JPH0350116A - Production of spherical calcium carbonate - Google Patents

Production of spherical calcium carbonate

Info

Publication number
JPH0350116A
JPH0350116A JP18623689A JP18623689A JPH0350116A JP H0350116 A JPH0350116 A JP H0350116A JP 18623689 A JP18623689 A JP 18623689A JP 18623689 A JP18623689 A JP 18623689A JP H0350116 A JPH0350116 A JP H0350116A
Authority
JP
Japan
Prior art keywords
calcium carbonate
carbonate
solution
particle size
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18623689A
Other languages
Japanese (ja)
Other versions
JP2772483B2 (en
Inventor
Katsuhiro Kinoshita
木下 勝博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HATTORI KOGYO KK
Original Assignee
HATTORI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HATTORI KOGYO KK filed Critical HATTORI KOGYO KK
Priority to JP18623689A priority Critical patent/JP2772483B2/en
Publication of JPH0350116A publication Critical patent/JPH0350116A/en
Application granted granted Critical
Publication of JP2772483B2 publication Critical patent/JP2772483B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To obtain spherical particles of calcium carbonate having a narrow distribution of particle size with using a simple device by dissolving a reaction buffer in a carbonate ion solution, mixing the solution with a Ca ion solution and then adding an inhibitor against growth of crystals in the reaction process of the mixture solution. CONSTITUTION:The Ca-ion solution is mixed with the carbonate-ion solution containing the reaction buffer which controls the shape of particles. When particles of calcium carbonate produced in this reaction process of the mixture solution grow to a desired particle size, an inhibitor against growth of crystals is added thereto to control the particle size. By this method, calcium carbonate having desired spherical form can be obtained at room temp. and atmospheric pressure. The reaction buffer to be used is an electrolyte such as nitrate, sulfate, chloride, etc., of alkali metal or ammonium. If the buffer is not dissolved, cubic crystalline calcite is produced. The inhibitor against growth of crystals is an alkali agent such as sodium hydroxide, ammonium hydroxide, ammonia, etc.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、結晶粒子形状が球状・の炭酸カルシウムの
製造方法、さらに詳しくは、真球状で、シャープな粒度
分布を持つ、均質の球状バテライト形炭酸カルシウムの
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for producing calcium carbonate having a spherical crystal particle shape, and more specifically, to producing homogeneous spherical vaterite carbonate having a true spherical shape and a sharp particle size distribution. This invention relates to a method for producing calcium.

従来技術 炭酸カルシウム粉体は、プラスチック・ゴム・塗料・紙
等の工業用材料の充填剤として、また、医薬品・化粧品
・歯磨用研磨剤などの用途に、広く用いられている。
BACKGROUND OF THE INVENTION Calcium carbonate powder is widely used as a filler in industrial materials such as plastics, rubber, paints, and paper, as well as in pharmaceuticals, cosmetics, and abrasives for toothpastes.

炭酸カルシウムには、立方形のカルサイト、柱状形のア
ラブナイト、球状のバテライトの3種の結晶形が存在す
る。一般に、粒子を球状化することによって、充填性・
分散性・平滑性・流動性が向上し、混合の均一化など多
(の粒体物性が数倍され、工業上の利点が多いことから
、各種粉体の球状化が試みられ、炭酸カルシウムについ
ても、球状のバテライト形炭酸カルシウムが注目される
理由である。
Calcium carbonate has three crystal forms: cubic calcite, columnar arabite, and spherical vaterite. Generally, by spheroidizing particles, filling properties and
The spheroidization of various powders has been attempted, and the spheroidization of various powders has been attempted, as it has many industrial advantages, such as improved dispersibility, smoothness, and fluidity, and increased uniformity of mixing. This is also the reason why spherical vaterite calcium carbonate is attracting attention.

従来、バテライト形の球状炭酸カルシウムの製造方法と
しては、つぎのようなものが知られている。
Conventionally, the following methods for producing vaterite-type spherical calcium carbonate are known.

まず、水酸化カルシウム懸濁液と炭酸ガスを密封容器内
で昇温下において反応させ生成させる方法がある(特公
昭43−25148号公報、同48−35159号公報
)。しかしながら、この方法は、装置が複雑であり、操
作も煩雑になり、作業性の上で多くの問題がある。
First, there is a method in which calcium hydroxide suspension and carbon dioxide gas are reacted in a sealed container at elevated temperatures to generate the product (Japanese Patent Publications No. 43-25148 and 48-35159). However, this method requires a complicated device, is complicated to operate, and has many problems in terms of workability.

また、カルシウムイオン溶液を有機溶媒中でW/Q形(
油中水滴形)に乳化させ、これに炭酸イオン溶液を混合
し、反応させて球状炭酸カルシウムを製造する方法があ
る(口化誌、5.732(1976))。この方法で得
られる球状炭酸カルシウムは、真球状で粒度分布もシャ
ープであるが、反応後に、有機溶媒との分離操作、アル
コールなどを用いた洗浄操作など余分の労力を必要とし
、経済的にも原価高となる難点がある。
In addition, calcium ion solution was prepared in W/Q form (
There is a method of producing spherical calcium carbonate by emulsifying it into a water-in-oil solution, mixing it with a carbonate ion solution, and reacting it (Kuchikashi, 5.732 (1976)). The spherical calcium carbonate obtained by this method has a true spherical shape and a sharp particle size distribution, but it requires extra labor after the reaction, such as separation from an organic solvent and washing with alcohol, making it economically unsatisfactory. There is a drawback of high cost.

