JPH0350117A - Method of removing iron and removing material - Google Patents

Method of removing iron and removing material

Info

Publication number
JPH0350117A
JPH0350117A JP1186625A JP18662589A JPH0350117A JP H0350117 A JPH0350117 A JP H0350117A JP 1186625 A JP1186625 A JP 1186625A JP 18662589 A JP18662589 A JP 18662589A JP H0350117 A JPH0350117 A JP H0350117A
Authority
JP
Japan
Prior art keywords
iron
rare earth
earth elements
solution
antimonates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1186625A
Other languages
Japanese (ja)
Other versions
JP2795912B2 (en
Inventor
Mitsuo Abe
阿部 光雄
Yuzuru Yanagisawa
柳澤 讓
Kazuyoshi Mochizuki
望月 一慶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP1186625A priority Critical patent/JP2795912B2/en
Publication of JPH0350117A publication Critical patent/JPH0350117A/en
Application granted granted Critical
Publication of JP2795912B2 publication Critical patent/JP2795912B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To remove iron at high efficiency from a solution of <pH7 in which two or more kinds of metals including rare earth elements and iron and to separate iron from the rare earth elements by removing iron in a combined form with a specified removing material. CONSTITUTION:Iron is removed at high efficiency from a solution of <pH7 in which two or more kinds of metals including rare earth elements and iron are dissolve by adding one or two kinds of titanium antimonates and tin antimonates as the removing material to separate iron from the rare earth elements. Titanium antimonates and tin antimonates are hydrates of oxide, expressed by TiO2.xSb2O5.nH2O and SnO2.ySb2O5&NnH2O (0<(x)<=0.5, 0<(y)<=1.0 and (n)>=0) including the anhydrides, respectively. If the solution becomes >pH7, the removing material itself is apt to become slightly dissoluble.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、希土類元素および鉄を含む二種類以上の金属
が溶存するpH7未満の溶液から鉄を除去し希土類元素
と分離する方法および除去材に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a method and a removal material for removing iron from a solution with a pH of less than 7 in which two or more metals containing rare earth elements and iron are dissolved. Regarding.

〔従来の技術〕[Conventional technology]

希土類元素および鉄を含む二種類以上の金属が溶存する
pH7未満の溶液から鉄を除去し希土類元素と分離する
1例として希土類元素の中の不純物としての鉄の除去が
あげられる。
One example of removing iron from a solution with a pH of less than 7 in which two or more metals containing a rare earth element and iron are dissolved and separating it from the rare earth element is the removal of iron as an impurity in the rare earth element.

光学ガラスには、例えばレンズの屈折率あるいは/およ
び分解能を向上させるため希土類元素を添加するが、不
純物として鉄が含まれているとこれらの性能に不具合が
生じることは良く知られていることである。
For example, rare earth elements are added to optical glass to improve the refractive index and/or resolution of the lens, but it is well known that the presence of iron as an impurity can cause problems in these properties. be.

希土類元素の精製方法の従来技術の一つとしてイオン交
換樹脂による方法があげられる。しかし、−船釣にイオ
ン交換樹脂による微量の鉄金属の除去は、後述の比較例
に示すように次式で定義される両者の分配係数がほぼ類
似した値を取るため、希土類元素と鉄は分離しに(いと
いう問題点がある。
One of the conventional techniques for purifying rare earth elements is a method using an ion exchange resin. However, when removing trace amounts of iron metal using ion exchange resin during boat fishing, rare earth elements and iron are There is a problem with the separation.

[M] ここに、 Kd:分配係数(m/ g ) 〔M] :交換体中の金属イオン濃度(mol/ g 
)[Mコ :溶液中の金属イオン濃度(mol/rd、
)また、他の例として高レベル放射性廃液中に含まれる
鉄の除去があげられる。
[M] Where, Kd: Partition coefficient (m/g) [M]: Metal ion concentration in the exchanger (mol/g
) [Mco: Metal ion concentration in solution (mol/rd,
) Another example is the removal of iron contained in high-level radioactive waste liquid.

