JPH03501712A - Injection molding equipment for semi-fluid materials - Google Patents
Injection molding equipment for semi-fluid materialsInfo
- Publication number
- JPH03501712A JPH03501712A JP2504930A JP50493090A JPH03501712A JP H03501712 A JPH03501712 A JP H03501712A JP 2504930 A JP2504930 A JP 2504930A JP 50493090 A JP50493090 A JP 50493090A JP H03501712 A JPH03501712 A JP H03501712A
- Authority
- JP
- Japan
- Prior art keywords
- injection
- path
- ring
- outer box
- distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/695—Flow dividers, e.g. breaker plates
- B29C48/70—Flow dividers, e.g. breaker plates comprising means for dividing, distributing and recombining melt flows
- B29C48/705—Flow dividers, e.g. breaker plates comprising means for dividing, distributing and recombining melt flows in the die zone, e.g. to create flow homogeneity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/09—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/09—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
- B29C48/10—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/14—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration
- B29C48/147—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration after the die nozzle
- B29C48/1472—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration after the die nozzle at the die nozzle exit zone
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/16—Articles comprising two or more components, e.g. co-extruded layers
- B29C48/18—Articles comprising two or more components, e.g. co-extruded layers the components being layers
- B29C48/21—Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/30—Extrusion nozzles or dies
- B29C48/32—Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
- B29C48/335—Multiple annular extrusion nozzles in coaxial arrangement, e.g. for making multi-layered tubular articles
- B29C48/336—Multiple annular extrusion nozzles in coaxial arrangement, e.g. for making multi-layered tubular articles the components merging one by one down streams in the die
- B29C48/3366—Multiple annular extrusion nozzles in coaxial arrangement, e.g. for making multi-layered tubular articles the components merging one by one down streams in the die using a die with concentric parts, e.g. rings, cylinders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/30—Extrusion nozzles or dies
- B29C48/32—Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
- B29C48/34—Cross-head annular extrusion nozzles, i.e. for simultaneously receiving moulding material and the preform to be coated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/695—Flow dividers, e.g. breaker plates
- B29C48/70—Flow dividers, e.g. breaker plates comprising means for dividing, distributing and recombining melt flows
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2791/00—Shaping characteristics in general
- B29C2791/004—Shaping under special conditions
- B29C2791/007—Using fluid under pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/30—Extrusion nozzles or dies
- B29C48/32—Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
- B29C48/335—Multiple annular extrusion nozzles in coaxial arrangement, e.g. for making multi-layered tubular articles
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 半流動性材料の射出成形装置 本発明は特許請求の範囲第1項のプレアンブルに記載せる射出装置に関する。こ のような射出装置はドイツ実用新案(DB−GebrMS) 1927405に て公知である。[Detailed description of the invention] Injection molding equipment for semi-fluid materials The present invention relates to an injection device as set forth in the preamble of claim 1. child An injection device such as It is publicly known.
半流動性(粘性)材料、特に可塑性のある合成押し出し材料から吹き込みフィル ム、管、その地固等の品物の製作には射出装置(及び吹き込みヘッド、またはス ピンドルヘッド)が用いられる。この装置はその軸方向の終端部にリング状間隙 を持っている。材料はその間隙を通りその際吹き込みにより成形される。吹き込 まれた材料はその出口で冷却リングにより冷却されてそれまでの半流動性から固 化する。しかし次のような困難が存在する。Blown fill from semi-fluid (viscous) materials, especially plastic synthetic extruded materials Injection equipment (and blowing heads or spindle head) is used. The device has a ring-shaped gap at its axial end. have. The material passes through the gap and is shaped by blowing. Blowing At the outlet, the material is cooled by a cooling ring and changes from semi-fluid to solid. become However, the following difficulties exist.
即ち、最終製品の壁強度を許容誤差を狭い範囲内に抑えるためにはリング状間隙 内において、材料は出来る限り均一なる粘性と、均一なる温度と、均一なるせん 断応力をもって広がることが必要である。In other words, in order to keep the wall strength of the final product within a narrow tolerance range, a ring-shaped gap is required. Within the material, the material must have as uniform a viscosity, temperature, and thickness as possible. It is necessary to spread with shear stress.
