JPS6411571B2 - - Google Patents

Info

Publication number
JPS6411571B2
JPS6411571B2 JP9459883A JP9459883A JPS6411571B2 JP S6411571 B2 JPS6411571 B2 JP S6411571B2 JP 9459883 A JP9459883 A JP 9459883A JP 9459883 A JP9459883 A JP 9459883A JP S6411571 B2 JPS6411571 B2 JP S6411571B2
Authority
JP
Japan
Prior art keywords
calcium carbonate
carbon dioxide
surface area
specific surface
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9459883A
Other languages
Japanese (ja)
Other versions
JPS59223225A (en
Inventor
Ryogo Tsukisaka
Satoshi Kondo
Itaru Nakae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIRAISHI CHUO KENKYUSHO KK
Original Assignee
SHIRAISHI CHUO KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIRAISHI CHUO KENKYUSHO KK filed Critical SHIRAISHI CHUO KENKYUSHO KK
Priority to JP9459883A priority Critical patent/JPS59223225A/en
Publication of JPS59223225A publication Critical patent/JPS59223225A/en
Publication of JPS6411571B2 publication Critical patent/JPS6411571B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアラゴナイト質炭酸カルシウムの製造
方法に関する。詳しくはBET比表面積(以下比
表面積と記す)10m2/g以上で、且つ電子顕微鏡
観察による平均寸法が夫々長さ(L)=0.7〜1.5μm、
巾(D)=0.01〜0.2μm、アスペクト比(L/D)=
11以上の極微細な針柱状のアラゴナイト質炭酸カ
ルシウムの製造方法に係るものである。 炭酸カルシウムは従来からゴム、プラスチツ
ク、紙、塗料、インキ、接着剤などの充填剤ある
いは顔料として広く使用されてきているが、これ
まで石灰石を機械的に粉砕した比表面積6m2/g
以下の粒度の粗い重質炭酸カルシウムと化学反応
から得られる比表面積10m2/g以上の極微細な立
方状をしたカルサイト結晶からなる極微細炭酸カ
ルシウム、比表面積10m2/g以下で粒度のやや粗
い方に属する紡錘状をしたカルサイト結晶あるい
は柱状をしたアラゴナイト結晶からなる軽質炭酸
カルシウムと呼称する沈降炭酸カルシウムが製
造、市販されている。しかしこれまで市販されて
きた炭酸カルシウムはゴム、プラスチツクに配合
して、モジユラス、硬度、曲げ弾性率など剛性に
かかわる物性、さらに引張強さなどの補強性で充
分満足な効果が得られなかつた。市販炭酸カルシ
ウムのうち、柱状をしたアラゴナイト結晶の軽質
炭酸カルシウムは、立方状あるいは、紡錘状のカ
ルサイト結晶の炭酸カルシウムと異なり、ゴム、
プラスチツクに配合して多少高剛性のコンパウン
ドを得ることができるが、満足するレベルには達
せず、充分とはいえなかつた。このため、ゴム、
プラスチツクに配合して、高剛性を充分付与する
炭酸カルシウムとして、極微細な針柱状をしたア
ラゴナイト質炭酸カルシウムの出現が強く望まれ
ていたが、これまで極微細な針柱状のアラゴナイ
ト質炭酸カルシウムは得られなかつた。 さて、柱状のアラゴナイト質炭酸カルシウムの
製法としては、アルカリ性塩化カルシウム水溶液
に特定条件下で炭酸ガスを反応させる方法(特公
昭43−22783号)、水酸化カルシウム水懸濁液の炭
酸ガス反応において、炭酸化工程を3段階に分
け、温度、炭酸ガス導入量を各段階で調節し炭酸
化反応を行う方法(特公昭55−51852号)などが
提案されているが、前者は極微細粒子を生成せし
める条件の調節が出来ず、粒度の粗い1〜15μm
のものしか得られていない。後者はアラゴナイト
結晶炭酸カルシウムが得られにくく、もし得られ
たとしても極微細領域に入らない比表面積の小さ
いものしか得られない。このように、水酸化カル
シウム水懸濁液と炭酸ガスとの反応におけるアラ
ゴナイト質の極微細な針柱状炭酸カルシウムの生
成技術は、いまだに確立されていない。 そこで本発明者らは極微細な針柱状のアラゴナ
イト質炭酸カルシウムの製造方法について種々研
究を重ねた結果、水酸化カルシウム水懸濁液に結
晶核形成剤を加えてから、これに炭酸ガスを導入
して炭酸化反応を行うことにより、アラゴナイト
質55%以上、10m2/g以上という高比表面積を有
し、且つ電子顕微鏡観察による平均寸法が夫々長
さ(L)=0.7〜1.5μm、巾(D)=0.01〜0.2μm、アスペ
クト比(L/D)=11以上の均一で極微細な針柱
状粒子の炭酸カルシウムを容易に生成せしめるこ
とを見い出し、本発明を完成するにいたつた。こ
こで云うBET比表面積とは低温窒素吸着法で測
定した比表面積であり、極微細とは比表面積10
m2/g以上の粒子である。アスペクト比(L/
D)とは電子顕微鏡観察による写真から針柱状粒
子の長さ(L)と巾(D)の比を多数個測定し、平均して
求めたものであり、針柱状とはアスペクト比
(L/D)=11以上の粒子である。アラゴナイト質
とは、X線回折法より求めたアラゴナイト結晶が
55%以上含むものである。 本発明の極微細な針柱状の炭酸カルシウムは、
限定された結晶核形成剤を加えた水酸化カルシウ
ム懸濁液と該水酸化カルシウム懸濁液の濃度、温
度および炭酸ガス含有気体の炭酸ガス濃度、炭酸
ガス含有気体の導入速度の炭酸化反応条件を特定
の範囲に保持することによつてはじめて得られる
ものである。 本発明の極微細な針柱状のアラゴナイト質炭酸
カルシウムが生成される要因は明らかでないが、
水酸化カルシウム水懸濁液に加える結晶核形成剤
としてのバリウムあるいはストロンチウムの塩類
が限定された炭酸化反応条件との結合によつて、
結晶核の生成の外に粒子の微細化に作用している
ものと考えられる。 本発明は濃度15〜40WT%、温度32〜60℃の水
酸化カルシウム水懸濁液に結晶核形成剤を加えて
から、炭酸ガス濃度15V%以上の炭酸ガス含有気
体を12〜80/min/Kg Ca(OH)2導入して炭
酸化反応を行い、比表面積10m2/g以上で、且つ
電子顕微鏡観察による平均寸法が夫々長さ(L)=
0.7〜1.5μm、巾(D)=0.01〜0.2μm、アスペクト比
(L/D)=11以上の極微細な針柱状の炭酸カルシ
ウムを生成させることを特徴とするアラゴナイト
質炭酸カルシウムの製造方法を提供するものであ
る。 本発明で使用する水酸化カルシウム水懸濁液の
濃度は15〜40wt%、好ましくは17〜35wt%であ
る。水酸化カルシウム濃度が15wt%未満の場合
は針柱状粒子のアスペクト比が小さくなつたり、
あるいは針柱状粒子の生成率が少なくなつたり、
40wt%を上回ると炭酸ガスの接触が均一に行わ
れなくなり、局部反応にもとづく粒度のバラツキ
が大きくなる。また水酸化カルシウム水懸濁液の
温度は32〜60℃の範囲内で行う必要があり、32℃
未満では異形粒子が生成したり、60℃を上回ると
粒子が大きく成長して比表面積が低下する。 本発明で使用する結晶核形成剤はバリウムおよ
びストロンチウムの塩化物、フツ化物、水酸化
物、酸化物、硫酸塩、硝酸塩、りん酸塩、酢酸
塩、シユウ酸塩である。 すなわち、塩化バリウム、塩化ストロンチウ
ム、フツ化バリウム、フツ化ストロンチウム、水
酸化バリウム、水酸化ストロンチウム、酸化バリ
ウム、酸化ストロンチウム、硫酸バリウム、硫酸
ストロンチウム、硝酸バリウム、硝酸ストロンチ
ウム、りん酸バリウム、りん酸ストロンチウム、
酢酸バリウム、酢酸ストロンチウム、シユウ酸バ
リウム、シユウ酸ストロンチウムである。結晶核
形成剤の添加量は水酸化カルシウム1モルに対し
て0.001〜0.5モル、好ましくは0.003〜0.4モルで
ある。添加量が0.001モル未満の場合は粒子微細
化の効果がなくなり、0.5モルを上回つても粒子
微細化の効果は変わらず、コストが至つて高くな
り不経済となる。 本発明で使用する炭酸ガス含有気体の炭酸ガス
濃度は15V%以上である。炭酸ガス濃度が15V%
未満の場合は、炭酸化速度が遅くなり、生成物の
粒度が大きくなり、比表面積10m2/g以上の極微
細な炭酸カルシウムは得られない。炭酸ガスは、
石灰石焼成廃ガスを精製した炭酸ガス濃度15〜
40V%の炭酸ガス含有気体を使用することができ
る。 本発明で使用する炭酸ガス含有気体の導入量は
12〜80/min/Kg Ca(OH)2である。炭酸ガ
ス含有気体の導入量が12/min/Kg Ca
(OH)2未満では、反応系の攪拌効果が劣り、局
部反応も起因して生成粒子の粒度が不均一にな
り、比表面積10m2/g以上の極微細な炭酸カルシ
ウムは得られなくなり、80/min/Kg Ca
(OH)2を上回ると、炭酸ガス含有気体が反応系
の攪拌を行う前に水酸化カルシウム懸濁液外に放
出される状態となつて、攪拌が行われず、炭酸ガ
スの流失も大となつて、比表面積10m2/g以上の
極微細な炭酸カルシウムが得られない。本発明の
炭酸ガス含有気体の導入量は炭酸化を行うととも
に反応系の攪拌を兼ねたものである。 本発明の炭酸カルシウムに関し比表面積10m2
g以下であつたり、電子顕微鏡観察による平均寸
法が長さ(L)=0.7〜1.5μm、巾(D)=0.01〜0.2μm、
アスペクト比(L/D)=11以上のいずれの一つ
でも範囲外となつてもゴム、プラスチツクなどに
配合して剛性などの補強効果が劣る。 本発明の炭酸カルシウムは必要に応じて炭酸化
反応終了後の懸濁液をろ過脱水し、固形分濃度
40wt%以上のペースト状として使用してもよく、
さらにこれを乾燥及び粉砕して粉末状製品にしあ
げてもよい。 かくして本発明による炭酸カルシウムは水酸化
カルシウム水懸濁液を炭酸化する際、結晶核形成
剤としてバリウムおよびストロンチウムの塩化
物、フツ化物、水酸化物、酸化物、硫酸塩、硝酸
塩、りん酸塩、酢酸塩、シユウ酸塩のいずれか1
種を加えて、限定された炭酸化反応条件で炭酸化
することによつてアラゴナイト質55%以上、大部
分は80%以上含み、比表面積10m2/g以上、粒子
形状の平均寸法が夫々長さ(L)=0.7〜1.5μm、巾
(D)=0.01〜0.2μm、アスペクト比11以上の均一な
粒度を有する極微細な針柱状粒子が容易に得られ
る。 本発明の炭酸カルシウムは紙、塗料、インキ、
接着剤などに利用できるが、特にゴム、プラスチ
ツクなどに配合して高剛性を示す補強効果が得ら
れる。即ちゴムに配合してモジユラス、硬度が高
く、しかも高引張り強さを与え、またプラスチツ
クに配合して曲げ弾性率が高く、高アイゾツト衝
撃強度を与える。 またさらに、本発明の方法により得られた炭酸
カルシウムに公知の表面処理を施すことにより充
填剤として、応用面での物性を一層改善しうるこ
とは云までもない。 次に本発明の製造方法を実施例により具体的に
説明する。 実施例 1 濃度17wt%、温度55℃に調製した水酸化カル
シウム水懸濁液1000Kgを反応容器に入れ、これに
塩化バリウム0.01Mol/Mol Ca(OH)2を加えて
混合してから、濃度30V%の炭酸ガス含有気体を
流速30/min/Kg Ca(OH)2で導入して炭酸
化反応を行い、アラゴナイト質91%、比表面積26
m2/g、粒子形状が長さ0.8μm、巾0.07μm、ア
スペクト比11を有する極微細な針柱状のアラゴナ
イト質炭酸カルシウムを得た。この炭酸カルシウ
ム懸濁物はプレス脱水機により母液を分離、つい
で乾燥、粉砕して約220Kg仕上げた。 実施例 2 濃度20wt%、温度35℃に調製した水酸化カル
シウム水懸濁液1000Kgを反応容器に入れ、これに
水酸化バリウム0.03Mol/Mol Ca(OH)2を加え
て混合してから、濃度30V%の炭酸ガス含有気体
を流速15/min/Kg Ca(OH)2で導入して炭
酸化反応を行い、アラゴナイト質95%、比表面積
28m2/g、粒子形状が長さ0.7μm、巾0.04μm、
アスペクト比18を有する極微細な針柱状のアラゴ
ナイト質炭酸カルシウムを得た。この炭酸カルシ
ウム懸濁物はプレス脱水機により母液を分離、つ
いで乾燥、粉砕して約260Kgを仕上げた。 実施例 3 濃度30wt%、温度40℃に調製した水酸化カル
シウム水懸濁液1000Kgを反応容器に入れ、これに
酢酸ストロンチウム0.2Mol/Mol Ca(OH)2を加
えて混合してから、濃度30V%の炭酸ガス含有気
体を流速60/min/Kg Ca(OH)2で導入して
炭酸化反応を行い、アラゴナイト質99%、比表面
積15m2/g、粒子形状が長さ1.3μm、巾0.08μm、
アスペクト比16を有する極微細な針柱状のアラゴ
ナイト質炭酸カルシウムを得た。この炭酸カルシ
ウム懸濁物はプレス脱水機により母液を分離、つ
いで乾燥、粉砕してやく400Kg仕上げた。 実施例 4〜9 酢酸ストロンチウムの代りに第1表に示すバリ
ウム化合物あるいはストロンチウム化合物を加え
る以外は実施例3と同様にして極微細な針柱状の
アラゴナイト質炭酸カルシウムを得た。又得られ
た炭酸カルシウムのアラゴナイト質、比表面積、
粒子形状、およびアスペクト比を第1表に示す。
The present invention relates to a method for producing aragonitic calcium carbonate. In detail, the BET specific surface area (hereinafter referred to as specific surface area) is 10 m 2 /g or more, and the average dimension by electron microscope observation is length (L) = 0.7 to 1.5 μm, respectively.
Width (D) = 0.01 to 0.2 μm, aspect ratio (L/D) =
This invention relates to a method for producing aragonitic calcium carbonate having the shape of 11 or more fine needles. Calcium carbonate has traditionally been widely used as a filler or pigment in rubber, plastics, paper, paints, inks, adhesives, etc., but until now it has been used to reduce the specific surface area of mechanically crushed limestone to 6 m 2 /g.