高レベル放射性廃液を溶媒抽出法によって少なくとも一
つ以上の同族元素群に分離する方法は、例えば、198
5年10月日本原子力研究所発行の研究報告書JAER
I−Mレポート85−161に示されている。
For example, a method of separating high-level radioactive waste liquid into at least one homologous element group by a solvent extraction method includes 198
Research report JAER published by Japan Atomic Energy Research Institute in October 2015
I-M Report 85-161.

この方法によると溶媒の一つとしてジイソデシルフォス
フォリツクアシッド(DIDPA)が溶媒抽出工程に用
いられている。この際処理すべき廃液中に3価の鉄イオ
ンが存在すると、3価の鉄イオンが抽出され、この鉄イ
オンに起因する不具合が生じるとされている。
According to this method, diisodecylphosphoric acid (DIDPA) is used as one of the solvents in the solvent extraction step. At this time, if trivalent iron ions are present in the waste liquid to be treated, the trivalent iron ions are extracted, and problems caused by these iron ions are said to occur.

従来技術では、これを解決するため溶媒を追加して溶媒
中の鉄イオンの濃度を下げたり、または、新たに還元剤
を添加して3価イオンを2価イオンにする方法等をとっ
ている。
In order to solve this problem, conventional technology has adopted methods such as adding a solvent to lower the concentration of iron ions in the solvent, or adding a new reducing agent to convert trivalent ions to divalent ions. .

しかし、前者の方法では逆抽出工程において3価の鉄イ
オンは逆抽出されないため溶媒中に蓄積され、使用溶媒
量が増大し、また、一方、後者の方法では、2価イオン
としての鉄は不安定で空気酸化をうけ易いため、還元剤
の使用景が大量になる等、新たな還元剤の使用に起因す
る廃棄物の増大という問題がある。
However, in the former method, trivalent iron ions are not back-extracted in the back-extraction step, so they accumulate in the solvent, increasing the amount of solvent used.On the other hand, in the latter method, iron as divalent ions is not extracted. Since it is stable and easily susceptible to air oxidation, there is a problem in that a large amount of reducing agent is used, and the amount of waste increases due to the use of a new reducing agent.

〔発明が解決しようと、する課題〕[Problem that the invention attempts to solve]

上記の二側の如く、希土類元素および鉄を含む少なくと
も二つ以上の金属が溶存するpH7未満の溶液中から効
率良く鉄を除去し希土類元素と分離する方法および除去
材の実現が待たれている。
As mentioned in the second aspect above, a method and removal material for efficiently removing iron and separating it from rare earth elements from a solution with a pH of less than 7 in which at least two or more metals containing rare earth elements and iron are dissolved is awaited. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記従来技術の有する課題の解決を図るもので
、本発明者らは、上記問題点を克服すべく、鋭意検討を
行って本発明を完成するに至った。
The present invention aims to solve the problems of the above-mentioned prior art, and the present inventors have conducted extensive studies to overcome the above-mentioned problems and have completed the present invention.

即ち、本発明は、希土類元素および鉄を含む二種類以上
の金属が溶存するpH7未満の溶液から鉄を下記の除去
材の一種または二種を組合せて除去し希土類元素と分離
する方法、及び除去材を提供するものである。
That is, the present invention provides a method for removing iron from a solution with a pH of less than 7 in which two or more metals containing rare earth elements and iron are dissolved, using one or a combination of the following removing materials, and separating it from rare earth elements. It provides materials.

アンチモン酸チタン アンチモン酸スズ 本発明は、希土類元素および鉄を含む二種類以上の金属
が溶存するpH7未満の溶液から効率良く鉄を除去する
ものであり、具体的には鉄とSc、 Y、 La等の希
土類元素等の、「アイソ)−ブ便覧」 (昭和59年1
2月20日、(株)丸善発行、(社)日本アイソトープ
協会編)の後側見開き記載の如き周期律表3族Aの元素
とが溶存する溶液から鉄を除去し得る。また、例えばア
ンチモン酸スズの場合は、鉄と同時にSr、 Cs等の
この種の被処理液に混入しがちな鉄と上記3族A元素以
外の元素を鉄側に同伴して分離・除去することがあるが
、本発明においては一般にかかる元素が相互に分離され
るべき鉄、3族A元素の何れの側に混入しても鉄の分離
の目的は果たされる。
Titanium antimonate Tin antimonate The present invention efficiently removes iron from a solution with a pH of less than 7 in which two or more metals containing rare earth elements and iron are dissolved. Specifically, iron and Sc, Y, La are dissolved. "Iso)-B Handbook" for rare earth elements such as
Iron can be removed from a solution in which elements of group 3 A of the periodic table are dissolved, as described in the back spread of February 20th, published by Maruzen Co., Ltd., edited by Japan Isotope Association. In addition, for example, in the case of tin antimonate, iron and elements other than the Group 3 A elements mentioned above, such as Sr and Cs, which tend to be mixed in this type of liquid, are separated and removed along with iron. However, in the present invention, the purpose of separating iron is generally achieved regardless of whether such elements are mixed in with either the iron or the Group 3 A element that is to be separated from each other.