このような射出装置の公知の構造(DE−GebrMS 1927405)では 、中空円筒状外箱のなかに小軸が配置され、その軸方向の端部フランジ(頭蓋部 )は装置の外箱の軸方向の端部にネジどめされている。装置の外箱の下部軸方向 の端面には小軸の端面と装置外箱との間にリング状間隙が広がっている。半流動 性材料の供給は上部の軸方向外箱の端部領域に放射状に設けた注入路によって行 われ、更に小軸の外面部に設けた分配路につながっている。分配路は最初に注入 路につながった二つの分岐となる。この分岐は小軸の周囲4分の1の長さを占め 、続いて軸方向に複数回分岐する。このような樹木(ツリー)状構造の端部は装 置の下端部においてリング状間隙につながっている。このような軸方向の分配路 の利点はそれぞれのリング状間隙に注ぎ込む分流はそれ自身長さを持っているこ とである。いずれにせよ分配路に沿っての圧力損失は例えば300barになる 。この損失は射出用ポンプのそれに相当するポンプ能力の上昇によってまかなわ なければならない。軸方向に漸進的に材料の温度を上げることによるポンプ能力 転換は、例えば12〜15°Cに相当する。分配路は軸方向に延びているために 、全体の分配路の長さにわたって管路壁の温度を同じに保つためには、溶融した 材料と分配路の壁との間の温度差を軸方向に増大するようにしなければならない 。この様な局部的な異なった温度差は溶融して液体どなった材料の分配路壁面で の滑りに差が発生し、このことは更に分配路の分岐部で流体速度に差が発生し、 最終的には製品の厚さ変動となってくる。更にはリング状間隙内部での個々の分 流の重ね合わせが不十分であることにより最終製品で個々の分流により作られた 部分領域間に明らかに目に見える継目(すじ)を発生する。分配路に関していえ ば良く知られている螺旋状の分配路の利用は上記の重なりの改善には役立つだろ うが、同時にこの方法は小軸の軸方向の長さを著しく大きくする。そのためリン グ状間隙の幅を均一に保つことが必要条件である装置構造の剛性を損なうことに なる。In the known structure of such an injection device (DE-GebrMS 1927405), , a small shaft is arranged in a hollow cylindrical outer box, and its axial end flange (cranium ) is screwed to the axial end of the outer box of the device. Lower axial direction of the device outer box A ring-shaped gap is formed between the end face of the small shaft and the outer box of the device. semi-liquid The supply of the reactive material is carried out by means of injection channels arranged radially in the end region of the upper axial outer box. It is further connected to a distribution passage provided on the outer surface of the small shaft. The distribution channel is injected first. There are two branches connected to the road. This branch occupies one quarter of the circumference of the minor axis. , followed by multiple axial branches. The ends of such a tree-like structure are It connects to a ring-shaped gap at its lower end. Such an axial distribution path The advantage of this is that the branch flow into each ring gap has its own length. That is. In any case the pressure loss along the distribution path amounts to, for example, 300 bar. . This loss is covered by a corresponding increase in pumping capacity of the injection pump. There must be. Pumping capacity by progressively increasing the temperature of the material in the axial direction The conversion corresponds to, for example, 12-15°C. Because the distribution channel extends in the axial direction, , in order to keep the temperature of the pipe wall the same over the entire distribution line length, the melted It must be ensured that the temperature difference between the material and the walls of the distribution channel increases in the axial direction . These localized temperature differences occur on the distribution channel wall of the molten liquid material. This causes a difference in the fluid velocity at the branching part of the distribution channel, Ultimately, this will result in variations in the thickness of the product. Furthermore, individual portions within the ring-shaped gap Insufficient flow superposition results in the final product being created by individual split streams. This produces clearly visible seams (streaks) between sub-areas. No regarding the distribution route. The use of the well-known helical distribution channel may be helpful in improving the overlap described above. However, at the same time, this method significantly increases the axial length of the minor shaft. Therefore, phosphorus Maintaining the uniform width of the gap may impair the rigidity of the device structure, which is a necessary condition. Become.
これに対し本発明の目的は先に述べた方法の射出装置において分配路の壁温度に 対応して、出来る限り正確に材料の温度を対応させることにある。In contrast, the object of the present invention is to control the wall temperature of the distribution channel in the injection device of the method described above. Correspondingly, the aim is to match the temperature of the materials as precisely as possible.
