JP2795912B2 - Iron removal method and material - Google Patents

Iron removal method and material

Info

Publication number
JP2795912B2
JP2795912B2 JP1186625A JP18662589A JP2795912B2 JP 2795912 B2 JP2795912 B2 JP 2795912B2 JP 1186625 A JP1186625 A JP 1186625A JP 18662589 A JP18662589 A JP 18662589A JP 2795912 B2 JP2795912 B2 JP 2795912B2
Authority
JP
Japan
Prior art keywords
iron
rare earth
solution
earth element
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1186625A
Other languages
Japanese (ja)
Other versions
JPH0350117A (en
Inventor
光雄 阿部
讓 柳澤
一慶 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO ENJINIARINGU KK
Original Assignee
TOYO ENJINIARINGU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO ENJINIARINGU KK filed Critical TOYO ENJINIARINGU KK
Priority to JP1186625A priority Critical patent/JP2795912B2/en
Publication of JPH0350117A publication Critical patent/JPH0350117A/en
Application granted granted Critical
Publication of JP2795912B2 publication Critical patent/JP2795912B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、希土類元素および鉄を含む二種類以上の金
属が溶存するpH7未満の溶液から鉄を除去し希土類元素
と分離する方法および除去材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for removing iron from a solution having a pH of less than 7 in which two or more metals including a rare earth element and iron are dissolved and separating the iron from the rare earth element and a removing material. About.

〔従来の技術〕[Conventional technology]

希土類元素および鉄を含む二種類以上の金属が溶存す
るpH7未満の溶液から鉄を除去し希土類元素と分離する
1例として希土類元素の中の不純物としての鉄の除去が
あげられる。
One example of removing iron from a solution having a pH of less than 7 in which two or more metals including a rare earth element and iron are dissolved and separating it from the rare earth element is removal of iron as an impurity in the rare earth element.

光学ガラスには、例えばレンズの屈折率あるいは/お
よび分解能を向上させるための希土類元素を添加する
が、不純物として鉄が含まれているとこれらの性能に不
具合が生じることは良く知られていることである。
Optical glass is added with a rare earth element to improve the refractive index and / or resolution of the lens, for example, but it is well known that if iron is contained as an impurity, these performances will be inferior. It is.

希土類元素の精製方法の従来技術の一つとしてイオン
交換樹脂による方法があげられる。しかし、一般的にイ
オン交換樹脂による微量の鉄金属の除去は、後述の比較
例に示すように次式で定義される両者の分配係数がほぼ
類似した値を取るため、希土類元素と鉄は分離しにくい
という問題点がある。
One of the conventional techniques for purifying rare earth elements is a method using an ion exchange resin. However, in general, the removal of a small amount of iron metal by an ion exchange resin has a similar distribution coefficient defined by the following equation as shown in a comparative example described below, so that the rare earth element and iron are separated. There is a problem that it is difficult to do.

ここに、 Kd:分配係数(ml/g) []:交換体中の金属イオン濃度(mol/g) [M]:溶液中の金属イオン濃度(mol/ml) また、他の例として高レベル放射性廃液中に含まれる
鉄の除去があげられる。
Where: Kd: partition coefficient (ml / g) []: concentration of metal ions in the exchanger (mol / g) [M]: concentration of metal ions in the solution (mol / ml) Removal of iron contained in radioactive liquid waste.

高レベル放射性廃液を溶媒抽出法によって少なくとも
一つ以上の同族元素群に分離する方法は、例えば、1985
年10月日本原子力研究所発行の研究報告書JAERI−Mレ
ポート85−161に示されている。
A method for separating high-level radioactive waste liquid into at least one or more homologous elements by a solvent extraction method is described in, for example, 1985.
Research report JAERI-M report 85-161 issued by the Japan Atomic Energy Research Institute in October 1998.