本発明においてアンチモン酸チタンとは次式で示される
含水酸化物であり、無水物も含む。
In the present invention, titanium antimonate is a hydrous oxide represented by the following formula, and also includes anhydrides.

Ti0i ” X5bz[ls ” nHJ(ただし、
0<X≦0.5.nは0を含む正の数)なお、Xが0.
5を越えアンチモンがチタンより増加すると、希土類元
素、Sr、 Csの分配係数が増加し、鉄との分離が困
難となるため高レベル放射性廃液には適当ではない。
Ti0i ”X5bz[ls”nHJ (however,
0<X≦0.5. (n is a positive number including 0) In addition, if X is 0.
When antimony exceeds titanium by more than 5, the distribution coefficients of rare earth elements, Sr, and Cs increase, making it difficult to separate from iron, making it unsuitable for high-level radioactive waste liquid.

即ちこの範囲にある、具体的な一例には下記がある。That is, a specific example within this range is as follows.

Tin、・0.15Sb2[]s・1.6H,O・・・
以下略称TA−1アンチモン酸スズとは次式で示される
含水酸化物であり、無水物も含む。
Tin,・0.15Sb2[]s・1.6H,O...
Hereinafter, abbreviated as TA-1, tin antimonate is a hydrous oxide represented by the following formula, and also includes anhydrides.

5no2− YSbzOs −nHa。5no2-YSbzOs-nHa.

(ただし、0くY≦1.0.nは0を含む正の数)なぁ
、Yが1.0を越えるとアンチモン酸チタンと同様の理
由で鉄との分離が困難となる。
(However, 0 and Y≦1.0.n is a positive number including 0.) If Y exceeds 1.0, it becomes difficult to separate it from iron for the same reason as titanium antimonate.

即ちこの範囲にある具体的な一例には下記がある。That is, a specific example within this range is as follows.

5n02・0.5Sb20s・5H20−・・以下略称
TA−2本発明において溶液とは水溶液、親水性溶媒溶
液およびその組合せをいう。
5n02・0.5Sb20s・5H20--・hereinafter abbreviated as TA-2 In the present invention, the term "solution" refers to an aqueous solution, a hydrophilic solvent solution, and a combination thereof.

溶液のpHが7以上になると極めてわずかではあるが、
本発明の除去材が溶出する傾向が見られることがあるの
で、溶液のpHは7未満にすることが好ましい。
When the pH of the solution becomes 7 or higher, the
The pH of the solution is preferably less than 7, since the removal material of the present invention may tend to elute.

本発明でいう上記除去材は粉末状、粒状、繊維状等、必
要に応じて任意の形状に加工して利用することができる
The above-mentioned removal material in the present invention can be processed into any shape as required, such as powder, granules, or fibers.

また、本発明の除去材は、通常硝酸等で再生し、再使用
することができるが、溶液の酸と同種の酸を使用するこ
とが好ましい。再生用酸濃度は通常3〜10mol/j
2とされ、例えば後記実施例では4mol/fの硝酸を
使用した。
Further, the removal material of the present invention can be regenerated and reused, usually with nitric acid, etc., but it is preferable to use the same type of acid as the acid in the solution. The acid concentration for regeneration is usually 3 to 10 mol/j
For example, in the examples described later, 4 mol/f nitric acid was used.

本発明は、バッチ式、セミバッチ式および連続式で実施
することができるが、実施例では代表として連続式のデ
ータを記載した。
The present invention can be carried out in a batch mode, a semi-batch mode, or a continuous mode, and in the Examples, data for the continuous mode are described as representative data.