Ultra-fine calcium carbonate consisting of ultra-fine cubic calcite crystals with a specific surface area of 10 m 2 /g or more, obtained through a chemical reaction with the coarse-grained heavy calcium carbonate shown below, with a specific surface area of 10 m 2 /g or less and a particle size of Precipitated calcium carbonate, called light calcium carbonate, is produced and commercially available, which is composed of somewhat coarse spindle-shaped calcite crystals or columnar aragonite crystals. However, commercially available calcium carbonate has not been incorporated into rubbers and plastics to achieve satisfactory effects in terms of physical properties related to rigidity such as modulus, hardness, and flexural modulus, as well as reinforcing properties such as tensile strength. Among commercially available calcium carbonates, light calcium carbonate in the form of columnar aragonite crystals differs from calcium carbonate in the form of cubic or spindle-shaped calcite crystals;
Although it is possible to obtain a compound with somewhat high rigidity by blending it with plastic, it does not reach a satisfactory level and cannot be said to be sufficient. For this reason, rubber
There has been a strong desire for the appearance of aragonitic calcium carbonate in the form of ultra-fine needles as a calcium carbonate that can be blended into plastics to impart sufficient rigidity. I couldn't get it. Now, methods for producing columnar aragonitic calcium carbonate include a method in which carbon dioxide gas is reacted with an alkaline calcium chloride aqueous solution under specific conditions (Japanese Patent Publication No. 43-22783), and a method in which a calcium hydroxide aqueous suspension is reacted with carbon dioxide gas. A method has been proposed in which the carbonation process is divided into three stages and the temperature and amount of carbon dioxide gas introduced are adjusted at each stage to carry out the carbonation reaction (Japanese Patent Publication No. 51852/1983), but the former produces extremely fine particles. It is not possible to adjust the tightening conditions, and the particle size is coarse (1 to 15 μm).
I've only been able to get what I want. In the latter case, it is difficult to obtain aragonite crystalline calcium carbonate, and even if it is obtained, it can only be obtained with a small specific surface area that does not fall into the extremely fine region. As described above, the technology for producing ultrafine aragonitic acicular calcium carbonate through the reaction of an aqueous calcium hydroxide suspension with carbon dioxide gas has not yet been established. Therefore, the present inventors conducted various studies on the production method of ultrafine needle-shaped aragonitic calcium carbonate, and found that after adding a crystal nucleating agent to an aqueous suspension of calcium hydroxide, carbon dioxide gas was introduced into it. By carrying out the carbonation reaction, it has an aragonitic content of 55% or more, a high specific surface area of 10 m 2 /g or more, and the average dimensions as determined by electron microscopy are length (L) = 0.7 to 1.5 μm and width, respectively. It was discovered that calcium carbonate in the form of uniform, ultrafine needle-shaped particles with (D) = 0.01 to 0.2 μm and aspect ratio (L/D) = 11 or more can be easily produced, and the present invention was completed. The BET specific surface area referred to here is the specific surface area measured by low-temperature nitrogen adsorption method, and ultrafine refers to the specific surface area of 10
Particles of m 2 /g or more. Aspect ratio (L/
D) is obtained by measuring the ratio of length (L) and width (D) of many needle-like particles from photographs taken by electron microscopy, and averaging them. D) = 11 or more particles. Aragonite is an aragonite crystal determined by X-ray diffraction method.
Contains 55% or more. The ultrafine needle-shaped calcium carbonate of the present invention is
Carbonation reaction conditions including a calcium hydroxide suspension to which a limited crystal nucleating agent has been added, the concentration of the calcium hydroxide suspension, the temperature, the carbon dioxide concentration of the carbon dioxide-containing gas, and the introduction rate of the carbon dioxide-containing gas. This can only be achieved by keeping the value within a specific range. Although the factors leading to the production of the ultrafine needle-shaped aragonitic calcium carbonate of the present invention are not clear,
By combining barium or strontium salts as crystal nucleating agents to an aqueous suspension of calcium hydroxide with limited carbonation reaction conditions,
It is thought that it acts not only on the generation of crystal nuclei but also on the refinement of particles. In the present invention, a crystal nucleating agent is added to a calcium hydroxide aqueous suspension with a concentration of 15 to 40 WT% and a temperature of 32 to 60°C, and then a carbon dioxide-containing gas with a carbon dioxide concentration of 15 V% or more is added at a rate of 12 to 80/min. Kg Ca(OH) 2 was introduced to carry out the carbonation reaction, and the specific surface area was 10 m 2 /g or more, and the average dimension as determined by electron microscopy was length (L) =
A method for producing aragonitic calcium carbonate, which is characterized by producing extremely fine needle-shaped calcium carbonate having a width (D) of 0.7 to 1.5 μm, a width (D) of 0.01 to 0.2 μm, and an aspect ratio (L/D) of 11 or more. This is what we provide. The concentration of the calcium hydroxide aqueous suspension used in the present invention is 15 to 40 wt%, preferably 17 to 35 wt%. When the calcium hydroxide concentration is less than 15wt%, the aspect ratio of the needle-shaped particles becomes smaller,
Or the generation rate of needle-shaped particles decreases,
If it exceeds 40 wt%, the contact with carbon dioxide gas will not be uniform, and the variation in particle size will increase due to local reactions. In addition, the temperature of the calcium hydroxide aqueous suspension must be within the range of 32 to 60℃, and 32℃
If it is less than 60°C, irregularly shaped particles will be produced, and if it exceeds 60°C, the particles will grow large and the specific surface area will decrease. The crystal nucleating agents used in the present invention are barium and strontium chlorides, fluorides, hydroxides, oxides, sulfates, nitrates, phosphates, acetates, and oxalates. That is, barium chloride, strontium chloride, barium fluoride, strontium fluoride, barium hydroxide, strontium hydroxide, barium oxide, strontium oxide, barium sulfate, strontium sulfate, barium nitrate, strontium nitrate, barium phosphate, strontium phosphate,