次に、水溶性カルシウム塩と炭酸塩との水溶液反応によ
って炭酸カルシウムを製造するに際し、カルシウム以外
の2価カチオンを添加して、球状炭酸カルシウムを製造
する方法がある(特開昭57−92520号公報)。こ
の場合、2価カチオンの添加量により、少量の場合には
立方形カルサイトの生成が見られ、添加量の増加に伴っ
て生成粒子同志の合体が多くなり、粒度分布もブロード
なものになる問題がある。
Next, there is a method of producing spherical calcium carbonate by adding divalent cations other than calcium when producing calcium carbonate through an aqueous reaction between a water-soluble calcium salt and a carbonate (Japanese Patent Laid-Open No. 57-92520). Public bulletin). In this case, depending on the amount of divalent cation added, the formation of cubic calcite is observed when the amount is small, and as the amount added increases, coalescence of generated particles increases, and the particle size distribution becomes broader. There's a problem.

さらに、カルシウムイオン溶液と炭酸イオン溶液を混合
し、その混合液の反応初期段階から、物理的な衝撃を与
えて球状炭酸カルシウムを製造する方法もある(特開平
1−108117号公報)。
Furthermore, there is a method in which spherical calcium carbonate is produced by mixing a calcium ion solution and a carbonate ion solution and applying physical impact to the mixture from the initial stage of the reaction (Japanese Patent Laid-Open No. 108117/1993).

この方法で得た炭酸カルシウムは、比較的微小球体で粒
度分布もシャープである反面、結晶形態が悪く、真球状
よりかなり偏った形状のものになる欠点を有している。
Calcium carbonate obtained by this method has relatively small spheres and a sharp particle size distribution, but has the disadvantage of poor crystal morphology and a shape that is considerably more deviated than a true sphere.

発明が解決しようとする課題 かかる従来技術による方法は、既に述べたように、特別
の製造装置を必要としたり、作業性の困難さ、工程の増
加による煩雑さ、製造原価の高騰などの問題があり、さ
らには、製品の純度、粒度分布、粒子形状などの粒体特
性についても万全とはいい難く、したがって、その改善
対策が強く望まれていた。
Problems to be Solved by the Invention As mentioned above, the conventional method has problems such as requiring special manufacturing equipment, difficulty in workability, complexity due to increased number of steps, and rising manufacturing costs. Furthermore, it is difficult to say that the granule properties of the product, such as purity, particle size distribution, and particle shape, are perfect, and therefore, measures to improve these properties have been strongly desired.

すなわち、この発明の目的は、簡便な製造装置を使用し
て簡単に操業することができ、しかも、粒形が真球状で
、シャープな粒度分布を有し、均質性の高い高品位の球
状炭酸カルシウムを得るための新規の製造方法を提供す
ることにある。この発明は、従来方法の諸問題を解消し
、前述の改善要望に応えるためになされたものである。
That is, an object of the present invention is to produce high-quality spherical carbonic acid that can be easily operated using simple production equipment, has a true spherical shape, a sharp particle size distribution, and is highly homogeneous. The object of the present invention is to provide a new production method for obtaining calcium. This invention was made to solve the problems of the conventional method and to meet the above-mentioned demands for improvement.

課題を解決するための手段 かかる目的を達成するためのこの発明の構成は、粒子形
状を制御する反応緩衝剤を溶存させた炭酸イオン溶液と
カルシウムイオン溶液とを混合し、次に、この混合液の
反応過程で生成した炭酸カルシウムか目的の粒径に成長
したとき、結晶成長停止剤を添加して粒子径を制御する
ことを特徴とするものである。
Means for Solving the Problems The structure of the present invention to achieve the object is to mix a carbonate ion solution and a calcium ion solution in which a reaction buffer for controlling particle shape is dissolved, and then to mix this mixed solution. When the calcium carbonate produced in the reaction process has grown to a desired particle size, a crystal growth inhibitor is added to control the particle size.

作用 カルシウムイオン溶液と炭酸イオン溶液とを混合すると
、次の反応が進行する。すなわち、混合直後では、 Ca A−t−BCO=Ca CO3+ BAが成立す
る。
Effect When the calcium ion solution and carbonate ion solution are mixed, the following reaction proceeds. That is, immediately after mixing, CaA-t-BCO=CaCO3+BA holds true.

ここで、この発明に用いるカルシウムイオン溶液とは、
塩化ナトリウム、硝酸カルシウム等のカルシウム塩の水
溶液で、上式のAは、CI −NO3″″等を意味する
。また、炭酸イオン溶液とは、炭酸ナトリウム、炭酸水
素ナトリウム、炭酸アンモニウム、炭酸水素アンモニウ
ム等の炭酸塩の水溶液で、炭酸イオンに解離するもので
あればよく、上式のBは、アルカリ金属イオンまたはア
ンモニウムイオンを意味する。
Here, the calcium ion solution used in this invention is
An aqueous solution of a calcium salt such as sodium chloride or calcium nitrate, and A in the above formula means CI-NO3'' or the like. In addition, the carbonate ion solution is an aqueous solution of carbonates such as sodium carbonate, sodium hydrogen carbonate, ammonium carbonate, ammonium hydrogen carbonate, etc., as long as it dissociates into carbonate ions, and B in the above formula is an alkali metal ion or means ammonium ion.