更に、本発明の除去材は必要に応じ一種または二種を組
合せて用いることができる。
Furthermore, the removal materials of the present invention can be used alone or in combination of two types, if necessary.

〔実施例〕〔Example〕

以下実施例により本発明を更に具体的に説明するが、本
発明はこれらに限定されるものではない。
The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited thereto.

実施例1 被処理液の一例としてFe、 Sr、 Cs、また希土
類元素の代表としてLa58uおよびYbをそれぞれI
 X 10−’ mol/ 12含む硝酸酸性溶液10
m1!にTA−1を0.1g加え、30℃の恒温水槽中
に入れて5日間浸漬する処理をした。
Example 1 Fe, Sr, and Cs were used as examples of the liquid to be treated, and La58u and Yb were used as representatives of rare earth elements.
Nitric acid acidic solution containing X 10-' mol/12
m1! 0.1 g of TA-1 was added to the sample, and the sample was placed in a constant temperature water bath at 30°C for 5 days.

希土類元素に関する結果は硝酸濃度0.2〜2.0mo
l/j!範囲内で分配係数(K d)は1以下であり、
希土類元素はほとんど吸着しないことがわかった。その
他の金属に関する結果を第1図に示す。
The results regarding rare earth elements are nitric acid concentration 0.2-2.0mo
l/j! The distribution coefficient (K d) is less than 1 within the range,
It was found that rare earth elements were hardly adsorbed. The results for other metals are shown in FIG.

比較例1 同様な条件下におけるスルホン酸型強酸性陽イオン交換
樹脂の結果の一例を第2図に示す。
Comparative Example 1 An example of the results of a sulfonic acid type strongly acidic cation exchange resin under similar conditions is shown in FIG.

実施例2−1 本発明の方法の一例の概略を説明する第3図を参照しつ
つ本例を説明する。
Example 2-1 This example will be described with reference to FIG. 3, which outlines an example of the method of the present invention.

0、3mol/ lの硝酸溶液中に鉄および希土類元素
の代表としてLas Ndをそれぞれ表−1に示す濃度
で溶解した溶液を原液槽1から定遣ポンプ6にて空塔速
度0.5 cm/minの流速で供給し、TA−1を見
掛は体積2.5−充填した内径6.5mmφのカラム8
を通過させた。
A solution prepared by dissolving iron and Las Nd (representatives of rare earth elements) at the concentrations shown in Table 1 in a nitric acid solution of 0.3 mol/l was pumped from the stock solution tank 1 using a stationary pump 6 at a superficial velocity of 0.5 cm/l. Column 8 with an inner diameter of 6.5 mmφ was supplied at a flow rate of
passed.

ライン9からカラム通過後の流出液を採取し、それぞれ
の濃度を原子吸光およびr、 c、 p、で測定した。
The effluent after passing through the column was collected from line 9, and the respective concentrations were measured by atomic absorption and r, c, p.

結果を表−1に並記する。The results are listed in Table-1.

交換容量は約1.0meq/ g TA−1であり、以
下の実施例もほぼ同様であった。
The exchange capacity was approximately 1.0 meq/g TA-1, and the following examples were also approximately the same.

4mol/j7硝酸で鉄が吸着したTA−11g当たり
約30〜50ccでバッチ式で3回以上繰り返し浸漬さ
せるかカラム上に4 mat/βの硝酸溶液を鉄が流出
しなくなるまで通したのち、バッチ法またはカラム法で
水洗し、60℃で乾燥し再生した。
4 mol/j7 nitric acid has adsorbed iron on the TA-11. After immersing the column repeatedly in batch mode at least 3 times at approximately 30 to 50 cc per 1 g of TA-1, or passing a 4 mat/β nitric acid solution over the column until iron no longer flows out, batch immersion is performed. The sample was washed with water using a column method or a column method, and dried at 60° C. and regenerated.

再生したTA−1を以下の実施例に使用した。Regenerated TA-1 was used in the following examples.

表−1 金属 原液濃度(ppm)  通液後濃度(ppm)F
e    2750        2La     
1000        100ONd     10
00        1000実施例2−2 実施例2−1のTA−1をTA−2にかえ、同条件で実
施した。通液後のFe、 La5Ndの分析値および交
換容量とも実施例2−1と同様な結果となった。また、
TA−2も実施例2−1と同一の方法で再生し、以下の
実施例に使用した。
Table-1 Metal Concentration of stock solution (ppm) Concentration after passing (ppm) F
e 2750 2La
1000 100ONd 10
00 1000 Example 2-2 The experiment was carried out under the same conditions as in Example 2-1 except that TA-1 was replaced with TA-2. The analytical values and exchange capacity of Fe and La5Nd after liquid passage were similar to those in Example 2-1. Also,
TA-2 was also regenerated in the same manner as in Example 2-1 and used in the following examples.

実施例3−1 実施例2−1の方法で表−1の金属にSrを追加して実
施した。結果を表−2に示す。
Example 3-1 The method of Example 2-1 was carried out by adding Sr to the metals shown in Table-1. The results are shown in Table-2.

表−2 金属 原液濃度(ppm)  通液後濃度(ppm)F
e    2750        2Sr    2
400      2300La    1000  
    100ONd    1000      1
000実施例3−2 実施例2−2の方法で表−2と同一の原液濃度で実施し
た。結果を表−3に示す。
Table-2 Metals Concentration of stock solution (ppm) Concentration after passing (ppm) F
e 2750 2Sr 2
400 2300La 1000
100ONd 1000 1
000 Example 3-2 The method of Example 2-2 was carried out using the same stock solution concentration as in Table-2. The results are shown in Table-3.

表−3 金属 原液濃度(ppm)  通液後濃度(ppm)F
e    2750        2Sr    2
400       90La    1000   
   100ONd    1000      10
00実施例4−1 実施例2−1の方法で表−3の金属にCsを追加して実
施した。結果を表−4に示す。
Table-3 Metal Concentration of stock solution (ppm) Concentration after passing (ppm) F
e 2750 2Sr 2
400 90La 1000
100ONd 1000 10
00 Example 4-1 The method of Example 2-1 was carried out by adding Cs to the metals shown in Table 3. The results are shown in Table 4.

表−4 金属 原液濃度(ppm)  通液後濃度(ppm)P
e    2750        2Sr    2
400      2300Cs    4800  
    3000La    1000      1
00ONd    1000      1000実施
例4−2 実施例2−2の方法で表−4と同一の原液濃度で実施し
た。結果を表−5に示す。
Table-4 Metal Concentration of stock solution (ppm) Concentration after passing (ppm) P
e 2750 2Sr 2
400 2300Cs 4800
3000La 1000 1
00ONd 1000 1000 Example 4-2 The method of Example 2-2 was carried out using the same stock solution concentration as in Table 4. The results are shown in Table-5.

表−5 金属 原液濃度(ppm)  通液後濃度(ppm)F
e    2750        2Sr    2
400       90Cs    4800   
     5La    1000      100
ONd    1000      1000
Table-5 Metal Concentration of stock solution (ppm) Concentration after passing (ppm) F
e 2750 2Sr 2
400 90Cs 4800
5La 1000 100
ONd 1000 1000

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の物質の性能を示す図、第2図は比較例
の物質の性能を示す図、第3図は本発明の方法の一例を
説明する図である。 1:原液槽 9ニライン 6:定量ポンプ 8:カラム(TA−1および/又はTA−2を充填) 11:弁 2〜5゜
FIG. 1 is a diagram showing the performance of the material of the present invention, FIG. 2 is a diagram showing the performance of a comparative material, and FIG. 3 is a diagram illustrating an example of the method of the present invention. 1: Stock solution tank 9 lines 6: Metering pump 8: Column (filled with TA-1 and/or TA-2) 11: Valve 2~5°

Claims (1)