These are barium acetate, strontium acetate, barium oxalate, and strontium oxalate. The amount of the crystal nucleating agent added is 0.001 to 0.5 mol, preferably 0.003 to 0.4 mol, per 1 mol of calcium hydroxide. When the amount added is less than 0.001 mol, the effect of grain refinement disappears, and even when it exceeds 0.5 mol, the effect of grain refinement remains unchanged, and the cost becomes extremely high and uneconomical. The carbon dioxide concentration of the carbon dioxide-containing gas used in the present invention is 15V% or more. Carbon dioxide concentration is 15V%
If it is less than 10 m 2 /g, the carbonation rate will be slow and the particle size of the product will be large, making it impossible to obtain extremely fine calcium carbonate with a specific surface area of 10 m 2 /g or more. Carbon dioxide is
Carbon dioxide concentration of purified limestone firing waste gas 15~
A gas containing 40V% carbon dioxide can be used. The amount of carbon dioxide-containing gas introduced in the present invention is
12-80/min/Kg Ca(OH) 2 . The amount of carbon dioxide gas introduced is 12/min/Kg Ca
If (OH) is less than 2 , the stirring effect of the reaction system will be poor, and the particle size of the generated particles will become non-uniform due to local reactions, making it impossible to obtain ultrafine calcium carbonate with a specific surface area of 10 m 2 /g or more. /min/Kg Ca
If it exceeds (OH) 2 , gas containing carbon dioxide gas will be released outside the calcium hydroxide suspension before stirring the reaction system, and stirring will not take place and a large amount of carbon dioxide gas will be lost. Therefore, extremely fine calcium carbonate with a specific surface area of 10 m 2 /g or more cannot be obtained. The amount of carbon dioxide-containing gas introduced in the present invention is such that it not only performs carbonation but also stirs the reaction system. Regarding the calcium carbonate of the present invention, the specific surface area is 10 m 2 /
g or less, and the average dimensions by electron microscope observation are length (L) = 0.7 to 1.5 μm, width (D) = 0.01 to 0.2 μm,
Even if the aspect ratio (L/D) is 11 or more, even if it is outside the range, the reinforcing effect such as rigidity will be poor when blended into rubber, plastic, etc. The calcium carbonate of the present invention is obtained by filtering and dehydrating the suspension after the carbonation reaction, if necessary, to obtain a solid content concentration.
It may be used as a paste with a concentration of 40wt% or more.
Furthermore, this may be dried and pulverized to form a powdered product. Thus, the calcium carbonate according to the present invention can be used as crystal nucleating agents when carbonating an aqueous calcium hydroxide suspension. , acetate, or oxalate (1)
By adding seeds and carbonating under limited carbonation reaction conditions, it is possible to obtain a carbonaceous material containing 55% or more aragonite, mostly 80% or more, a specific surface area of 10 m 2 /g or more, and an average particle size of long. Length (L) = 0.7 to 1.5 μm, width
(D)=0.01 to 0.2 μm, and ultrafine needle-shaped particles having a uniform particle size and an aspect ratio of 11 or more can be easily obtained. The calcium carbonate of the present invention can be used in paper, paint, ink,
It can be used in adhesives, etc., but it can also be especially added to rubber, plastics, etc. to provide a reinforcing effect that exhibits high rigidity. That is, it can be blended with rubber to give it high modulus, hardness, and high tensile strength, and it can be blended with plastic to give it high flexural modulus and high isot impact strength. Furthermore, it goes without saying that by subjecting the calcium carbonate obtained by the method of the present invention to a known surface treatment, it can be used as a filler to further improve its physical properties in terms of application. Next, the manufacturing method of the present invention will be specifically explained using examples. Example 1 1000 kg of calcium hydroxide aqueous suspension prepared at a concentration of 17 wt% and a temperature of 55°C was placed in a reaction vessel, and 0.01 Mol/Mol Ca(OH) 2 of barium chloride was added thereto and mixed. % of carbon dioxide gas was introduced at a flow rate of 30/min/Kg Ca(OH) 2 to perform a carbonation reaction, resulting in a carbonation reaction of 91% aragonite and a specific surface area of 26%.
m 2 /g, ultrafine needle-shaped aragonitic calcium carbonate having a particle shape of 0.8 μm in length, 0.07 μm in width, and aspect ratio of 11 was obtained. The mother liquor of this calcium carbonate suspension was separated using a press dehydrator, then dried and pulverized to give a final product weighing approximately 220 kg. Example 2 1000 kg of calcium hydroxide aqueous suspension prepared at a concentration of 20 wt% and a temperature of 35°C was placed in a reaction vessel, and 0.03 Mol/Mol Ca(OH) 2 of barium hydroxide was added thereto and mixed. A carbonation reaction was carried out by introducing a gas containing 30V% carbon dioxide gas at a flow rate of 15/min/Kg Ca(OH) 2 , resulting in a carbonation reaction of 95% aragonite and specific surface area.
28m 2 /g, particle shape length 0.7μm, width 0.04μm,
Ultrafine needle-shaped aragonitic calcium carbonate with an aspect ratio of 18 was obtained. The mother liquor of this calcium carbonate suspension was separated using a press dehydrator, then dried and pulverized to a final weight of about 260 kg. Example 3 1000 kg of calcium hydroxide aqueous suspension prepared at a concentration of 30 wt% and a temperature of 40°C was placed in a reaction vessel, and 0.2 Mol/Mol Ca(OH) 2 of strontium acetate was added thereto and mixed. % of carbon dioxide gas was introduced at a flow rate of 60/min/Kg Ca(OH) 2 to perform a carbonation reaction, resulting in 99% aragonite, a specific surface area of 15 m 2 /g, and a particle shape of 1.3 μm in length and 0.08 in width. μm,
Ultrafine needle-shaped aragonitic calcium carbonate with an aspect ratio of 16 was obtained. The mother liquor of this calcium carbonate suspension was separated using a press dehydrator, then dried and crushed to produce a final product weighing 400 kg. Examples 4 to 9 Ultrafine needle-shaped aragonitic calcium carbonate was obtained in the same manner as in Example 3, except that the barium compounds or strontium compounds shown in Table 1 were added instead of strontium acetate. In addition, the aragonitic quality and specific surface area of the obtained calcium carbonate,
The particle shapes and aspect ratios are shown in Table 1.