この方法によると溶媒の一つとしてジイソデシルフォ
スフォリックアシッド(DIDPA)が溶媒抽出工程に用い
られている。この際処理すべき廃液中に3価の鉄イオン
が存在すると、3価の鉄イオンが抽出され、この鉄イオ
ンに起因する不具合が生じるとされている。
According to this method, diisodecylphosphonic acid (DIDPA) is used as a solvent in the solvent extraction step. At this time, if trivalent iron ions are present in the waste liquid to be treated, the trivalent iron ions are extracted, and a problem caused by the iron ions is said to occur.

従来技術では、これを解決するため溶媒を追加して溶
媒中の鉄イオンの濃度を下げたり、または、新たに還元
剤を添加して3価イオンを2価イオンにする方法等をと
っている。
In the prior art, in order to solve this problem, a method of adding a solvent to lower the concentration of iron ions in the solvent, or adding a new reducing agent to convert trivalent ions to divalent ions is employed. .

しかし、前者の方法では逆抽出工程において3価の鉄
イオンは逆抽出されないため溶媒中に蓄積され、使用溶
媒量が増大し、また、一方、後者の方法では、2価イオ
ンとしての鉄は不安定で空気酸化をうけ易いため、還元
剤の使用量が大量になる等、新たな還元剤の使用に起因
する廃棄物の増大という問題がある。
However, in the former method, the trivalent iron ions are not back-extracted in the back-extraction step, so they are accumulated in the solvent, and the amount of the solvent used increases. On the other hand, in the latter method, iron as a divalent ion is not used. Since it is stable and easily subject to air oxidation, there is a problem in that the amount of the reducing agent used becomes large, and the amount of waste resulting from the use of a new reducing agent increases.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記の二例の如く、希土類元素および鉄を含む少なく
とも二つ以上の金属が溶存するpH7未満の溶液中から効
率良く鉄を除去し希土類元素と分離する方法および除去
材の実現が待たれている。
As in the above two examples, a method of efficiently removing iron from a solution having a pH of less than pH 7 in which at least two or more metals including a rare earth element and iron are dissolved and separating it from the rare earth element, and the realization of a removing material are awaited. .

〔課題を解決するための手段〕[Means for solving the problem]

本発明は上記従来技術の有する課題の解決を図るもの
で、本発明者らは、上記問題点を克服すべく、鋭意検討
を行って本発明を完成するに至った。
The present invention is intended to solve the above-mentioned problems of the prior art, and the present inventors have made intensive studies to overcome the above-mentioned problems and completed the present invention.

即ち、本発明は、希土類元素および鉄を含む二種類以
上の金属が溶存するpH7未満の溶液から鉄を下記の除去
材の一種または二種を組合せて除去し希土類元素と分離
する方法、及び除去材を提供するものである。
That is, the present invention provides a method for removing iron from a solution having a pH of less than pH 7 in which two or more metals including a rare earth element and iron are dissolved by removing one or two of the following removing materials in combination and separating the rare earth element from the solution. Materials.

アンチモン酸チタン アンチモン酸スズ 本発明は、希土類元素および鉄を含む二種類以上の金
属が溶存するpH7未満の溶液から効率良く鉄を除去する
ものであり、具体的には鉄とSc,Y,La等の希土類元素等
の、「アイソトープ便覧」(昭和59年12月20日、(株)
丸善発行、(社)日本アイソトープ協会編)の後側見開
き記載の如き周期律表3族Aの元素とが溶存する溶液か
ら鉄を除去し得る。また、例えばアンチモン酸スズの場
合は、鉄と同時にSr,Cs等のこの種の被処理液に混入し
がちな鉄と上記3族A元素以外の元素を鉄側に同伴して
分離・除去することがあるが、本発明においては一般に
かかる元素が相互に分離されるべき鉄、3族A元素の何
れの側に混入しても鉄の分離の目的は果たされる。
Titanium antimonate tin antimonate The present invention is intended to efficiently remove iron from a solution having a pH of less than 7 in which two or more metals including a rare earth element and iron are dissolved.Specifically, iron and Sc, Y, La "Isotope Handbook" for rare earth elements such as (December 20, 1984, Co., Ltd.)
Iron can be removed from a solution in which an element of Group A of the periodic table dissolves as described in the back spread of Maruzen, edited by The Japan Isotope Association. Further, for example, in the case of tin antimonate, iron and other elements other than the above-mentioned Group 3 A elements, which are liable to be mixed into this type of liquid to be treated, such as Sr and Cs, are separated and removed together with iron on the iron side. In some cases, however, in the present invention, the purpose of separating iron can be achieved even if such elements are mixed with any of the iron and group III A elements to be separated from each other.

