the spherical shock wave generated by Focused on 0□.

これにより対象物をこの放射から遮蔽することが可能になる。This makes it possible to shield the object from this radiation.

〔産業上の利用の可能性〕 提案した装置は、診断及び非外科的な砕石を目的として医療に使用されると、も っとも有益である。[Possibility of industrial use] The proposed device can be used medically for diagnostic and non-surgical lithotripsy purposes. Most useful.

国際調査報告international search report

Claims (4)

【特許請求の範囲】[Claims] 1.パルスレーザ(1)、 該レーザの放射に対して透明な媒質を有する箱(2)、及び 該レーザ放射及び球面衝撃波を集束するために適合されており、該球面衝撃波を 集束するようにされている表面(4)を有する手段(3)を備えた集束衝撃波を 発生するための装置であって、 レーザ放射及び球面衝撃波を集束するための該手段(3)は、該レーザ放射に対 して透明な材料で作られ、表面(4,5)は異なる曲率値を示す凹凸レンズの形 に作られており、該球面衝撃波を集束する表面は凹面であることを特徴とする集 束衝撃波を発生するための装置。1. Pulsed laser (1), a box (2) with a medium transparent to the radiation of the laser; adapted to focus the laser radiation and the spherical shock wave; a focused shock wave comprising means (3) having a surface (4) adapted to focus; A device for generating The means (3) for focusing the laser radiation and the spherical shock wave The surfaces (4, 5) are shaped like concave and convex lenses with different curvature values. and the surface for focusing the spherical shock wave is a concave surface. A device for generating bundle shock waves. 2.該凹面(4)は、該レーザ(1)に向き合い、該凸面(5)には該レーザ放 射を反対するようにコーティングが施されていることを特徴とする請求項の1に 記載の装置。2. The concave surface (4) faces the laser (1) and the convex surface (5) faces the laser radiation. Claim 1, characterized in that the coating is applied to oppose radiation. The device described. 3.該凸面(5)は、該レーザ(1)に向い合っていることを特徴とする請求項 の1に記載の装置。3. Claim characterized in that the convex surface (5) faces the laser (1). The device according to item 1. 4.該凹面(4)と該凸面(5)の主光軸は、互いにある角度位置にあることを 特徴とする請求項の1から3のいずれか1項に記載の装置。4. The principal optical axes of the concave surface (4) and the convex surface (5) are at certain angular positions relative to each other. 4. A device according to any one of claims 1 to 3, characterized in that:
JP1505186A 1989-01-13 1989-01-13 Device for generating focused shock waves Pending JPH03503141A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SU1988/000286 WO1990008009A1 (en) 1989-01-13 1989-01-13 Device for obtaining focused shock waves

Publications (1)

Publication Number Publication Date
JPH03503141A true JPH03503141A (en) 1991-07-18

Family

ID=21617376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1505186A Pending JPH03503141A (en) 1989-01-13 1989-01-13 Device for generating focused shock waves

Country Status (8)

Country Link
JP (1) JPH03503141A (en)
BR (1) BR8807897A (en)
DE (1) DE3891467T1 (en)
DK (1) DK204890A (en)
FI (1) FI904228A0 (en)
FR (1) FR2651333A1 (en)
GB (1) GB9018362D0 (en)
WO (1) WO1990008009A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2991807B1 (en) * 2012-06-06 2014-08-29 Centre Nat Rech Scient DEVICE AND METHOD FOR FOCUSING PULSES
CN111299820B (en) * 2020-03-12 2021-09-10 中国航空制造技术研究院 Reflection type laser shock peening head

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1240298C2 (en) * 1960-09-01 1973-01-11 Eltro G M B H & Co Ges Fuer St Arrangement for generating two images in different wavelength ranges of an object
DE2538960C2 (en) * 1975-09-02 1985-04-11 Dornier System Gmbh, 7990 Friedrichshafen Device for the contactless smashing of calculus in a living being
AT354778B (en) * 1976-07-09 1980-01-25 Kretztechnik Gmbh FOCUSED SOUND HEAD WITH SWINGARM AND SOUND LENS FOR EXAMS WITH ULTRASONIC AFTER THE IMPULSE ECHO PROCESS
US4269067A (en) * 1979-05-18 1981-05-26 International Business Machines Corporation Method and apparatus for focusing elastic waves converted from thermal energy
EP0131653A1 (en) * 1983-07-19 1985-01-23 N.V. Optische Industrie "De Oude Delft" Apparatus for the non-contact disintegration of stony objects present in a body by means of sound shockwaves
US4608979A (en) * 1984-02-22 1986-09-02 Washington Research Foundation Apparatus for the noninvasive shock fragmentation of renal calculi
SU1227185A1 (en) * 1984-05-23 1986-04-30 Предприятие П/Я А-7094 Apparatus for electrohydraulic clevage of concrements in mainъs body
SU1263234A1 (en) * 1984-08-09 1986-10-15 Предприятие П/Я Р-6082 Method of contactless destruction of concrements in biological body
DE3506249A1 (en) * 1985-02-22 1986-08-28 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn METHOD AND DEVICE FOR SMASHING A SOLID BODY
DE8717503U1 (en) * 1987-10-19 1988-12-22 Siemens AG, 1000 Berlin und 8000 München Shock wave source with central tracking system

Also Published As

Publication number Publication date
WO1990008009A1 (en) 1990-07-26
FR2651333A1 (en) 1991-03-01
FI904228A0 (en) 1990-08-27
DE3891467T1 (en) 1991-04-04
DK204890D0 (en) 1990-08-27
BR8807897A (en) 1991-04-02
DK204890A (en) 1990-08-27
GB9018362D0 (en) 1991-02-20

Similar Documents

Publication Publication Date Title
KR960013802B1 (en) Lens
IL106092A (en) Illumination system having an aspherical lens and a method of manufacturing such a system
US4356883A (en) Ellipticized rubber acoustical lens providing balanced astigmatism
GB1466425A (en) Transmitting optical information
CN108873322B (en) Method and system for determining curved surface structure of long-focal-depth aspheric reflector
EP0108618B1 (en) Apparatus for projecting a laser beam in a linear pattern
US4557569A (en) Distended point source reflector having conical sections
JP2006235620A (en) Collimating lens structure
CN114067778A (en) High-refractive-index flat acoustic focusing lens and energy gathering device
EP0065785B1 (en) Waveguide for laser beams
US3620326A (en) Athermal acoustic lens
JPH03503141A (en) Device for generating focused shock waves
US3974684A (en) Ultrasonic system for focusing at an oblique angle of incidence
CN112153947B (en) Shock wave generating device and shock wave ablation system
US4136926A (en) Achromatic illumination system for small targets
JPS58208717A (en) Apparatus for connecting light radient generator and light waveguide path
KR20060108912A (en) Various 3-dimensional laser plane beam generator using an inverse conic prism
GB2027931A (en) Geodesic lens for waveguides and optical processor of unidimensional signals employing the same
Folds Status of ultrasonic lens development
Boyles Theory of focusing plane waves by spherical, liquid lenses
RU2238576C1 (en) Method for focusing wave field and device for realization of said method
US924488A (en) Focusing-cap for telescopes.
SU1695898A1 (en) Device for generating of focused shock waves in transparent medium
US20230038081A1 (en) Non-planar holographic beam shaping lenses for acoustics
US5148315A (en) Method and means to cancel diffraction effects from radiation fields