上記の課題は本発明の特許請求の範囲第1項に述べる特徴により解決される。The above problem is solved by the features stated in claim 1 of the invention.
本発明の射出装置の更に優れたる改良及び構造はこれによる従属請求項の記載に より明らかになる。Further improvements and structures of the injection device of the present invention are described in the dependent claims. It becomes clearer.
本発明は装置の分配路を軸方向の面内でなく放射方向に設けるという考え方に立 っている。これにより二つの利点がある。第一に放射状の分配路は容易に軸方向 の分配路と結合することが出来ることである。これにより小軸の長さは螺旋式分 配路の長さにより殆ど支配され、それと共に充分短く且つ堅固に形成出来る。螺 旋路を後方に設置することにより分配路よりの材料の分流による重なりは満足す べきもので、これにより最終製品のすしは避けることが出来る。次の利点として 、放射状の面内をはしる分配路はその路壁と共に、装置の材料の内部より外に向 かって低下する温度勾配に支配されている。溶融して流動状態の材料は先に述べ た通路に沿って放射状に外側から内側に向かって増加する温度によるポンプ効率 への転換が行われるので、材料は本発明により形成された分配路を通る通路にお いては、全ての位置において通路壁とほぼ同一の温度を示す。この自動的な温度 適応性は、同一の滑り、換言すれば摩擦関係と、それと共に、同一のむらのない 材料の流体速度を保証する。これにより最終製品の厚さの変動は大幅に減少する 。The present invention is based on the idea that the distribution path of the device is provided not in the axial plane but in the radial direction. ing. This has two advantages. Firstly, the radial distribution path is easily axially It is possible to connect with the distribution path of This reduces the length of the small axis to the length of the spiral. It is mostly controlled by the length of the line and can therefore be made sufficiently short and rigid. screw By installing the swirl path at the rear, the overlap caused by the shunting of material from the distribution path can be satisfied. This allows you to avoid sushi in the final product. As the next advantage , the distribution channels running in the radial plane, together with their channel walls, are directed outward from the interior of the material of the device. It is dominated by a decreasing temperature gradient. The materials in the molten and fluid state are as described above. Pump efficiency due to temperature increasing radially from outside to inside along the path As the conversion to The temperature at all locations is almost the same as that of the passage wall. This automatic temperature Adaptability is based on the same sliding, or in other words, frictional relationship and, with it, the same uniformity. Guarantee material fluid velocity. This significantly reduces the variation in thickness of the final product .
本発明は下記の実施例の図面により明らかにする。即ち、 第1図 本発明の射出装置の第一の実施例の縦断面図、第2図 第1図による射 出装置の■−■線に沿っての分配路での断面図、 第3図 本発明の射出装置で第1図と類似しているが多少変形せる実施例の詳細 断面図、 第3a図 第3図の射出装置の分配路と集結路との移行領域の平面図、 第4図 本発明の射出装置の他の実施例で多層構造となった場合の縦断面図、 第1図に示す粘性のある流動材料、例えば可塑性のある合成材料(plastj fizierte Kunstsoffextrudat) (P VC1C1 ボリエチ1々)より吹出し膜、管、その他類似の製品を製作するのに使用する射 出装置は、上部の軸端部にフランジ状の付属部10aをもった中空円筒状の装置 外箱10をもっている。装置外箱10の円筒型内孔10bには、上部軸端部に頭 蓋部21を備えた円筒型の小軸20が挿入されている。頭蓋部21は装置外箱1 0のフランジ状付属部10aの上に設置され、この頭蓋部の周辺を均等に分割す る位置にある複数本のボルト13によりねじ止めされている。小軸20の直径は 内孔10bの直径よりも多少小さく設定されている。これは小軸20の更に詳細 説明する外表面と、滑らかな円筒状の内孔10bとの間にリング状及びねじ状の 流出間隙を形成しく回転対称なる集結路22と螺旋分配路のねじ溝23の領域に おい”C)、更に軸の下部端部にまで延びるリング状間隙30を形成するためで ある。リング状間隙30の下端部に存在する狭い射出間隙31にはホース状或い は管状に成形された半流動性材料が現れ、つづいて(図示していない)空気冷却 リング、或いは他の冷却手段により固化される。合成材料箔の製作ではリング状 間隙30の輻は3mmであるが、−1噴出口31では0.8闘の幅になっている 。半流動性材料の入口は上部軸方向の端部領域に設けられ、装置外箱10のフラ ンジ形状の付属部10aにおいて延びる放射方向の注入路を形成している。注入 路11は半径方向に延びる断片11a 、 90°の角度変更部11bを経て更 に軸方向に延びる断片11C1更に分配路12につながっている。