本発明においてアンチモン酸チタンとは次式で示され
る含水酸化物であり、無水物も含む。
In the present invention, titanium antimonate is a hydrated oxide represented by the following formula and includes an anhydride.

TiO2・XSb2O5・nH2O (ただし、0<X≦0.5,nは0を含む正の数) なお、Xが0.5を越えアンチモンがチタンより増加す
ると、希土類元素、Sr、Csの分配係数が増加し、鉄との
分離が困難となるため高レベル放射性廃液には適当では
ない。
TiO 2 .XSb 2 O 5 .nH 2 O (However, 0 <X ≦ 0.5, n is a positive number including 0) When X exceeds 0.5 and antimony increases from titanium, rare earth elements, Sr, Cs It is not suitable for high-level radioactive effluents because of the increased partition coefficient and the difficulty in separating from iron.

即ちこの範囲にある、具体的な一例には下記がある。 That is, specific examples in this range include the following.

TiO2・0.15Sb2O5・1.6H2O …以下略称TA−1 アンチモン酸スズとは次式で示される含水酸化物であ
り、無水物も含む。
TiO 2 · 0.15Sb 2 O 5 · 1.6H 2 O… TA-1 Tin antimonate is a hydrated oxide represented by the following formula, and also includes an anhydride.

SnO2・YSb2O5・nH2O (ただし、0<Y≦1.0,nは0を含む正の数) なお、Yが1.0を越えるとアンチモン酸チタンと同様
の理由で鉄との分離が困難となる。
SnO 2 · YSb 2 O 5 · nH 2 O (However, 0 <Y ≤ 1.0, n is a positive number including 0) When Y exceeds 1.0, separation from iron occurs for the same reason as titanium antimonate. It will be difficult.

即ちこの範囲にある具体的な一例には下記がある。 That is, a specific example in this range is as follows.

SnO2・0.5Sb2O5・5H2O …以下略称TA−2 本発明において溶液とは水溶液、親水性溶媒溶液およ
びその組合せをいう。
SnO 2 .0.5Sb 2 O 5 .5H 2 O... TA-2 In the present invention, the solution refers to an aqueous solution, a hydrophilic solvent solution and a combination thereof.

溶液のpHが7以上になると極めてわずかではあるが、
本発明の除去材が溶出する傾向が見られることがあるの
で、溶液のpHは7未満にすることが好ましい。
When the pH of the solution is 7 or more, it is very slight,
The pH of the solution is preferably less than 7, since the removal material of the present invention tends to elute.

本発明でいう上記除去材は粉末状、粒状、繊維状等、
必要に応じて任意の形状に加工して利用することができ
る。
The removal material in the present invention is powdery, granular, fibrous, etc.
It can be used after being processed into an arbitrary shape as needed.

また、本発明の除去材は、通常硝酸等で再生し、再使
用することができるが、溶液の酸と同種の酸を使用する
ことが好ましい。再生用酸濃度は通常3〜10mol/とさ
れ、例えば後記実施例では4mol/の硝酸を使用した。
The removing material of the present invention can be usually regenerated with nitric acid or the like and reused, but it is preferable to use an acid of the same kind as the acid in the solution. The concentration of the regenerating acid is usually 3 to 10 mol /, and for example, nitric acid of 4 mol / is used in Examples described later.

本発明は、バッチ式、セミバッチ式および連続式で実
施することができるが、実施例では代表として連続式の
データを記載した。
The present invention can be carried out in a batch system, a semi-batch system, and a continuous system. In the examples, data of a continuous system is described as a representative.