生成した炭酸カルシウムは微粒子であり、この発明の反
応緩衝剤が溶存していない場合には、立方形の結晶であ
るカルサイトが生成する。なお、この発明に用いる反応
緩衝剤とは、塩化ナトリウム、塩化アンモニウム、硝酸
ナトリウム、硝酸アンモニウム、硫酸ナトリウム、硫酸
アンモニウム等、アルカリ金属またはアンモニウムの硝
酸塩、硫酸塩あるいは塩化物等の電解質であればよい。
The produced calcium carbonate is fine particles, and when the reaction buffer of the present invention is not dissolved, calcite, which is a cubic crystal, is produced. The reaction buffer used in the present invention may be any electrolyte such as alkali metal or ammonium nitrate, sulfate, or chloride, such as sodium chloride, ammonium chloride, sodium nitrate, ammonium nitrate, sodium sulfate, ammonium sulfate, etc.

つづいて、結晶成長の過程では、 CaCO3+H2CO3 、::Ca 2++ 2 I−I C0が成立し、表面
エネルギの関係により、微粒子は溶解する一方で、大粒
子が成長する。
Subsequently, in the process of crystal growth, CaCO3+H2CO3 , ::Ca 2++ 2 I-I C0 is established, and due to the relationship of surface energy, fine particles dissolve while large particles grow.

そこで、目的の粒子径に成長した時点で、結晶成長停止
剤の添加により反応を停止させる。なお、この発明に用
いる結晶成長停止剤とは、水酸化ナトリウム、水酸化ア
ンモニウムあるいはアンモニアガス等の°rルカリ剤で
ある。
Therefore, when the particles have grown to the desired particle size, the reaction is stopped by adding a crystal growth inhibitor. The crystal growth inhibitor used in the present invention is a lukewarm agent such as sodium hydroxide, ammonium hydroxide, or ammonia gas.

Ca(HCO2)2 + 2 Na OH−”Ca C
o  十Na  Co  +2)I203    2 
  3 かくして、目的とする球状炭酸カルシウムを得ることが
Cきる。
Ca(HCO2)2 + 2 Na OH−”Ca C
o 10 Na Co +2) I203 2
3 In this way, the desired spherical calcium carbonate can be obtained.

以下、実施例によって、さらに具体的に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 0、 1mol /1炭酸ナトリウムと0. 2mol
 /g塩化ナトナトリウム応緩衝剤)の混合溶液を反応
槽内で撹拌しつつ、これに同体積のQ、  1mol/
1塩化カルシウム溶液を投入し、8分間撹拌して反応さ
せた後、結晶成長停止剤として水酸化ナトリウムを添加
し、生成粒子を濾過回収した。反応前後の液温は、それ
ぞれ17.5°C117,2℃であった。この場合の炭
酸カルシウムの収率は理論値の96.2%であった。得
られた炭酸カルシウムは、平均粒径7μm程度の真球形
で100%占められているが、この粒子が2個から3個
合体成長したものが点在する。なお、使用する反応槽は
、丸形、角形を問わず極く一般的な容器であればよ(、
また、混合撹拌機は、変速装置の付いたプロペラ形の汎
用撹拌機または変速装置付ホモミキサ、ホモジェッタで
よく、通常市販されている簡単な汎用機械装置を用いて
簡便に実施することができる。
Example 1 0.1 mol/1 sodium carbonate and 0.1 mol/1 sodium carbonate. 2mol
/g sodium chloride buffer) was stirred in the reaction tank, and the same volume of Q, 1 mol/g was added to it.
After adding a calcium monochloride solution and reacting by stirring for 8 minutes, sodium hydroxide was added as a crystal growth inhibitor, and the produced particles were collected by filtration. The liquid temperatures before and after the reaction were 17.5°C and 117°C, respectively. The yield of calcium carbonate in this case was 96.2% of the theoretical value. The obtained calcium carbonate is 100% perfectly spherical with an average particle diameter of about 7 μm, but there are scattered particles in which two or three of these particles have grown together. Note that the reaction tank used can be any very common container, whether round or square.
Further, the mixing agitator may be a propeller-type general-purpose stirrer with a variable speed device, a homomixer with a variable speed device, or a homojetter, and can be easily implemented using a simple general-purpose mechanical device that is usually commercially available.

実施例2 0、4mol /ρ塩化ナトリウムを含む0.1mol
 /1炭酸ナトリウム溶液と、0. 1mol /n塩
化カルシウム溶液とを同体積混合し、実施例1と全く同
様にして炭酸カルシウムを製造した。反応前後の液温は
、それぞれ]7.6°C,17,4°Cであった。この
場合の収率は理論値の95%であり、その結晶は、平均
粒径6〜7μm程度の真球状炭酸カルシウム100%で
、合体粒子は殆ど認められなかった。
Example 2 0.4 mol/ρ 0.1 mol containing sodium chloride
/1 sodium carbonate solution and 0. Calcium carbonate was produced in exactly the same manner as in Example 1 by mixing the same volume with a 1 mol/n calcium chloride solution. The liquid temperatures before and after the reaction were 7.6°C, 17.4°C, respectively. The yield in this case was 95% of the theoretical value, and the crystals were 100% true spherical calcium carbonate with an average particle size of about 6 to 7 μm, with almost no coalescing particles observed.