【表】 実施例 10 炭酸ガス含有気体の炭酸ガス濃度を50V%とす
る以外は実施例3と同様にして炭酸化反応を行
い、アラゴナイト質99%、比表面積16m2/g、粒
子形状が長さ1.2μm、巾=0.07μm、アスペクト
比17を有する極微細な針柱状のアラゴナイト質炭
酸カルシウムを得た。 比較例 1 水酸化カルシウム水懸濁液の濃度5wt%とする
以外は実施例1と同様にして、炭酸化反応を行
い、生成物を分析した結果を第3表に示す。 比較例 2 水酸化カルシウム水懸濁液の温度10℃とする以
外は実施例2と同様にして、炭酸化反応を行い、
生成物を分析した結果を第3表に示す。 比較例 3 水酸化カルシウム水懸濁液の温度70℃とする以
外は実施例2と同様にして、炭酸化反応を行い、
生成物を分析した結果を第3表に示す。 比較例 4 水酸化カルシウム水懸濁液に結晶核形成剤を加
えない以外は実施例1と同様にして、炭酸化反応
を行い、生成物を分析した結果を第3表に示す。 比較例 5〜6 塩化バリウムの代りに第2表に示す添加剤を
0.05Mol/Mol Ca(OH)2を加える以外は実施例
2と同様にして、炭酸化反応を行い、生成物を分
析した結果を第2表に示す。
[Table] Example 10 A carbonation reaction was carried out in the same manner as in Example 3 except that the carbon dioxide concentration of the carbon dioxide-containing gas was changed to 50V %. Aragonitic calcium carbonate in the form of extremely fine needles having a length of 1.2 μm, a width of 0.07 μm, and an aspect ratio of 17 was obtained. Comparative Example 1 A carbonation reaction was carried out in the same manner as in Example 1 except that the concentration of the aqueous calcium hydroxide suspension was 5 wt%, and the results of analysis of the product are shown in Table 3. Comparative Example 2 A carbonation reaction was carried out in the same manner as in Example 2 except that the temperature of the calcium hydroxide aqueous suspension was 10°C.
The results of product analysis are shown in Table 3. Comparative Example 3 A carbonation reaction was carried out in the same manner as in Example 2 except that the temperature of the calcium hydroxide aqueous suspension was 70°C.
The results of product analysis are shown in Table 3. Comparative Example 4 A carbonation reaction was carried out in the same manner as in Example 1 except that no crystal nucleating agent was added to the calcium hydroxide aqueous suspension, and the results of analysis of the product are shown in Table 3. Comparative Examples 5-6 Using the additives shown in Table 2 instead of barium chloride
A carbonation reaction was carried out in the same manner as in Example 2 except that 0.05Mol/Mol Ca(OH) 2 was added, and the results of analysis of the product are shown in Table 2.

【表】 比較例 7 水酸化カルシウム水懸濁液の濃度45wt%とす
る以外は実施例3と同様にして、炭酸化反応を行
い、生成物を分析した結果を第3表に示す。 比較例 8 水酸化カルシウム水懸濁液に導入する炭酸ガス
含有気体の炭酸ガス濃度を8%とする以外は実施
例1と同様にして、炭酸化反応を行い、生成物を
分析した結果を第3表に示す。 比較例 9〜10 水酸化カルシウム水懸濁液に導入する炭酸ガス
含有気体の導入量を7/min/Kg Ca(OH)2
(比較例9)および85/min/Kg Ca(OH)2
(比較例10)とする以外は実施例2と同様にして、
炭酸化反応を行い、生成物を分析した結果を第3
表に示す。
[Table] Comparative Example 7 A carbonation reaction was carried out in the same manner as in Example 3 except that the concentration of the aqueous calcium hydroxide suspension was 45 wt%, and the results of analysis of the product are shown in Table 3. Comparative Example 8 A carbonation reaction was carried out in the same manner as in Example 1, except that the carbon dioxide concentration of the carbon dioxide-containing gas introduced into the calcium hydroxide aqueous suspension was 8%, and the results of analyzing the product were It is shown in Table 3. Comparative Examples 9-10 The amount of carbon dioxide-containing gas introduced into the calcium hydroxide aqueous suspension was 7/min/Kg Ca(OH) 2
(Comparative Example 9) and 85/min/Kg Ca(OH) 2
(Comparative Example 10) Same as Example 2 except that
The results of the carbonation reaction and product analysis are shown in the third column.
Shown in the table.

【表】 応用例 1 ゴム用充填剤として応用した場合 実施例1の発明品100重量部、EPDM(商品
名;日本合成EP21/EP579=70/30)100重量
部、亜鉛華5重量部、ステアリン酸1重量部、促
進剤CZ1重量部、TT1.5重量部およびBZ0.5重量
部、硫黄1.5重量部、プロセスオイル(商品名;
出光PW380)10重量部を混練し、加硫ゴム物性
を測定した結果を第4表に示す。第4表には市販
炭酸カルシウムを比較品A(表面処理コロイド性
炭酸カルシウム;カルサイト質100%、立方状、
比表面積16m2/g)および比較品B(軟質炭酸カ
ルシウム;カルサイト質100%、紡錘状、比表面
積5m2/g、アスペクト比6)として、本発明に
代えて使用した結果をも併せて示す。
[Table] Application example 1 When applied as a filler for rubber 100 parts by weight of the invention of Example 1, 100 parts by weight of EPDM (trade name: Nippon Gosei EP21/EP579=70/30), 5 parts by weight of zinc white, stearin 1 part by weight of acid, 1 part by weight of accelerator CZ, 1.5 parts by weight of TT and 0.5 parts by weight of BZ, 1.5 parts by weight of sulfur, process oil (trade name;
Table 4 shows the results of kneading 10 parts by weight of Idemitsu PW380) and measuring the physical properties of the vulcanized rubber. Table 4 shows commercially available calcium carbonate as comparative product A (surface-treated colloidal calcium carbonate; 100% calcite, cubic shape,
The results of using the product instead of the present invention as specific surface area 16 m 2 /g) and comparative product B (soft calcium carbonate; 100% calcite, spindle-shaped, specific surface area 5 m 2 /g, aspect ratio 6) are also included. show.

【表】 本発明品は第4表の結果から明らかな如く比較
品に比べて、高モジユラス、高硬度を付与し、し
かも引張り強さを示し補強効果が大きい。 応用例 2 プラスチツク用充填剤として応用した場合 実施例1の発明品50重量部およびポリプロピレ
ン樹脂(商品名;住友ノーブレンAW564、住友
化学製)100重量部を200℃で10分間ロール混練
後、シート状にて取出す。次いでペレタイザーで
ペレツト化し、射出成形機(射出温度230℃)に
て試験片を作成し、各物性を測定した結果を第5
表に示す。第5表には市販炭酸カルシウムを前出
の比較品Aおよび前出の比較品Bとして本発明品
に代えて使用した場合の結果をも併せて示す。
[Table] As is clear from the results in Table 4, the product of the present invention has higher modulus and hardness, as well as tensile strength and greater reinforcing effect than the comparative product. Application example 2 When applied as a filler for plastics 50 parts by weight of the invention of Example 1 and 100 parts by weight of polypropylene resin (trade name: Sumitomo Noblen AW564, manufactured by Sumitomo Chemical) were roll-kneaded at 200°C for 10 minutes, and then formed into a sheet. Take it out. Next, it was made into pellets using a pelletizer, and a test piece was made using an injection molding machine (injection temperature 230°C).The results of measuring each physical property were
Shown in the table. Table 5 also shows the results when commercially available calcium carbonate was used as Comparative Product A and Comparative Product B in place of the product of the present invention.

【表】 上記第5表の物理的性質の測定方法は下記によ
つた 曲げ弾性率;ASTM D−790 アイゾツト衝撃強度;ASTM D−256 本発明品は第5表の結果から明らかな如く、比
較品に比べて、高曲げ弾性率を付与し、しかも高
いアイゾツト衝撃強度を与え、補強効果が大き
い。
[Table] The physical properties shown in Table 5 above were measured using the following methods: flexural modulus; ASTM D-790; Izot impact strength; ASTM D-256; Compared to other products, it has a high bending modulus and high Izot impact strength, and has a large reinforcing effect.

Claims (1)

【特許請求の範囲】 1 濃度15〜40wt%、温度32〜60℃の水酸化カ
ルシウム水懸濁液に結晶核形成剤を加えてから、
炭酸ガス濃度15V%以上の炭酸ガス含有気体を12
〜80/min/Kg Ca(OH)2導入して炭酸化反
応を行い、BET比表面積10m2/g以上で、且つ
電子顕微鏡観察による平均寸法が夫々長さ(L)=
0.7〜1.5μm、巾(D)=0.01〜0.2μm、アスペクト比
(L/D)=11以上の極微細な針柱状の炭酸カルシ
ウムを生成させることを特徴とするアラゴナイト
質炭酸カルシウムの製造方法。 2 結晶核形成剤がバリウムおよびストロンチウ
ムの塩化物、フツ化物、水酸化物、酸化物、硫酸
塩、硝酸塩、りん酸塩、酢酸塩、シユウ酸塩であ
る特許請求の範囲第1項記載のアラゴナイト質炭
酸カルシウムの製造方法。
[Claims] 1. After adding a crystal nucleating agent to an aqueous suspension of calcium hydroxide at a concentration of 15 to 40 wt% and a temperature of 32 to 60°C,
12 Carbon dioxide containing gas with a carbon dioxide concentration of 15V% or more
~80/min/Kg Ca(OH) 2 is introduced to perform the carbonation reaction, and the BET specific surface area is 10 m 2 /g or more, and the average dimension by electron microscopy is length (L) =
A method for producing aragonitic calcium carbonate, which is characterized by producing ultrafine needle-shaped calcium carbonate having a width (D) of 0.7 to 1.5 μm, a width (D) of 0.01 to 0.2 μm, and an aspect ratio (L/D) of 11 or more. 2. Aragonite according to claim 1, wherein the crystal nucleating agent is a chloride, fluoride, hydroxide, oxide, sulfate, nitrate, phosphate, acetate, or oxalate of barium and strontium. A method for producing quality calcium carbonate.
JP9459883A 1983-05-27 1983-05-27 Manufacture of calcium carbonate Granted JPS59223225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9459883A JPS59223225A (en) 1983-05-27 1983-05-27 Manufacture of calcium carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9459883A JPS59223225A (en) 1983-05-27 1983-05-27 Manufacture of calcium carbonate

Publications (2)

Publication Number Publication Date
JPS59223225A JPS59223225A (en) 1984-12-15
JPS6411571B2 true JPS6411571B2 (en) 1989-02-27

Family

ID=14114701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9459883A Granted JPS59223225A (en) 1983-05-27 1983-05-27 Manufacture of calcium carbonate

Country Status (1)

Country Link
JP (1) JPS59223225A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888160A (en) * 1985-12-20 1989-12-19 J.M. Huber Corporation Process for producing calcium carbonate and products thereof
JPS62202817A (en) * 1986-02-27 1987-09-07 Toyo Denka Kogyo Kk Production of fine particle of calcium carbonate
JPS63260815A (en) * 1987-04-16 1988-10-27 Maruo Calcium Kk Production of calcium carbonate having aragonite crystal form
US4824654A (en) * 1988-03-17 1989-04-25 Yabashi Industries Co., Ltd. Process of producing needle-shaped calcium carbonate particles
JP2684056B2 (en) * 1988-05-02 1997-12-03 丸尾カルシウム株式会社 Thermoplastic resin composition and molded article made of the same
JPH02149421A (en) * 1988-06-16 1990-06-08 Komeshiyou Sekkai Kogyo Kk Deformed calcium carbonate
ATE182559T1 (en) * 1995-10-26 1999-08-15 Solvay Barium Strontium Gmbh MICRONIZED ALKALINE EARTH METAL CARBONATE
US6685908B1 (en) * 2000-03-06 2004-02-03 3P Technologies Ltd. Precipitated aragonite and a process for producing it
JP2002128521A (en) * 2000-10-20 2002-05-09 Hokkaido Kyodo Sekkai Kk Method of manufacturing calcium carbonate
DK2371766T3 (en) 2010-04-01 2013-05-06 Omya Development Ag Process for obtaining precipitated calcium carbonate
EP2840065B1 (en) 2013-08-20 2016-11-16 Omya International AG Process for obtaining precipitated calcium carbonate
JP7085325B2 (en) * 2017-09-01 2022-06-16 奥多摩工業株式会社 Aragonite-type light calcium carbonate and its manufacturing method
JP2023023137A (en) * 2021-08-04 2023-02-16 株式会社白石中央研究所 Calcium carbonate raw material for sintered body, calcium carbonate porous sintered body, calcium carbonate dense sintered body, and production method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503098A (en) * 1973-05-16 1975-01-13
JPS5436920A (en) * 1977-08-29 1979-03-19 Hitachi Ltd Speaker
JPS5551852A (en) * 1978-10-09 1980-04-15 Ichimura Sangyo Kk Weft yarn detector of water jet loom
JPS5969425A (en) * 1982-10-06 1984-04-19 Maruo Calcium Kk Manufacture of calcitic calcium carbonate

Also Published As

Publication number Publication date
JPS59223225A (en) 1984-12-15

Similar Documents

Publication Publication Date Title
KR101759765B1 (en) Production of high purity precipitated calcium carbonate
US5910214A (en) Process for preparing calcium carbonate
EP2552835B1 (en) Process for obtaining precipitated calcium carbonate
CA2806131C (en) Spherical, amorphous calcium carbonate particles
EP1838789B1 (en) Acid resistant particles of an alkaline earth metal carbonate
CA2635233C (en) Novel manufacturing method of aragonite calcium carbonate
US4927618A (en) Process for the preparation of large surface area, finely divided precipitated calcium carbonate and filled polymeric compositions of matter containing said calcium carbonate
US5811070A (en) Process for producing calcium carbonate particles having a size of 0.1 to 1.0 μm
JPS6411571B2 (en)
EP1151966B1 (en) Stable plate-like calcitic calcium carbonate, process for its preparation and the use thereof
US11021374B2 (en) PCC with reduced portlandite content
US5750086A (en) Process for producing ultrafine particles of colloidal calcium carbonate
EP2134652A2 (en) Spherical calcium carbonate particles
US10364156B2 (en) Process for producing high grade hydromagnesite and magnesium oxide
US7438977B2 (en) Gibbsite type aluminum hydroxide particles having high oil absorption
RU2680067C1 (en) Precipitated calcium carbonate with high content of solid substance, with depolymerized carboxylated cellulose
KR100283527B1 (en) Method of preparing calcium carbonate
HU206188B (en) Process for producing aluminium oxide-based fillers, flame-retardants and active fillers in form of hydrargillite
US4980395A (en) Process for the preparation of large surface area, finely divided precipitated calcium carbonate and filled polymeric compositions of matter containing said calcium carbonate
DD298372A5 (en) METHOD FOR THE PRODUCTION OF CALCIUM CARBONATE POWDER OF WAESSEN SOLUTIONS SUITABLE AS A FUEL
DE102007023093A1 (en) Method for producing precipitated calcium carbonate with controllable aragonite content, involves utilizing substance, which has amino group at alpha, beta or gamma-positions of carboxyl group
JPH05301713A (en) Production of chain-like calcium carbonate
JP2556699B2 (en) Method for producing aragonite crystalline calcium carbonate
JPS63260815A (en) Production of calcium carbonate having aragonite crystal form
KR101656035B1 (en) A method for the synthesis of precipitated calcium carbonate from dolomite kiln dust