更に、本発明の除去材は必要に応じ一種または二種を
組合せて用いることができる。
Furthermore, the removing material of the present invention can be used alone or in combination of two as needed.

〔実施例〕〔Example〕

以下実施例により本発明を更に具体的に説明するが、
本発明はこれらに限定されるものではない。
Hereinafter, the present invention will be described more specifically with reference to Examples.
The present invention is not limited to these.

実施例1 被処理液の一例としてFe、Sr、Ce、また希土類元素の
代表としてLa、EuおよびYbをそれぞれ1×10-4mol/含
む硝酸酸性溶液10mlにTA−1を0.1g加え、30℃の恒温水
槽中に入れて5日間浸漬する処理をした。
Example 1 0.1 g of TA-1 was added to 10 ml of a nitric acid acid solution containing Fe, Sr, Ce as an example of a liquid to be treated and La, Eu, and Yb as representatives of rare earth elements, each at 1 × 10 -4 mol /. A treatment of immersion in a constant temperature water bath at a temperature of 5 ° C. for 5 days was performed.

希土類元素に関する結果は硝酸濃度0.2〜2.0mol/範
囲内で分配係数(Kd)は1以下であり、希土類元素はほ
とんど吸着しないことがわかった。その他の金属に関す
る結果を第1図に示す。
As for the results of the rare earth elements, the partition coefficient (Kd) was 1 or less in the range of the nitric acid concentration of 0.2 to 2.0 mol /, and it was found that the rare earth elements were hardly adsorbed. The results for other metals are shown in FIG.

比較例1 同様な条件下におけるスルホン酸型強酸性陽イオン交
換樹脂の結果の一例を第2図に示す。
Comparative Example 1 FIG. 2 shows an example of the result of the sulfonic acid type strongly acidic cation exchange resin under the same conditions.

実施例2−1 本発明の方法の一例の概略を説明する第3図を参照し
つつ本例を説明する。
Example 2-1 The present example will be described with reference to FIG. 3, which outlines an example of the method of the present invention.

0.3mol/の硝酸溶液中に鉄および希土類元素の代表
としてLa、Ndをそれぞれ表−1に示す濃度で溶解した溶
液を原液槽1から定量ポンプ6にて空塔速度0.5cm/min
の流速で供給し、TA−1を見掛け体積2.5ml充填した内
径6.5mmφのカラム8を通過させた。
A solution in which La and Nd as representatives of iron and rare earth elements are dissolved in a 0.3 mol / nitric acid solution at the concentrations shown in Table 1 respectively from the stock solution tank 1 to the metering pump 6 with a superficial velocity of 0.5 cm / min.
The TA-1 was passed through a column 8 having an inner diameter of 6.5 mm and filled with an apparent volume of 2.5 ml.

ライン9からカラム通過後の流出液を採取し、それぞ
れの濃度を原子吸光およびI.C.P.で測定した。結果を表
−1に並記する。
The effluent after passing through the column was collected from line 9, and the respective concentrations were measured by atomic absorption and ICP. The results are listed in Table 1.

交換容量は約1.0meq/g TA−1であり、以下の実施例
もほぼ同様であった。
The exchange capacity was about 1.0 meq / g TA-1, and the following examples were almost the same.

4mol/硝酸で鉄が吸着したTA−1 1g当たり約30〜50c
cでバッチ式で3回以上繰り返し浸漬させるかカラム上
に4mol/の硝酸溶液を鉄が流出しなくなるまで通した
のち、バッチ法またはカラム法で水洗し、60℃で乾燥し
再生した。
Approximately 30 to 50 c per 1 g of TA-1 with iron adsorbed at 4 mol / nitric acid
After repeated immersion in a batch system at least three times in c or passing a nitric acid solution of 4 mol / on the column until the iron no longer flowed out, it was washed with water by a batch method or a column method, dried at 60 ° C. and regenerated.

再生したTA−1を以下の実施例に使用した。 Regenerated TA-1 was used in the following examples.

表 − 1 金属 原液濃度(ppm) 通液後濃度(ppm) Fe 2750 2 La 1000 1000 Nd 1000 1000 実施例2−2 実施例2−1のTA−1をTA−2にかえ、同条件で実施
した。通液後のFe、La、Ndの分析値および交換容量とも
実施例2−1と同様な結果となった。また、TA−2も実
施例2−1と同一の方法で再生し、以下の実施例に使用
した。
Table -1 Metal stock solution concentration (ppm) Concentration after passage (ppm) Fe 2750 2 La 1000 1000 Nd 1000 1000 Example 2-2 Example 2-1 was replaced with TA-2 under the same conditions. did. The analysis values and exchange capacities of Fe, La, and Nd after the passage of the solution were the same as those in Example 2-1. TA-2 was also reproduced in the same manner as in Example 2-1 and used in the following Examples.

実施例3−1 実施例2−1の方法で表−1の金属にSrを追加して実
施した。結果を表−2に示す。
Example 3-1 Sr was added to the metals in Table 1 by the method of Example 2-1. Table 2 shows the results.

表 − 2 金属 原液濃度(ppm) 通液後濃度(ppm) Fe 2750 2 Sr 2400 2300 La 1000 1000 Nd 1000 1000 実施例3−2 実施例2−2の方法で表−2と同一の原液濃度で実施
した。結果を表−3に示す。
Table-2 Metal stock solution concentration (ppm) Concentration after passage (ppm) Fe 2750 2 Sr 2400 2300 La 1000 1000 Nd 1000 1000 Example 3-2 The same stock solution concentration as in Table 2 by the method of Example 2-2. Carried out. The results are shown in Table-3.

表 − 3 金属 原液濃度(ppm) 通液後濃度(ppm) Fe 2750 2 Sr 2400 90 La 1000 1000 Nd 1000 1000 実施例4−1 実施例2−1の方法で表−3の金属にCsを追加して実
施した。結果を表−4に示す。
Table 3 Metal stock solution concentration (ppm) Concentration after passage (ppm) Fe 2750 2 Sr 2400 90 La 1000 1000 Nd 1000 1000 Example 4-1 Cs was added to the metals in Table 3 by the method of Example 2-1. It was carried out. The results are shown in Table-4.

表 − 4 金属 原液濃度(ppm) 通液後濃度(ppm) Fe 2750 2 Sr 2400 2300 Cs 4800 3000 La 1000 1000 Nd 1000 1000 実施例4−2 実施例2−2の方法で表−4と同一の原液濃度で実施
した。結果を表−5に示す。
Table-4 Concentration of undiluted metal (ppm) Concentration after passage (ppm) Fe 2750 2 Sr 2400 2300 Cs 4800 3000 La 1000 1000 Nd 1000 1000 Example 4-2 The same method as in Table 4 by the method of Example 2-2 Performed at stock concentration. The results are shown in Table-5.

表 − 5 金属 原液濃度(ppm) 通液後濃度(ppm) Fe 2750 2 Sr 2400 90 Cs 4800 5 La 1000 1000 Nd 1000 1000 Table-5 Metal stock solution concentration (ppm) Concentration after passage (ppm) Fe 2750 2 Sr 2400 90 Cs 4800 5 La 1000 1000 Nd 1000 1000

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の物質の性能を示す図、第2図は比較例
の物質の性能を示す図、第3図は本発明の方法の一例を
説明する図である。 1:原液槽 2〜5,7,9:ライン 6:定量ポンプ 8:カラム(TA−1および/又はTA−2を充填) 10,11:弁
FIG. 1 is a view showing the performance of the substance of the present invention, FIG. 2 is a view showing the performance of the substance of the comparative example, and FIG. 3 is a view for explaining an example of the method of the present invention. 1: Stock solution tank 2-5, 7, 9: Line 6: Metering pump 8: Column (filled with TA-1 and / or TA-2) 10, 11: Valve