実施例3 0、4mol /fl塩化アンモニウムを含む0.2m
ol /fl炭酸アンモニウム溶液と、0.2mol 
/g塩化カルシウム溶液とを同体積混合し、撹拌時間1
8分後に結晶成長停止剤を添加して生成粒子を回収した
。反応前後の液温は、それぞれ11.5°C111,8
°C1このときの収率は理論値の93.5%、得られた
炭酸カルシウムは、平均粒径2〜4μm程度の真球状で
あった。
Example 3 0.2m containing 0.4mol/fl ammonium chloride
ol/fl ammonium carbonate solution and 0.2 mol
/g calcium chloride solution in the same volume and stirred for 1 hour.
After 8 minutes, a crystal growth inhibitor was added and the produced particles were collected. The liquid temperature before and after the reaction was 11.5°C111,8, respectively.
°C1 The yield at this time was 93.5% of the theoretical value, and the obtained calcium carbonate was perfectly spherical with an average particle size of about 2 to 4 μm.

以下、実施例1ないし3について、比較例1ないし4と
比較して説明する。第1表は、これらの化学成分組成の
内容を総括したものである。
Examples 1 to 3 will be described below in comparison with Comparative Examples 1 to 4. Table 1 summarizes the contents of these chemical component compositions.

(以下余白) これらの実施例は、炭酸イオン溶液とカルシウムイオン
溶液との等モル比混合の場合であり、実施例1に対し、
実施例2は反応緩衝剤の濃度を高めた場合、実施例3は
、炭酸イオン溶液とカルシウムイオン溶液の混合反応液
の濃度を高めるとともに、反応緩衝剤の成分を変えた場
合の実施例である。さらに、実施例1と実施例2は、反
応前後の液温がほぼ同じであるのに対し、実施例3は、
低温にした場合の製造例である。液温の影響は、多くの
実験結果から、低温においては結晶成長速度が遅く、高
温においては成長速度が非常に早いが、温度変化による
結晶形態には殆ど変化がないことを確認している。
(Left below) These examples are cases where a carbonate ion solution and a calcium ion solution are mixed in an equimolar ratio, and in contrast to Example 1,
Example 2 is an example in which the concentration of the reaction buffer was increased, and Example 3 is an example in which the concentration of the mixed reaction solution of a carbonate ion solution and a calcium ion solution was increased and the components of the reaction buffer were changed. . Furthermore, in Example 1 and Example 2, the liquid temperature before and after the reaction was almost the same, whereas in Example 3,
This is an example of production at a low temperature. Regarding the influence of liquid temperature, many experimental results have confirmed that the crystal growth rate is slow at low temperatures and very fast at high temperatures, but there is almost no change in crystal morphology due to temperature changes.

この発明の炭酸カルシウムの結晶構造について検討した
結果の一例を第1図に示す。第1図は、実施例1で得ら
れた炭酸カルシウムのX線回折図であり、一般に常温常
圧下で安定相とされている立方形カルサイトが極めて少
(、球形バテライトで殆ど占められていることがわかる
An example of the results of a study on the crystal structure of calcium carbonate of the present invention is shown in FIG. Figure 1 is an X-ray diffraction diagram of calcium carbonate obtained in Example 1, in which cubic calcite, which is generally considered to be a stable phase at room temperature and pressure, is extremely rare (and is mostly occupied by spherical vaterite). I understand that.

また、第2図は、実施例2で得られた炭酸カルシウムの
光学顕微鏡写真(800X)であり、殆ど真球形の粒子
形態となっている。第3図は、実施例3で得られた炭酸
カルシウムの走査形電子顕微鏡写真であり、真球形の細
部まで観察するためにとったものである。
Moreover, FIG. 2 is an optical micrograph (800X) of the calcium carbonate obtained in Example 2, and the particle form is almost perfectly spherical. FIG. 3 is a scanning electron micrograph of the calcium carbonate obtained in Example 3, which was taken to observe the details of the perfect sphere.

第1表で示した比較例1は、反応緩衝剤および結晶成長
停止剤が無添加の場合であって、比較のために、得られ
た生成物の光学顕微鏡写真(800X)を第4図に示す
。また、比較例2の結晶成長停止剤無添加の場合の光学
顕微鏡写真(800X)を第5図に示す。これらの写真
より容易に理解されるように、比較例1では、生成物が
球状にならず、この発明の目的から著しく離れた形態に
なっている。また、比較例2による生成物では、粒子形
状を制御する反応緩衝剤が添加されているため球状には
なっているものの、粒子径が大きく、不揃いのものにな
っており、この発明の目的とするものになっていない。
Comparative Example 1 shown in Table 1 is a case in which no reaction buffer and no crystal growth inhibitor were added. For comparison, an optical micrograph (800X) of the obtained product is shown in Figure 4. show. Furthermore, an optical micrograph (800X) of Comparative Example 2 without the addition of a crystal growth inhibitor is shown in FIG. As can be easily understood from these photographs, in Comparative Example 1, the product did not have a spherical shape, and had a shape significantly different from the object of the present invention. Furthermore, the product according to Comparative Example 2 has a spherical shape due to the addition of a reaction buffer that controls the particle shape, but the particle size is large and irregular, which does not meet the purpose of the present invention. It has not become something that can be done.

比較例3は、反応初期段階から物理的衝撃を与えて作製
する方法で、ホモミキサを用い、3500 rpmの高
速で撹拌したもので、その生成物の光学顕微鏡写真(8
00X)を第6図に示す。
Comparative Example 3 is a method in which physical impact is applied from the initial stage of the reaction, and the product is stirred at a high speed of 3500 rpm using a homomixer.
00X) is shown in FIG.

この方法で得られた炭酸カルシウムは、比較的微小球体
で、真球状からかなり偏った形状のものになっている。
Calcium carbonate obtained by this method is relatively microspherical, and has a shape that is considerably deviated from a true spherical shape.