The invention will be elucidated by the drawings of the following examples. That is, Fig. 1: A vertical sectional view of the first embodiment of the injection device of the present invention, Fig. 2: Injection according to Fig. 1 A cross-sectional view of the distribution path along the line ■-■ of the output device, Figure 3 Details of an embodiment of the injection device of the present invention similar to Figure 1 but slightly modified cross section, Figure 3a: A plan view of the transition area between the distribution path and the collection path of the injection device in Figure 3; FIG. 4 A vertical cross-sectional view of another embodiment of the injection device of the present invention having a multilayer structure, A viscous fluid material, such as a plastic synthetic material (plastj fizierte Kunstsoffextrudat) (P VC1C1 The injection molding used to make blown membranes, tubes, and other similar products from polyethylene (1) The extraction device is a hollow cylindrical device with a flange-like attachment 10a at the upper shaft end. I have an outer box 10. The cylindrical inner hole 10b of the device outer box 10 has a head at the upper shaft end. A cylindrical small shaft 20 with a lid 21 is inserted. The cranium 21 is the device outer box 1 It is installed on the flange-like appendage 10a of 0, and equally divides the periphery of this skull. It is screwed by a plurality of bolts 13 located at the same positions. The diameter of the small shaft 20 is The diameter is set to be somewhat smaller than the diameter of the inner hole 10b. This is more details of small axis 20 A ring-shaped and screw-shaped groove is formed between the outer surface and the smooth cylindrical inner hole 10b. In the region of the rotationally symmetrical concentrating passage 22 and the thread groove 23 of the spiral distributing passage forming an outflow gap. C), in order to form a ring-shaped gap 30 that further extends to the lower end of the shaft. be. A narrow injection gap 31 existing at the lower end of the ring-shaped gap 30 has a hose-shaped or reveals a semi-fluid material formed into a tube, followed by air cooling (not shown). It is solidified by a ring or other cooling means. In the production of synthetic material foil, ring-shaped The convergence of the gap 30 is 3 mm, but the width of the -1 jet port 31 is 0.8 mm. . The inlet for the semi-fluid material is provided in the upper axial end region and is located in the flange of the device outer box 10. A radial injection channel is formed extending in the orange-shaped appendage 10a. injection The channel 11 continues through a radially extending segment 11a and a 90° angle change section 11b. The axially extending segment 11C1 further communicates with the distribution channel 12.
分配路12は本発明では専ら放射状の装置面内を通り、第1図及び第3図の例で 示すごとく頭蓋部21と装置外箱10のフランジ状付属部10aとの間の面に、 第2図の切断図に示されるごとく形成され、その円形断面を備えた分配器@12 の管路の断面は頭蓋部21と付属部10aにそれぞれ半分づつの断面によって形 成される。更に上記の分配路の構成は、材料の流れを複数の同一長の分流に分割 し、これにより小軸の周りに均一に分流を流し込むことを目的としている。この ことは装置周部に材料の注入口はただ一点しか設けられていないにも拘らず、材 料をリング状間隙30に均一に分配するために不可欠である。このことは製造さ れた合成材料のホース或いは管の均一なる肉厚を得るための前提でもある。In the present invention, the distribution channel 12 runs exclusively in the radial plane of the device, and in the example of FIGS. As shown, on the surface between the cranium 21 and the flange-like appendage 10a of the device outer box 10, A distributor @ 12 formed as shown in the cutaway view of FIG. 2 and with its circular cross section. The cross section of the canal is shaped by half each in the cranial part 21 and in the appendix 10a. will be accomplished. Furthermore, the above distribution channel configuration divides the material flow into multiple equal-length branch streams. The purpose of this is to uniformly distribute the divided flow around the small axis. this This means that even though there is only one material injection port around the device, This is essential for uniformly distributing the material into the annular gap 30. This thing is manufactured This is also a prerequisite for obtaining a uniform wall thickness for hoses or pipes made of synthetic material.
分配路12のなかで個々の分流には連続して分配される。In the distribution channel 12, the individual sub-streams are distributed successively.
この源側々の管路の断面は分流数の増加に対応して小さくなる。個々に説明する と先ず第一に、分配路12は二つの分路12a 、 12bとなり、それぞれが 円周上の45°の範囲に広がっていて、その共通の源泉として注入路11の軸方 向に走っている末端部11cにつながっている。軸方向の末端部!ICより放射 方向の分路12a 、 12bへの906移行部があるため、材料の流れの正確 なる半分割を行うための流れ関係はこの角度変更部と末端部11cを設けないと きの流体供給よりも好都合である。両分路12a 、、12b端部は直径の両端 に位置しそれぞれ二つの分路12aL12a2及び12bl、12b2とに分岐 する。これらは分路12& 。The cross section of the conduit on each side of the source becomes smaller as the number of branched streams increases. explain individually First of all, the distribution path 12 becomes two branches 12a and 12b, each with a It spreads over a 45° range on the circumference, and the common source is the axial direction of the injection path 11. It is connected to an end portion 11c running in the direction. Axial end! Radiated from IC Due to the presence of 906 transitions to the shunts 12a and 12b in the direction, the accuracy of the material flow is The flow relationship for half-division is as follows unless this angle changing part and the end part 11c are provided. This is more convenient than the conventional fluid supply. Both shunts 12a, 12b ends are at both ends of the diameter and branch into two branches 12aL12a2 and 12bl, 12b2. do. These are shunt 12 &.
12bの半径の更に内側に位置し、反対方向に延びている。12b and extends in the opposite direction.
このような分岐は繰り返し行われる。即ち、分路12a1は分路12ala 、 12albに、分路12a2は分路12a2a 、 12a2bに、分路12 blは分路12bla 、、12blbに、分路12b2は分路12b2a 、 12b2bというごとくに分岐する。Such branching is repeated. That is, the shunt 12a1 is the shunt 12ala, 12alb, shunt 12a2, shunt 12a2a, 12a2b, shunt 12 bl is connected to the shunt 12bla, 12blb, and the shunt 12b2 is connected to the shunt 12b2a, It branches like 12b2b.
第3図で図示された分路12a 、 12a2.12a2aのほぼ比例的に縮尺 した断面で判るごとく、引き続いて分流する回数が増加するに伴って断面は小さ くなり、それと共に流速が同一の場合には分路内の圧力は減少する。分流の圧力 の減少は同時に分流の温度の上昇を意味している。Approximately proportional scale of the shunt 12a, 12a2.12a2a illustrated in FIG. As can be seen in the cross section, as the number of diversions increases, the cross section becomes smaller. increases, and the pressure in the shunt decreases at the same time for the same flow rate. Diversion pressure At the same time, a decrease in the temperature of the divided flow means an increase in the temperature of the divided flow.
このことは注入路11の前に配置された図示していないポンプの能力がエネルギ ーに変換されていることにより明らかである。上記の分流が放射方向で外より内 に向かって温度上昇することは同時に分配路の管壁が同一傾向の温度変化をとる ことに相当し、これによって装置の材料は冷却により内側から外側に向かって温 度降下を示す結果となる。この温度降下は装置の外壁を制御された加熱により対 処することが出来る。装置の寸法、分路の直径及びポンプの能力を正確に測定す ることにより管路壁の温度変化に対応した材料のより進歩した温度変化経緯をと るような対応が可能になる。This means that the capacity of the pump (not shown) placed in front of the injection path 11 is This is clear from the fact that it has been converted into The above branch flow is radial direction from outside to inside. At the same time, as the temperature increases towards This corresponds to The result shows a degree drop. This temperature drop is counteracted by controlled heating of the outer walls of the device. can be treated. Accurately measure equipment dimensions, shunt diameter and pump capacity. By doing so, we have achieved a more advanced temperature change history for materials that can respond to temperature changes on the pipe wall. This makes it possible to respond in a way that
注入路11からの最初の二つの分路12a 、 12bに注入する領域で行われ た方向転換、即ち放射方向の材料の流れと軸方向の材料の流れとの方向転換は、 小軸の周りに出来るだけ均一なる材料の配分を可能とするために(図示していな いが)全ての、あるいは少なくとも分配路12のそれ以後の個々の分岐点にも適 用することが出来る。The first two branches 12a and 12b from the injection path 11 are injected in the region The change in direction, i.e. between radial and axial material flow, is To enable as uniform a distribution of material as possible around the minor axis (not shown) However, it also applies to all or at least the subsequent individual branches of the distribution channel 12. can be used.