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C22B 1/00 - 61/00 C01G 30/02──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) C22B 1/00-61/00 C01G 30/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】希土類元素および鉄を含む二種類以上の金
属が溶存するpH7未満の溶液から鉄を下記の除去材の一
種または二種を組合せて除去し希土類元素と分離する方
法。 アンチモン酸チタン アンチモン酸スズ
1. A method for removing iron from a solution having a pH of less than 7 in which two or more metals containing a rare earth element and iron are dissolved by removing one or a combination of the following removing materials to separate the iron from the rare earth element. Titanium antimonate Tin antimonate
【請求項2】希土類元素および鉄を含む二種類以上の金
属が溶存するpH7未満の溶液から鉄を除去し希土類元素
と分離するための下記の少なくとも一種の物質。 アンチモン酸チタン アンチモン酸スズ
2. At least one of the following substances for removing iron from a solution having a pH of less than 7 in which two or more metals including a rare earth element and iron are dissolved to separate it from the rare earth element. Titanium antimonate Tin antimonate
JP1186625A 1989-07-19 1989-07-19 Iron removal method and material Expired - Lifetime JP2795912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1186625A JP2795912B2 (en) 1989-07-19 1989-07-19 Iron removal method and material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1186625A JP2795912B2 (en) 1989-07-19 1989-07-19 Iron removal method and material

Publications (2)

Publication Number Publication Date
JPH0350117A JPH0350117A (en) 1991-03-04
JP2795912B2 true JP2795912B2 (en) 1998-09-10

Family

ID=16191855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1186625A Expired - Lifetime JP2795912B2 (en) 1989-07-19 1989-07-19 Iron removal method and material

Country Status (1)

Country Link
JP (1) JP2795912B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5478240B2 (en) * 2009-12-25 2014-04-23 株式会社日立製作所 Metal recovery method and metal separation recovery device
US9597678B2 (en) 2013-04-12 2017-03-21 Toagosei Co., Ltd. Inorganic ion adsorbent and method for producing same

Also Published As

Publication number Publication date
JPH0350117A (en) 1991-03-04

Similar Documents

Publication Publication Date Title
EP1062668B1 (en) Adsorption means for radionuclides
US5897784A (en) Treatment of swimming pool water
US4902426A (en) Ion exchange compositions
EP0575612B1 (en) Method for obtaining composite sorbents
JP2003508197A (en) Method and equipment for removal of metal cations from liquids by polyazacycloalkane resin grafted on a support
JP2803149B2 (en) Metal ion absorber and metal ion absorbing method using the same
CA1064707A (en) Ferric ion as a scavenging agent in a solvent extraction process
CA2144632C (en) Method of separating fission molybdenum
JP2795912B2 (en) Iron removal method and material
US6991731B2 (en) Treatment process for removing radioactive thorium from solvent extraction liquid effluent
JPH10183470A (en) Fiber having metal chelating ability, its production and scavenging of metallic ion using the sane fiber
CN111087114A (en) Treatment method of tantalum-niobium production wastewater
JPS60161598A (en) Method of treating radioactive waste liquor containing radioactive ruthenium
JPS6141994A (en) Method for recovering value uranium in extracting reprocessing process for spent nuclear fuel
RU2713010C1 (en) Method of purifying nitrate solutions from americium
JPS6119958B2 (en)
JPS6157900B2 (en)
JPH0634891B2 (en) Adsorption property
JP3366485B2 (en) Method for separation and recovery of platinum group elements and technetium
RU2086017C1 (en) Method for cleaning nitrate solutions from antimony
Harjula et al. Development of a selective cesium and strontium removal system for the JAERI Tokai-Mura site-laboratory tests
JP4393616B2 (en) Boron fixing agent and treatment method of boron-containing waste water
Campbell et al. Development studies for the treatment of ORNL low-level liquid waste
RU2095443C1 (en) Method for extraction of precious metals of solutions
RU2258967C2 (en) Method for cleaning of liquid radioactive wastes