比較例4は、2価カチオン(Mg”)添加による製造例
であって、生成物の光学顕微鏡写真(800X)を第7
図に示す。ただし、同図(A)、(B)、(C)は、そ
れぞれ、2価カチオンとして、0.002mol /f
l 、0.004mol /1.0、006mol /
Iの塩化マグネシウムを使用した場合を示す。極く少量
の2価カチオンを添加する場合、立方形炭酸カルシウム
を生成しないが、粒子同志の合体成長が甚だしく、この
発明の目的とするものにならない。すなわち、同図(A
)、(B)に示すものは、粒子径約3〜7μmの真球状
炭酸カルシウムの他に、粒子同志の合体成長した変形粒
子がおよそ30〜40%混在しており、同図(C)では
、粒子径数μmの真球状炭酸カルシウム10%程の他は
、約8×15μm程度の瓢箪形の粒子となっている。
Comparative Example 4 is an example of production by adding divalent cations (Mg''), and the optical micrograph (800X) of the product is
As shown in the figure. However, (A), (B), and (C) in the same figure are each 0.002 mol/f as a divalent cation.
l, 0.004 mol/1.0, 006 mol/
The case where magnesium chloride of I is used is shown. When very small amounts of divalent cations are added, cubic calcium carbonate is not formed, but the coalescence of particles is so severe that it is not the object of this invention. In other words, the same figure (A
) and (B), in addition to true spherical calcium carbonate with a particle diameter of approximately 3 to 7 μm, there are approximately 30 to 40% deformed particles that have grown by coalescence. , except for about 10% of true spherical calcium carbonate with a particle diameter of several μm, the particles are gourd-shaped with a size of about 8×15 μm.

実施例4 この実施例では、反応緩衝剤の比較試験結果について述
べる。反応緩衝剤と炭酸イオンとの混合溶液として、 A:硫酸アンモニウム0. 1mol /1を含む0、
2mol /fl炭酸ナトリウム溶液B:硝酸ナトリウ
ム0. 2mol /lを含む0、2mol /1炭酸
ナトリウム溶液C:硫酸ナトリウムO,1mol /ρ
を含む0、 2mol /ρ炭酸ナトリウム溶液Dり塩
化ナトリウム0.2mol /flを含む0、 2mo
l /fl炭酸ナトリウム溶液を使用し、これらのA、
B、C,Dの各混合溶液と、同体積の0.2mol /
I塩化カルシウム溶液とを混合し、実施例1と全(同様
にして炭酸カルシウムを製造した。反応前後の液温は、
それぞれ16.0℃、15.5°Cであった。
Example 4 This example describes comparative test results of reaction buffers. As a mixed solution of reaction buffer and carbonate ions, A: ammonium sulfate 0. 0 containing 1 mol/1,
2mol/fl Sodium carbonate solution B: Sodium nitrate 0. 0.2 mol/1 sodium carbonate solution C containing 2 mol/l: Sodium sulfate O, 1 mol/ρ
0.2mol/ρ Sodium carbonate solution containing 0.2mol/fl Sodium chloride 0.2mol/fl
l/fl sodium carbonate solution and these A,
The same volume of each mixed solution of B, C, and D, 0.2 mol/
Calcium carbonate was produced in the same manner as in Example 1.The liquid temperature before and after the reaction was as follows:
The temperatures were 16.0°C and 15.5°C, respectively.

それぞれの場合における生成物の結晶形態は、A:球状
炭酸カルシウム100%であるが、C1Dに比較してい
(ぶん真球から偏っている、B:球状炭酸カルシウムの
他に、立方形炭酸カルシウム10%程度を含む、 C:球状炭酸カルシウム100%、 D=球状炭酸カルシウムがほぼ100%で、合体粒子が
点在する、 であった。
The crystal morphology of the product in each case is A: 100% spherical calcium carbonate, but compared to C1D (deviated from a true sphere), B: 10% cubic calcium carbonate in addition to spherical calcium carbonate. C: 100% spherical calcium carbonate; D=almost 100% spherical calcium carbonate with scattered coalescent particles.

実施例5 この実施例では、反応緩衝剤の添加量による結晶形態へ
の影響について述べる。
Example 5 This example describes the influence of the amount of reaction buffer added on crystal morphology.

A:硫酸ナトリウム0.05mol /flを含む0、
 2mol /IIの炭酸ナトリウム溶液B:硫酸ナト
リウム0. 10mol /ρを含む0、 2mol 
/1の炭酸ナトリウム溶液C:硫酸ナトリウム0. 1
5mol /1を含む0、 2mol /flの炭酸ナ
トリウム溶液D:硫酸ナトリウム0.188mol /
1を含む0、 2mol /flの炭酸ナトリウム溶液
A、B、C,Dの各混合溶液と0. 18mol /g
塩化カルシウム溶液とを同体積混合し、実施例1と同様
にして炭酸カルシウムを製造した。反応前後の液温は、
それぞれ17.2°C,17,0°Cであった。
A: 0 containing 0.05 mol/fl of sodium sulfate;
2 mol/II sodium carbonate solution B: sodium sulfate 0. 0, 2 mol including 10 mol/ρ
/1 sodium carbonate solution C: sodium sulfate 0. 1
0.2 mol/fl sodium carbonate solution D containing 5 mol/1: sodium sulfate 0.188 mol/fl
Mixed solutions of 0 and 2 mol/fl sodium carbonate solutions A, B, C, and D containing 0. 18mol/g
Calcium carbonate was produced in the same manner as in Example 1 by mixing the same volume with the calcium chloride solution. The liquid temperature before and after the reaction is
The temperatures were 17.2°C and 17.0°C, respectively.