【特許請求の範囲】 1 希土類元素および鉄を含む二種類以上の金属が溶存
するpH7未満の溶液から鉄を下記の除去材の一種また
は二種を組合せて除去し希土類元素と分離する方法。 アンチモン酸チタン アンチモン酸スズ 2 希土類元素および鉄を含む二種類以上の金属が溶存
するpH7未満の溶液から鉄を除去し希土類元素と分離
するための下記の少なくとも一種の物質。 アンチモン酸チタン アンチモン酸スズ
[Scope of Claims] 1. A method for removing iron from a solution with a pH of less than 7 in which two or more metals containing rare earth elements and iron are dissolved, using one or a combination of the following removing materials and separating it from rare earth elements. Titanium Antimonate Tin Antimonate 2 At least one of the following substances for removing iron and separating it from rare earth elements from a solution with a pH of less than 7 in which two or more metals containing rare earth elements and iron are dissolved. titanium antimonate tin antimonate
JP1186625A 1989-07-19 1989-07-19 Iron removal method and material Expired - Lifetime JP2795912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1186625A JP2795912B2 (en) 1989-07-19 1989-07-19 Iron removal method and material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1186625A JP2795912B2 (en) 1989-07-19 1989-07-19 Iron removal method and material

Publications (2)

Publication Number Publication Date
JPH0350117A true JPH0350117A (en) 1991-03-04
JP2795912B2 JP2795912B2 (en) 1998-09-10

Family

ID=16191855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1186625A Expired - Lifetime JP2795912B2 (en) 1989-07-19 1989-07-19 Iron removal method and material

Country Status (1)

Country Link
JP (1) JP2795912B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077961A1 (en) * 2009-12-25 2011-06-30 株式会社日立製作所 Substance for collection of metal, metal collection method using the substance, and metal separation/collection apparatus using the substance
WO2014168005A1 (en) 2013-04-12 2014-10-16 東亞合成株式会社 Inorganic ion adsorbent and method for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077961A1 (en) * 2009-12-25 2011-06-30 株式会社日立製作所 Substance for collection of metal, metal collection method using the substance, and metal separation/collection apparatus using the substance
WO2014168005A1 (en) 2013-04-12 2014-10-16 東亞合成株式会社 Inorganic ion adsorbent and method for producing same
KR20160002841A (en) 2013-04-12 2016-01-08 도아고세이가부시키가이샤 Inorganic ion adsorbent and method for producing same
US9597678B2 (en) 2013-04-12 2017-03-21 Toagosei Co., Ltd. Inorganic ion adsorbent and method for producing same

Also Published As

Publication number Publication date
JP2795912B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
US4902426A (en) Ion exchange compositions
EP1062668B1 (en) Adsorption means for radionuclides
JP2598621B2 (en) How to separate fission molybdenum
EP2095372A1 (en) Grouped separation of actinides from a highly acidic aqueous composition a solvating extractant in a salting medium
JP2001500428A (en) Method for separating Bi from the solution of radionuclides
JP2003529517A (en) Inorganic adsorbent for extracting molybdenum-99 from irradiated uranium solution and method of using the same
JPH0736039B2 (en) Method for removing suspended impurities from condensate by mixed bed condensate desalination system
Riley et al. The determination of technetium-99 in seawater and marine algae
JPH0350117A (en) Method of removing iron and removing material
JPH10183470A (en) Fiber having metal chelating ability, its production and scavenging of metallic ion using the sane fiber
Maranon et al. Treatment of acid pickling baths by means of anionic resins
KR20010050490A (en) Treatment process for removing radioactive thorium from solvent extraction liquid effluent
JPS60161598A (en) Method of treating radioactive waste liquor containing radioactive ruthenium
CN101745362B (en) Water defluorination agent preparation method and application
EP0403503A1 (en) Nucleic acid isolation
Lee et al. Ion exchange characteristics of palladium and rhodium from a simulated radioactive liquid waste
US3835044A (en) Process for separating neptunium from thorium
JPS6157900B2 (en)
JPS6141994A (en) Method for recovering value uranium in extracting reprocessing process for spent nuclear fuel
JP2004028633A (en) Separation method of americium and curium, and heavy rare earth element
JP2004526128A (en) Method for dissolving solids formed in nuclear facilities
EP0333757B1 (en) Process for the chromatographic separation of metal ions
Tanihara Influence of various additives on the sorption of cesium from strong nitric acid medium on potassium cupric ferrocyanide
Sokolova et al. Selective separation of components [copper, nickel, zinc, chromium (VI)] in the process of ion-exchange purification of waste waters
JP4994340B2 (en) Method for separating zirconium and hafnium