第3図及び第3a図より明らかなごとく、分路12alaから分路12b2bま での末端部は魚の尻尾のごとき方向転換領域12cを経て回転対称でリング形状 の小軸の周辺部、即ち小軸カバーにある集結路22に移行する。集結路22は、 分路12alaから12b2bまでの分流の数に対応する複数の小軸カバーに螺 旋形に形成された螺旋路23よりなる軸方向螺旋分配器に接続されている。その 際リング状の集結路22は螺旋路23との間に小軸カバーに設けられた小路22 aにより分離されている。小路22aは容器内孔10bの内面まで例えば半径で 1.5mmの距離を保っている。この隙間は各分流が螺旋路23に流入する際、 均一化されることが配慮されている。個々の螺旋路23の間に設けられた小路2 3aは容器内壁との間に、例えば0.5tnmから1.0+nmの距離を保って いる。この場合小路23aと内孔内壁間の隙間は、螺旋路より材料があふれだし て分流の重なりを改善するのに役立つ。As is clear from Fig. 3 and Fig. 3a, from the shunt 12ala to the shunt 12b2b. The distal end of the terminal has a rotationally symmetrical ring shape through a direction change area 12c like a fish's tail. It moves to the collection path 22 in the periphery of the small shaft, that is, the small shaft cover. The gathering road 22 is A plurality of small shaft covers corresponding to the number of shunts from 12ala to 12b2b are screwed. It is connected to an axial helical distributor consisting of a helical channel 23 of helically designed shape. the The narrow ring-shaped gathering path 22 is a small path 22 provided in the small shaft cover between the spiral path 23 and the spiral path 23. separated by a. The passage 22a extends, for example, in a radius to the inner surface of the container inner hole 10b. Maintaining a distance of 1.5mm. When each branch flow flows into the spiral path 23, this gap is Consideration has been given to ensuring uniformity. Path 2 provided between individual spiral paths 23 3a maintains a distance of, for example, 0.5tnm to 1.0+nm between the inner wall of the container and the inner wall of the container. There is. In this case, the material overflows from the spiral path in the gap between the narrow path 23a and the inner wall of the inner hole. This helps improve the overlapping of shunts.
螺旋分配器(螺旋路23)は第1図、第3図の場合心細20の長軸の3分の1か ら2分の1を占め、リング状間隙30につながる。第3図の場合、この間隙は各 種の射出間隙、直径を持った標準装置寸法にも適合するように曲げられている。In the case of Figures 1 and 3, the spiral distributor (spiral path 23) is one-third of the long axis of the filament 20. occupies one-half of the gap and connects to the ring-shaped gap 30. In the case of Figure 3, this gap is The seed injection gap is also curved to fit standard equipment dimensions with diameter.
ここでは装置外箱lOと小軸20はその下部領域にねじとめ可能な付属部品10 1と201を装着しているのを示す。Here, the device outer box lO and the small shaft 20 have an attachment part 10 that can be screwed onto their lower area. 1 and 201 are shown.
第4図の実施例は第1図と比較して本来の(内側の)小軸20とこれと同軸的に 配置された合軸スリーブ40.50よりなる多層構造であることが相違している 。このような多層構造は、複数枚の薄膜層を重ね合わした、いわゆる合成膜を製 作するのに使用される。個々の膜層はそれぞれ異なった材料よりなっている。合 軸スリーブ40.50は、小軸頭蓋部21に対応し゛て放射状のフランジ部41 .51が設けられている。それぞれフランジ41.51には追加の注入路42. 52が第1図の実施例における注入路11と同様の構造で設けられている。追加 注入路41.51はそれぞれが放射方向内をはしる分配路43.53につながっ ていて、その構造は第1図の分配路12と同様である。各6軸スリーブ40.5 0の外面に形成された集結路及び螺旋路44.45及び54.55についても同 様である。螺旋路45.55に続くリング状の間隙は、第4図に示すごとく装置 の軸方向の下端部にある射出間隙31に斜めに接続されている。従って射出間隙 31の前で装置の各階層(小軸20と6軸スリーブ40.50)により形成され た全てのリング状の材料の流れが集合することになる。The embodiment of FIG. 4 is different from that of FIG. The difference is that it has a multilayer structure consisting of arranged joint sleeves 40.50. . This type of multilayer structure is created by manufacturing a so-called synthetic membrane, which is made by overlapping multiple thin film layers. used for making. Each individual membrane layer is made of a different material. If The shaft sleeve 40.50 has a radial flange portion 41 corresponding to the small shaft cranial portion 21. .. 51 are provided. Each flange 41.51 has an additional injection channel 42. 52 is provided in a similar structure to the injection path 11 in the embodiment of FIG. addition The injection channels 41.51 each lead to a distribution channel 43.53 extending in the radial direction. The structure is similar to the distribution path 12 shown in FIG. Each 6 axis sleeve 40.5 The same applies to the convergent paths and spiral paths 44.45 and 54.55 formed on the outer surface of 0. It's like that. The ring-shaped gap following the spiral path 45.55 is connected to the device as shown in FIG. The injection gap 31 is obliquely connected to the injection gap 31 at the lower end in the axial direction. Therefore, the injection gap 31 formed by each level of the device (small shaft 20 and 6 shaft sleeve 40.50) All the ring-shaped material flows will come together.
国際調査報告 、 、、、PCT/EP 90100490international search report , , , , PCT/EP 90100490
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3910493.1 | 1989-04-01 | ||
DE3910493A DE3910493A1 (en) | 1989-04-01 | 1989-04-01 | EXTRUSION NOZZLE FOR BLOW FILM AND TUBE PRODUCTIONS FROM THERMOPLASTIC PLASTICS |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03501712A true JPH03501712A (en) | 1991-04-18 |
Family
ID=6377562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2504930A Pending JPH03501712A (en) | 1989-04-01 | 1990-03-27 | Injection molding equipment for semi-fluid materials |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0417236A1 (en) |
JP (1) | JPH03501712A (en) |
DE (1) | DE3910493A1 (en) |
WO (1) | WO1990011880A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8790385B2 (en) | 2003-05-09 | 2014-07-29 | C. R. Bard, Inc. | Strain management in stent delivery system |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL9201457A (en) * | 1992-08-14 | 1994-03-01 | Rollepaal B V Maschf De | Dividing head for forming a tubular profile from one or more streams of extruded thermoplastic plastic material. |
DE9216920U1 (en) * | 1992-10-13 | 1994-02-24 | Windmöller & Hölscher, 49525 Lengerich | Extrusion tool for the extrusion of melt hoses |
US5672303A (en) * | 1992-10-17 | 1997-09-30 | Bellaform Extrusionstechnik Gmbh | Process and extruding head for the manufacture and/or coating of extruding profiles |
DE4235101C2 (en) * | 1992-10-17 | 1994-11-10 | Krupp Bellaform Maschbau | Process and spray head for producing and / or covering extruded profiles |
IT1274835B (en) * | 1994-07-14 | 1997-07-25 | Techne Spa | COEXTRUSION HEAD FOR THERMOFORMING MACHINES FOR BLOWING, QUICK CHANGE OF THE COLORED LAYERS OF THE EXTRUDED PLASTIC MATERIAL. |
GB201112475D0 (en) | 2011-07-20 | 2011-08-31 | Kritis Plastika | Concentric co-extrusion die |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2820249A (en) * | 1952-10-08 | 1958-01-21 | Lavorazione Mat Plastiche Sas | Apparatus for coating articles with multi-layer linings |
JPS6125128A (en) * | 1984-07-14 | 1986-02-04 | Canon Inc | Liquid crystal element |
JPS6140130A (en) * | 1984-08-01 | 1986-02-26 | Purakoo:Kk | Extruder die |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1140337B (en) * | 1959-11-07 | 1962-11-29 | Troester Maschf Paul | Spray head for the production of hoses, tubular films, etc. made of thermoplastic materials |
DE1927405A1 (en) * | 1969-05-29 | 1970-12-03 | Nelson James Alan | Ice vehicle |
CH527688A (en) * | 1970-08-21 | 1972-09-15 | Riwisa Ag | Slot nozzle head for extruding plastics |
DE2329792A1 (en) * | 1973-06-12 | 1975-01-09 | John J Farrell | Plastics tube blowing head gives thorough mixing - in pref. spiral grooves between two surfaces leading to discharge annulus |
FR2308490A1 (en) * | 1975-04-25 | 1976-11-19 | Bonnel Pierre | Side entry die for extruding thermoplastic sheathing - with balanced branched runners for uniform distribution |
FR2377878A1 (en) * | 1977-01-21 | 1978-08-18 | Ato Emballage | Concentric sleeves for flow baffles in film extrusion die - to induce uniform axial flow without residual flow weld lines |
US4395221A (en) * | 1980-01-04 | 1983-07-26 | Mobil Oil Corporation | Tubular extrusion apparatus |
DE3532996A1 (en) * | 1985-09-16 | 1987-03-26 | Battenfeld Fischer Blasform | EXTRUSION HEAD |
-
1989
- 1989-04-01 DE DE3910493A patent/DE3910493A1/en not_active Ceased
-
1990
- 1990-03-27 JP JP2504930A patent/JPH03501712A/en active Pending
- 1990-03-27 WO PCT/EP1990/000490 patent/WO1990011880A1/en not_active Application Discontinuation
- 1990-03-27 EP EP90904833A patent/EP0417236A1/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2820249A (en) * | 1952-10-08 | 1958-01-21 | Lavorazione Mat Plastiche Sas | Apparatus for coating articles with multi-layer linings |
JPS6125128A (en) * | 1984-07-14 | 1986-02-04 | Canon Inc | Liquid crystal element |
JPS6140130A (en) * | 1984-08-01 | 1986-02-26 | Purakoo:Kk | Extruder die |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8790385B2 (en) | 2003-05-09 | 2014-07-29 | C. R. Bard, Inc. | Strain management in stent delivery system |
US9532891B2 (en) | 2003-05-09 | 2017-01-03 | C. R. Bard, Inc. | Strain management in stent delivery system |
Also Published As
Publication number | Publication date |
---|---|
DE3910493A1 (en) | 1990-10-04 |
WO1990011880A1 (en) | 1990-10-18 |
EP0417236A1 (en) | 1991-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6616437B1 (en) | Device for continuously producing seamless plastic tubes | |
US3694292A (en) | Extrusion head for producing a multilayer blown tubular film | |
US4167383A (en) | Multi-ring die | |
US8523552B2 (en) | Device and method for cooling an extruded plastic profile | |
AU604048B2 (en) | Die for extrusion of blown plastic film | |
CA1203961A (en) | Twin-nozzle extrusion head | |
CA1320323E (en) | Extrusion die for externally ribbed plastic tubing | |
HU211115B (en) | Storing head for die-casting machine producing hollow plastic form pieces | |
JPH03501712A (en) | Injection molding equipment for semi-fluid materials | |
CN110328824B (en) | Double-layer co-extrusion machine head die | |
FI85352C (en) | Apparatus for extrusion of multilayer plastic tubes and method for making tubes by means of the apparatus | |
NL9201457A (en) | Dividing head for forming a tubular profile from one or more streams of extruded thermoplastic plastic material. | |
CN202805602U (en) | Handpiece for manufacturing double-wall corrugated pipe | |
US20030077347A1 (en) | Head for coextruding a thermoplastic parison | |
CA2679013C (en) | Manifold-type die for the production of a multilayer blown film | |
US3784339A (en) | Disk extruder | |
CN210415460U (en) | Double-layer co-extrusion machine head die | |
US3475789A (en) | Blown film dies | |
JP2000516895A (en) | Plastic barrel-shaped container and method and apparatus for producing the same | |
EP0486735A1 (en) | Die head for plastic with barrier forming material | |
US20020086071A1 (en) | Extrusion head for extruding a tube-shaped strand from at least one thermoplastic melt for producing blown films | |
GB1330768A (en) | Extrusion head for making tubular plastics film | |
US5208048A (en) | Extrusion head for tubular strands of thermoplastified synthetic resin material | |
US3406699A (en) | Process and apparatus for the charging of a plurality of injection heads | |
TWI714902B (en) | Annular manifold for an extrusion head for producing a tubular moulding from a thermoplastic material |