それぞれの場合における生成炭酸カルシウムの結晶形態
は、 A:粒子径2〜7μmの真球状炭酸カルシウムの他に5
〜6個の合体粒子が点在(球形)、B:粒子径2〜7μ
mの真球状炭酸カルシウムの他に数個程度の合体粒子が
点在(球形)、C:粒子径2〜6μmの真球状炭酸カル
シウムの他に粒子2個からなる合体球体が僅かに生成、 D=粒子径2〜6μmの真球状炭酸カルシウムのみで、
合体変形粒子は皆無、 であった。
The crystal forms of the calcium carbonate produced in each case are: A: In addition to true spherical calcium carbonate with a particle size of 2 to 7 μm, 5.
~6 coalescing particles scattered (spherical), B: particle size 2-7μ
In addition to true spherical calcium carbonate of m, several coalesced particles are scattered (spherical); C: Slightly formed coalesced spheres consisting of two particles in addition to true spherical calcium carbonate with a particle diameter of 2 to 6 μm; D = Only true spherical calcium carbonate with a particle size of 2 to 6 μm,
There were no coalesced deformed particles.

混合溶液りを使用したときの生成粒子の光学顕微鏡写真
(800X)を第8図に示す。
FIG. 8 shows an optical micrograph (800X) of the particles produced when the mixed solution was used.

実施例に の実施例では、反応液の濃度と結晶形態との関係につい
て述べる。
In Examples, the relationship between the concentration of the reaction solution and the crystal form will be described.

炭酸ナトリウム溶液と塩化カルシウム溶液とを下記の濃
度で混合、反応させた後、結晶成長停止剤を添加し、生
成粒子を回収した。反応緩衝剤としての硫酸ナトリウム
濃度は、反応液の濃度に関係なく 0.2mol /E
とした。反応時間は8分、反応前後の液温は、それぞれ
17.5°C117,3°Cであった。
After mixing and reacting a sodium carbonate solution and a calcium chloride solution at the following concentrations, a crystal growth inhibitor was added and the produced particles were collected. The concentration of sodium sulfate as a reaction buffer is 0.2 mol/E regardless of the concentration of the reaction solution.
And so. The reaction time was 8 minutes, and the liquid temperatures before and after the reaction were 17.5°C and 117°C, respectively.

A : 0.3mol /fl塩化カルシウム溶液と0
、 2mol /flの硫酸ナトリウムを含む0、 3
5mol /f)炭酸ナトリウム溶液との同体積混合 B : 0. 5mol /fl塩化カルシウム溶液と
0、 2mol /j7の硫酸ナトリウムを含む0.5
5mol /1炭酸ナトリウム溶液との同体積混合 C: 0.7mol /ρ塩化カルシウム溶液と0、 
2+mol /flの硫酸ナトリウムを含む0.80m
ol /1炭酸ナトリウム溶液との同体積混合 それぞれの場合における生成炭酸カルシウムの結晶形態
は、 A:粒子径]〜6μmの真球状炭酸カルシウム、B:粒
子径1〜4μmの球状炭酸カルシウムで、真球形より少
し偏っている粒子が約20%混在、 C:粒子径2μm前後で粒径が揃っている、全体に真球
状より偏った炭酸カルシウム、であった。
A: 0.3 mol/fl calcium chloride solution and 0
, 0,3 containing 2 mol/fl sodium sulfate
5 mol/f) Same volume mixture B with sodium carbonate solution: 0. 0.5 containing 5 mol/fl calcium chloride solution and 0.2 mol/j7 sodium sulfate
Same volume mixture C with 5 mol/1 sodium carbonate solution: 0.7 mol/ρ calcium chloride solution and 0,
0.80m containing 2+mol/fl sodium sulfate
The crystal morphology of the calcium carbonate produced in each case of mixing the same volume with ol/1 sodium carbonate solution is as follows: A: true spherical calcium carbonate with a particle size of ~6 μm; B: spherical calcium carbonate with a particle size of 1~4 μm; Approximately 20% of the particles were mixed with particles that were slightly skewed from being spherical. C: Calcium carbonate had a uniform particle size of around 2 μm and was skewed from being perfectly spherical as a whole.

第2表に、実施例5のD、同6のA、同6のBの各場合
における生成炭酸カルシウムの性状をまとめて示す。
Table 2 summarizes the properties of the calcium carbonate produced in each case of D in Example 5, A in Example 6, and B in Example 6.

(以下余白) なお、第2表に示す生成物の粒度分布を第9図に示す。(Margin below) Incidentally, the particle size distribution of the products shown in Table 2 is shown in FIG.

ただし、同図では、比較例4による生成物の粒度分布も
併せ図示しである。第9図から明らかなように、この発
明になる球状炭酸カルシウムは、極めてシャープな粒度
分布を示し、粒径の揃った均質性の高い高品位のもので
ある。
However, in the figure, the particle size distribution of the product according to Comparative Example 4 is also illustrated. As is clear from FIG. 9, the spherical calcium carbonate according to the present invention exhibits an extremely sharp particle size distribution, and is of high quality with uniform particle size and high homogeneity.

以上述べてきた実施例を含め、この発明方法の要点を総
括すると、 (1)炭酸イオンと、対応するカルシウムイオンとの混
合比は、等モル比か、いくぶん炭酸イオンの多いときに
結晶成長が促進される。逆に、炭酸イオンが少ない条件
で得た炭酸カルシウムは、脆い結晶で崩壊し易い。
To summarize the main points of the method of this invention, including the examples described above, (1) The mixing ratio of carbonate ions and the corresponding calcium ions is an equimolar ratio, or when there is a somewhat large amount of carbonate ions, crystal growth occurs. promoted. On the contrary, calcium carbonate obtained under conditions with few carbonate ions is a brittle crystal and easily disintegrates.

(2)混合反応液の濃度は、これが高くなるに従って粒
子径が微粒側へ移行し、粒径も揃ってくる反面、粒子形
態は真球状から偏る傾向があり、好しくはO,1mol
 /1〜0. 5mol /flがよい。
(2) As the concentration of the mixed reaction solution increases, the particle size shifts to the fine particle side and the particle size becomes uniform, but the particle shape tends to deviate from a true spherical shape, preferably O, 1 mol.
/1~0. 5 mol/fl is good.

これ以上の高濃度では真球状の炭酸カルシウムが得られ
難い、 (3)反応緩衝剤の添加量は、1価の電解質で0.1〜
1.0mol/ρ、2価の電解質で0.1〜0. 5m
oi /n 、さらに好ましくは0.2〜0、4mol
 /pが適当である。無添加の条件下では、立方形カル
サイトの生成が非常に多くなる。
If the concentration is higher than this, it is difficult to obtain perfectly spherical calcium carbonate.
1.0 mol/ρ, 0.1 to 0.0 with divalent electrolyte. 5m
oi/n, more preferably 0.2 to 0.4 mol
/p is appropriate. Under additive-free conditions, a large amount of cubic calcite is produced.

(4)結晶成長停止剤の添加量は、pH12程度で生成
炭酸カルシウムの粒子成長が停止することから決めれば
よい。無添加の場合は、固液分離過程においても結晶が
成長し、目的の粒径粒子を得ることが困難となる。
(4) The amount of the crystal growth inhibitor to be added may be determined based on the fact that particle growth of the produced calcium carbonate stops at a pH of about 12. If no additive is added, crystals will grow even during the solid-liquid separation process, making it difficult to obtain particles with the desired particle size.

(5)液温については、温度変化による結晶形態への影
響は殆どないが、結晶成長速度との間に密接な関係が存
在する。
(5) Regarding liquid temperature, although temperature changes have little effect on crystal morphology, there is a close relationship with crystal growth rate.

発明の効果 以上、具体例をもって説明したように、この発明によれ
ば、常温、常圧下でカルシウムイオン溶液と炭酸イオン
溶液と反応緩衝剤とを混合することにより、球形粒子同
志の合体現象が有効に抑制され、さらに結晶成長停止剤
を添加することにより、目的の粒径で粒度範囲の狭い真
球状炭酸カルシウムを、理論値に近い回収率で、簡単に
、しかも経済的に製造することができる。なお、反応液
の温度および反応時間を適当に選定することにより、生
成炭酸カルシウムの粒子径は、約1μmから10数μm
まで任意に変更することが可能である。
Effects of the Invention As explained above with specific examples, according to the present invention, by mixing a calcium ion solution, a carbonate ion solution, and a reaction buffer at room temperature and normal pressure, the coalescence phenomenon of spherical particles is effective. By adding a crystal growth inhibitor, it is possible to easily and economically produce true spherical calcium carbonate with a target particle size and a narrow particle size range, with a recovery rate close to the theoretical value. . In addition, by appropriately selecting the temperature of the reaction solution and the reaction time, the particle size of the produced calcium carbonate can be varied from about 1 μm to more than 10 μm.
It is possible to arbitrarily change up to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で得られた炭酸カルシウム生成物のX
線回折図、第2図は実施例2で得られた生成物の光学顕
微鏡写真、第3図(A)ないしくC)は実施例3で得ら
れた生成物の走査形電子顕微鏡写真である。 第4図ないし第6図は、それぞれ比較例1ないし3で得
られた生成物の光学顕微鏡写真であり、第7図(A)な
いしくC)は、それぞれ比較例4の2価カチオン添加量
別に得られた生成物の光学顕微鏡写真、第8図は実施例
5のDによる生成物の光学顕微鏡写真である。 第9図(A)ないしくC)は、それぞれ実施例5のD、
同6のA1同6のBによる生成物の粒度分布図、同図(
D)ないしくF)は、それぞれ第7図(A)ないしくC
)に対応する比較例4の生成物の粒度分布図である。
Figure 1 shows the calcium carbonate product obtained in Example 1.
Linear diffraction diagram, Figure 2 is an optical micrograph of the product obtained in Example 2, and Figures 3 (A) to C) are scanning electron micrographs of the product obtained in Example 3. . Figures 4 to 6 are optical micrographs of the products obtained in Comparative Examples 1 to 3, respectively, and Figures 7 (A) to C) show the amount of divalent cation added in Comparative Example 4, respectively. Separately obtained optical micrograph of the product, FIG. 8 is an optical micrograph of the product according to D of Example 5. FIGS. 9(A) to 9(C) show D and D of Example 5, respectively.
Particle size distribution diagram of the product according to 6 A1 and 6 B, the same figure (
D) or F) are respectively shown in Figure 7 (A) or C.
) is a particle size distribution map of the product of Comparative Example 4 corresponding to

Claims (1)

【特許請求の範囲】[Claims] 1)粒子形状を制御する反応緩衝剤を溶存する炭酸イオ
ン溶液とカルシウムイオン溶液とを混合し、混合液の反
応過程で結晶成長停止剤を添加して粒子径を制御するこ
とを特徴とする球状炭酸カルシウムの製造方法。
1) A spherical particle shape characterized by mixing a carbonate ion solution and a calcium ion solution in which a reaction buffer that controls the particle shape is dissolved, and adding a crystal growth inhibitor during the reaction process of the mixed solution to control the particle size. Method for producing calcium carbonate.
JP18623689A 1989-07-19 1989-07-19 Method for producing spherical calcium carbonate Expired - Fee Related JP2772483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18623689A JP2772483B2 (en) 1989-07-19 1989-07-19 Method for producing spherical calcium carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18623689A JP2772483B2 (en) 1989-07-19 1989-07-19 Method for producing spherical calcium carbonate

Publications (2)

Publication Number Publication Date
JPH0350116A true JPH0350116A (en) 1991-03-04
JP2772483B2 JP2772483B2 (en) 1998-07-02

Family

ID=16184738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18623689A Expired - Fee Related JP2772483B2 (en) 1989-07-19 1989-07-19 Method for producing spherical calcium carbonate

Country Status (1)

Country Link
JP (1) JP2772483B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003063819A (en) * 2001-08-27 2003-03-05 Ube Nitto Kasei Co Ltd Method for producing vaterite-type spherical calcium carbonate and vaterite-type spherical calcium carbonate
JP2011126740A (en) * 2009-12-17 2011-06-30 Taiheiyo Cement Corp Method for producing vaterite type calcium carbonate
CN107074577A (en) * 2014-10-24 2017-08-18 欧米亚国际集团 The PCC of portlandite content with reduction
CN112408450A (en) * 2020-11-27 2021-02-26 广西华纳新材料科技有限公司 Preparation method of cubic-like nano calcium carbonate
CN112479242A (en) * 2020-12-01 2021-03-12 连州市凯恩斯纳米材料有限公司 Preparation method of nano calcium carbonate with particle size less than 20nm

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003063819A (en) * 2001-08-27 2003-03-05 Ube Nitto Kasei Co Ltd Method for producing vaterite-type spherical calcium carbonate and vaterite-type spherical calcium carbonate
JP2011126740A (en) * 2009-12-17 2011-06-30 Taiheiyo Cement Corp Method for producing vaterite type calcium carbonate
CN107074577A (en) * 2014-10-24 2017-08-18 欧米亚国际集团 The PCC of portlandite content with reduction
CN112408450A (en) * 2020-11-27 2021-02-26 广西华纳新材料科技有限公司 Preparation method of cubic-like nano calcium carbonate
CN112479242A (en) * 2020-12-01 2021-03-12 连州市凯恩斯纳米材料有限公司 Preparation method of nano calcium carbonate with particle size less than 20nm
CN112479242B (en) * 2020-12-01 2023-02-07 连州市凯恩斯纳米材料有限公司 Preparation method of nano calcium carbonate with particle size less than 20nm

Also Published As

Publication number Publication date
JP2772483B2 (en) 1998-07-02

Similar Documents

Publication Publication Date Title
KR960704801A (en) SPHEROIDAL AGGREGATE OF PLATY SYNTHETIC HYDROTALCITE
JP2684112B2 (en) Method for producing needle-like aragonite crystalline calcium carbonate
Wei et al. On the crystallization of calcium carbonate modulated by anionic surfactants
JP5226688B2 (en) Process for producing monodisperse and stable nanometer magnesium hydroxide and product thereof
Saraya et al. Preparation of vaterite calcium carbonate in the form of spherical nano-size particles with the aid of polycarboxylate superplasticizer as a capping agent
US5910214A (en) Process for preparing calcium carbonate
Prah et al. Precipitation of calcium carbonate from a calcium acetate and ammonium carbamate batch system
US5811070A (en) Process for producing calcium carbonate particles having a size of 0.1 to 1.0 μm
Yang et al. Effects of sodium dodecyl sulfate on the oriented growth of nesquehonite whiskers
CN110577486A (en) Rosin-based CO2/N2Response type surfactant and preparation method and application thereof
CN107986313B (en) Preparation method of spherical calcium carbonate
JPH0350116A (en) Production of spherical calcium carbonate
JPS6350316A (en) Method for forming hexagonal and plate-shaped calcium carbonate grain
US8470280B2 (en) Calcium carbonate microtablets and method for the preparation thereof
JPS6411571B2 (en)
JPH0453809B2 (en)
JP5639551B2 (en) Method for producing spherical calcium carbonate fine particles
Tang et al. Influence of PSSS on the morphology and polymorph of calcium carbonate in the ethanol–water mixed system
Jiang et al. Morphology and size control of calcium carbonate crystallized in a reverse micelle system with switchable surfactants
JPH046649B2 (en)
JPS6163526A (en) Preparation of spherical basic magnesium carbonate
CN112979994B (en) preparation method of Pickering miniemulsion with stable pH phase-inversion hybrid calcium carbonate
JPH06102542B2 (en) Method for producing spherical particle calcium carbonate
JP2549857B2 (en) Method for producing calcium carbonate with controlled particle size
Lu et al. Regulation of Calcite Morphology by Low‐Molecular‐Weight Organic Acids: Alcohol Hydroxyl and Carboxyl Matters

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees