JPH0349989B2 - - Google Patents

Info

Publication number
JPH0349989B2
JPH0349989B2 JP59188784A JP18878484A JPH0349989B2 JP H0349989 B2 JPH0349989 B2 JP H0349989B2 JP 59188784 A JP59188784 A JP 59188784A JP 18878484 A JP18878484 A JP 18878484A JP H0349989 B2 JPH0349989 B2 JP H0349989B2
Authority
JP
Japan
Prior art keywords
iron
zinc
treatment
parts
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59188784A
Other languages
Japanese (ja)
Other versions
JPS6167773A (en
Inventor
Toshio Nishikawa
Shigeru Oomori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Tetsupun Kogyo Kk
NIPPON DAKURO SHAMUROTSUKU KK
Original Assignee
Dowa Tetsupun Kogyo Kk
NIPPON DAKURO SHAMUROTSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Tetsupun Kogyo Kk, NIPPON DAKURO SHAMUROTSUKU KK filed Critical Dowa Tetsupun Kogyo Kk
Priority to JP59188784A priority Critical patent/JPS6167773A/en
Priority to AU46949/85A priority patent/AU562978B2/en
Priority to EP85111452A priority patent/EP0177786B1/en
Priority to KR1019850006596A priority patent/KR890004790B1/en
Priority to DE8585111452T priority patent/DE3568458D1/en
Priority to BR8504350A priority patent/BR8504350A/en
Priority to CA000490501A priority patent/CA1243561A/en
Priority to CN 85107030 priority patent/CN1012969B/en
Publication of JPS6167773A publication Critical patent/JPS6167773A/en
Publication of JPH0349989B2 publication Critical patent/JPH0349989B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/37Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also hexavalent chromium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/02Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using non-aqueous solutions
    • C23C22/04Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using non-aqueous solutions containing hexavalent chromium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 本発明は鉄または鉄合金の防食表面処理法に関
する。詳しくは鉄または鉄合金表面に亜鉛または
亜鉛合金被覆を形成した後に非水系クロメート処
理剤によつて処理することからなる金属表面の防
食処理法に関する。 発明の背景 鋼材の表面の防食のために亜鉛を溶融めつきま
たは電気めつきすることはよく知られている。比
較的最近、本願出願人の一人によつて、鉄または
鉄合金を核とし、この核の周囲に鉄亜鉛合金層を
介して亜鉛または亜鉛合金を被着してなる独立し
た被着粒子の集合体からなるブラスト材料(以下
鉄−亜鉛ブラスト材料という)を、鉄または鉄合
金の表面に投射することからなる鉄または鉄合金
表面の亜鉛被覆法が開発された(特開昭56−
45372)。この方法を本明細書ではブラスト亜鉛被
覆法とよぶ。 この方法は、設備費が低廉で、エネルギー消費
が少なく、環境汚染要素が少ない、画期的な方法
であるが、この方法によつて形成された亜鉛被覆
は耐食性において充分でなく、100mg/dm2の付
着量では、塩水噴霧試験において24時間以内に赤
錆が発生する。これはこの方法によつて形成され
た亜鉛被膜が鉄−亜鉛合金であることと多孔性で
あること等によると考えられる。 従つてブラスト亜鉛被覆法だけでは十分な防食
効果は得られず、これに組み合せて何等かの処理
を行なわねばならない。 比較的簡便な方法はクロメート処理であり、こ
れには焼付型クロメート処理、水系クロメート処
理、非水系クロメート処理が知られている。 焼付型クロメート処理は、水溶性クロム酸化合
物と還元剤と水の混合物であつて、被処理物の表
面に塗布した後、焼付加熱すると、水溶性クロム
酸化合物が還元されて、水不溶性のクロメート被
膜を生成するものである。この処理剤としては、
ペンウオルト社の「ハイナツク」、ダイヤモンド
シヤムロツク社の「ダクロメツト100」などが知
られている。焼付型クロメート処理における被膜
形成は還元剤の存在下に加熱されたクロム酸が還
元されることであるから、素地がプラスト亜鉛被
覆法によつて形成されたような鉄−亜鉛合金であ
つても、支障なく還元は達成される。しかしなが
ら、これらは水系の処理剤であるため、非処理物
に塗布した後に余滴除去の工程が必要であり、さ
らに乾燥を兼ねた焼付工程が必要で、そのために
設備費、設置面積、工程数および熱エネルギー消
費等が大となり、処理費用が方高くなるという欠
点があつた。 水系クロメート処理は亜鉛めつき鋼材の表面を
水溶性クロム酸化合物と強酸と水の混合物で処理
することであり、古くから一般的によく知られて
いる処理技術で、「めつき技術便覧」(日刊工業新
聞社刊)等の成書に開示されている。水系クロメ
ート処理は純亜鉛に対しては有効であるが、鉄−
亜鉛系素材に対しては生成被膜のばらつきが大で
純亜鉛の場合のように効果が大きくない。水系ク
ロメート処理は水と水可溶性クロム酸化合物と硫
酸のような強酸の混合物であり、被膜表面の亜鉛
が強酸と反応して発生期の水素を生じ、これがク
ロム酸を還元してクロメート被膜を表面に沈着さ
せるもので、反応は亜鉛めつき表面の界面で起る
ため、厚い被膜を形成することが困難である。ま
た水系クロメート処理は多量のクロム酸を含有す
る排水を発生し、その対策のために多大な設備費
と管理費を必要とする。折角の乾式ブラスト亜鉛
被覆法と組み合すにふさわしくない。 非水系クロメート処理は、クロム酸化合物と有
機溶剤(主としてハロゲン化炭化水素溶剤)と可
溶化剤としてのアルコール類を主成分とし、所望
により安定剤や反応促進剤を含む組成物によつて
クロメート被膜を形成するものであり、特公昭40
−5288(デユポン)、特公昭42−3363(デユポン)、
特開昭56−62970(徳山曹達)、特開昭55−97476
(日本ペイント)、特開昭556−139679(日本ペイン
ト)等に開示されている。比較的最近、本出願人
の一人はフツ素化塩素化炭素水素を溶剤として使
用する極めて安定な非水系クロメート処理剤を開
発した(特願昭59− )。本願発明にお
いては、いずれの非水系クロメート処理剤も使用
できるが、フツ素化塩素化炭化水素溶剤を使用す
るのが有利である。 本発明者らはブラスト亜鉛被覆法と組み合せて
優れた防食効果を発揮する処理法を種々検討した
結果、非水系クロメート処理との組み合せが最も
優れた防食効果を発揮することを発見し本発明を
完成した。 発明の構成 即ち、本発明によれば、鉄または鉄合金を核と
し、この核の周囲に鉄亜鉛合金層を介して亜鉛ま
たは亜鉛合金を被着してなる独立した被着粒子の
集合体からなるブラスト材料を鉄または鉄合金の
表面に投射することによつて鉄または鉄合金表面
に亜鉛被覆被膜を形成し、このように形成された
表面に、非水系クロメート処理を施すことからな
る鉄または鉄合金の表面処理法が提供される。 本発明の方法では、ブラスト亜鉛被覆法の利点
をそこなうことなく、その弱点であつた耐食効果
を補うことができる。 発明の詳細な記載 ブラスト亜鉛被覆法については前記公開特許公
報に詳細に記載されているから、ここに詳細に述
べない。 本発明の非水系クロメート処理に使用される有
機溶剤は炭素原子数1〜2の塩素および/または
フツ素を含むハロゲン化炭化水素で、メチレンク
ロリド、クロロホルム、四塩化炭素、トリクロロ
エタン、トリクロロエチレン、ペルクロロエチレ
ン、トリクロロトリフルオロエタン、トリクロロ
モノフルオロメタン、ジクロロテトラフルオロエ
タン、テトラクロロジフルオロエタン、およびこ
れらの混合物等が好適に使用しうる。溶剤の選択
に当つて考慮すべき事項は、他の配合成分と均一
な溶液を形成すること、クロメート反応が有意な
速度で進行する温度で液状であること等である。 本発明方法で使用されるクロム酸は無水クロム
酸または三酸化クロムと呼ばれるもので、化学式
CrO3に相当するものである。該無水クロム酸は
ハロゲン化炭化水素溶剤100重量部(以下単に部
と記す)に対し、0.01〜10部、好ましくは0.1〜
5部の濃度で使用される。無水クロム酸の量が
0.01部より少ないと、クロメート反応の速度が遅
くなり、10部より多いと、浴中のハロゲン化炭化
水素溶剤や可溶化剤の分解が著しくなり、正常な
被膜の形成が行なわれず、耐食性が低下する傾向
を生ずる。 本発明方法で使用される可溶化剤は前記ハロゲ
ン化炭化水素溶剤に可溶で3〜20個の炭素原子を
有する第2級または第3級アルコールである。一
般に第2級プロパノール、第3級ブタノール、第
3級アミルアルコール、トリフエニルカルビノー
ル等が好適に使用されるが、本発明の処理液の成
分を均一に溶解し、長時間の使用においても安定
で定価であること等から、第3級ブタノール(以
下t−ブタノールと記す)が最も好ましい。可溶
化剤はハロゲン化炭化水素溶剤100部に対して、
少なくとも1部以上必要であり、20部もしくはそ
れ以上の量であつてもよい。可溶化剤の量は多い
程無水クロム酸の溶解量が増大する。可溶化剤が
1部より少ないと、可溶化力が不足し、成分の均
一な溶解が困難となり、20部もしくはそれ以上の
量での使用は可能であるが、使用条件によつては
引火性を生じることがあり、その点を上限とする
のが好ましい。 本発明方法で用いられる安定化剤はアミン類、
キノン類、ニトロ、アゾあるいはアゾキシ芳香族
化合物、チオ尿素、ジエン類、有機亜硝酸塩、フ
ツ化亜鉛、酸化亜鉛、等多くの既知化合物である
が、塩素化フツ素化炭化水素溶剤の場合は安定化
剤を用いなくてもよく、この点で有利である。こ
れらの化合物の例としては、N−ニトロジフエニ
ルアミン、アゾキシベンゼン、ヒドロキノン、ジ
イソブチルアミン、ペンタジエン、亜硝酸アミル
等、多くの化合物がある。これらは単独または2
種以上組み合せて使用することができ、その量は
ハロゲン化炭化水素溶剤100部に対して0.001〜5
部が好ましい。この範囲外の量の使用は、効果が
ほとんど期待できないかまたは有効性の限度を越
えて無駄になる。 本発明方法で用いられる反応促進剤はフツ化水
素、有機酸または水、等であり、これらの化合物
を単独または2種以上混合して用いてもよく、状
況によつては全く用いなくてもよい。有機酸は炭
素原子数1〜20個の有機酸で前記各成分の混合物
中に溶解するものであればよい。一般式、R−
(COOH)oにおいて、Rは直鎖または枝分れ、環
状のいずれの構造を持つものでもよく、さらに
は、置換基を有するものでもよい。またnは1〜
3のものが好適である。これらの有機酸の例とし
ては次のようなものが挙げられる。ギ酸、酢酸、
乳酸、ステアリン酸、シユウ酸、フマル酸、リン
ゴ酸。これらの反応促進剤は、ハロゲン化炭化水
素溶剤100部に対して、0.001部以上の量で使用
し、フツ化水素および有機酸の場合は0.12部以下
の量で使用することが好ましく、水の場合は均一
に溶解した系を維持できる範囲で使用することが
好ましい。これらの範囲を下回ると、その効果が
期待できず、上回ると被処理物や装置に対する腐
食作用が顕著になつたり均一系を維持できなくな
つたりする欠陥を生ずる。 本発明方法に使用するクロメート処理液は実質
的に非水系で、ハロゲン化炭化水素溶剤は脱脂洗
浄の任務を果し、処理液に不燃性にし、可溶化剤
は全成分を均一に溶解させる。処理液は全ての成
分は均一に溶解していることが必須で、均一でな
い場合には被膜が不均一に形成され、耐食性が低
下する。 本発明の方法では処理液を、5℃ないし沸点ま
での任意の温度に維持し、非処理金属を1秒間な
いし60分間、好ましくは30秒間ないし5分間接触
させた後、該金属表面を乾燥させる。処理液は、
温度が5℃より低い場合は、実質的にクロメート
処理反応は進行せず、接触時間が1秒より短い場
合は、実質的に有効な被膜が得られず、60分より
長い場合は、被膜が不均一になる場合があり、生
産性の観点よりも実用的でない。被処理金属は予
め脱脂清浄化されたものであることが好ましい
が、特に過大でない量の油分は処理液によつてク
ロメート処理中に脱脂される。 クロメート処理後に、被処理物をさらに加熱し
たり、紫外線を照射するなどの後処理を施して耐
食性能の向上を計ることもできる。 以上述べたように、本発明方法は全工程が実質
的に非水処理であるから、排水処理対策が不要で
安価で優れた耐食性被膜を形成することができ
る。 本発明の金属表面防食処理法でで製品()を
ホツトデイツプ亜鉛めつき製品()とホツトデ
イツプ亜鉛めつきしてさらに非水系クロメート処
理を施した製品()と比較すると、防食性では
()が最も優れ、()がこれに続き、()が
1番劣る。しかし価格の面では、()は()
の3倍程する。普通の用途において()は防食
性不十分であるが、()は過剰品質である。 発明の具体的記載 以下本発明を実施例および比較例によつて、さ
らに詳細に例示するが、これによつて本発明が限
定されるものではない。 試験片はM10×40mmの六角軟鋼ボルトで、これ
をトリクロルエタンで蒸気脱脂した後、前記の鉄
−亜鉛ブラスト材料を30分間投射し、表面に100
mg/dm2の目付量で鉄−亜鉛合金被膜を生成さ
せ、これに非水形クロメート処理を施す。処理済
み試片各5個を次の耐食性試験に供した。 (1) 塩水噴霧試験 JIS−Z−2371の試験法により、下記の基準
によつて判定評価した。 5点 赤錆の発生なし 4点 10個以内のピンホール状赤錆発生 3点 点錆がひろがり若干錆汁流れ始める 2点 錆汁の流れが著しい 1点 前面赤錆でおおわれる (2) キヤステスト JIS−D−0201−1971の試験法による。ただ
し噴霧液のPHを3.5とした。 発錆の判定基準は上記と同じ。 (3) 屋外散水試験 太陽光のあたるアスフアルト舗装面にスプリ
ンクラーを置き、その周囲に外周1.4m以内に
試験片を同心円状にならべ、水道水を0.3〜0.4
m3/hrの量で連続的に散布した。 (4) サイクルテスト JIS−Z−2371に規定される連続塩水噴霧試
験を4時間、60℃における乾燥を2時間、50
℃、90%以上の湿潤試験を2時間行なうことを
1サイクルとして、これをくりかえした。 実施例 1 トリクロロエチレン100部に、無水クロム酸0.5
部、フツ化亜鉛0.01部およびt−ブタノール10部
を均一に溶解した処理液を調製し、これに前記鉄
−亜塩合金をブラストしたボルトを還流温度で1
分間浸漬し、蒸気洗浄を施した後、取り出し常温
まで冷却した。このように作成した試料について
前記各種試験を行ない、表1に示す結果を得た。 実施例 2 メチレンクロリド100部を使用した以外は実施
例1と同様の処理液を調製し、同様に試料の作成
および試験を行ない表1に示す結果を得た。 実施例 3 ペルクロロエチレン100部を使用した以外は実
施例1と同様の処理液を調製し、同様に試料の作
成および試験を行ない表1に示す結果を得た。 実施例 4 トリクロロトリフルオロエタン100部に対して、
t−ブタノール15部、無水クロム酸2部を均一に
溶解して含有する処理液を作成し、実施例1と同
様に処理して表1に示す結果を得た。 実施例 5 トリクロロフルオロエタン100部に対し、t−
ブタノール15部、無水クロム酸2部、シユウ酸
0.01部を均一に溶解して含有する処理液を作成
し、沸点に加熱した状態で、実施例1と同様の試
験を行ない、表1に示す結果を得た。 実施例 6 実施例5において、シユウ酸のかわりにフマル
酸を0.01部を用い、40℃(沸点以下)で反応を行
なつて表1に示す結果を得た。
TECHNICAL FIELD The present invention relates to a method for anticorrosive surface treatment of iron or iron alloys. Specifically, the present invention relates to a method for anticorrosion treatment of metal surfaces, which comprises forming a zinc or zinc alloy coating on the surface of iron or iron alloy, and then treating the surface with a non-aqueous chromate treatment agent. BACKGROUND OF THE INVENTION It is well known to hot-dip or electroplate zinc for corrosion protection on steel surfaces. Relatively recently, one of the applicants of the present application has developed a collection of independent particles made of iron or iron alloy as a core and zinc or zinc alloy deposited around this core through an iron-zinc alloy layer. A zinc coating method for iron or iron alloy surfaces was developed, which consists of projecting a blasting material consisting of iron-zinc particles (hereinafter referred to as iron-zinc blasting material) onto the surface of iron or iron alloys (Japanese Patent Laid-Open No. 1983-1999).
45372). This method is referred to herein as the blast zinc coating method. This method is an innovative method with low equipment costs, low energy consumption, and minimal environmental pollution. However, the zinc coating formed by this method does not have sufficient corrosion resistance, and At a coating weight of 2 , red rust occurs within 24 hours in a salt spray test. This is thought to be due to the fact that the zinc coating formed by this method is an iron-zinc alloy and is porous. Therefore, a sufficient anticorrosion effect cannot be obtained by the blast zinc coating method alone, and some other treatment must be performed in combination with this method. A relatively simple method is chromate treatment, of which baking type chromate treatment, aqueous chromate treatment, and non-aqueous chromate treatment are known. Baking-type chromate treatment is a mixture of a water-soluble chromic acid compound, a reducing agent, and water, which is applied to the surface of the object to be treated and then heated by baking, which reduces the water-soluble chromic acid compound and converts it into water-insoluble chromate. It produces a film. As this processing agent,
Some well-known examples include Pennwalt's ``Hinatsuk'' and Diamond Shamlokk's ``Dacromet 100''. The formation of a film in baking-type chromate treatment involves the reduction of chromic acid heated in the presence of a reducing agent, so even if the substrate is an iron-zinc alloy formed by the plasto zinc coating method, , the reduction is achieved without any problems. However, since these are water-based treatment agents, they require a step to remove residual droplets after being applied to the untreated object, and a baking step that also serves as drying. The disadvantages are that heat energy consumption is large and processing costs are high. Water-based chromate treatment is a process of treating the surface of galvanized steel with a mixture of a water-soluble chromic acid compound, strong acid, and water. It is disclosed in books such as Nikkan Kogyo Shimbun (published by Nikkan Kogyo Shimbun). Water-based chromate treatment is effective for pure zinc, but iron
For zinc-based materials, the film produced varies widely and is not as effective as it is for pure zinc. Water-based chromate treatment is a mixture of water, a water-soluble chromate compound, and a strong acid such as sulfuric acid. Zinc on the surface of the coating reacts with the strong acid to produce nascent hydrogen, which reduces the chromic acid and removes the chromate coating from the surface. Since the reaction occurs at the interface of the galvanized surface, it is difficult to form a thick film. In addition, water-based chromate treatment generates wastewater containing a large amount of chromic acid, and requires a large amount of equipment and management costs to counteract this. It is not suitable for combination with the dry blast zinc coating method. Non-aqueous chromate treatment consists of a chromate compound, an organic solvent (mainly halogenated hydrocarbon solvent), and alcohol as a solubilizer, and optionally contains stabilizers and reaction accelerators to form a chromate coating. It forms the
-5288 (DuPont), Special Publication Showa 42-3363 (DuPont),
JP-A-56-62970 (Tokuyama Soda), JP-A-55-97476
(Nippon Paint), Japanese Patent Application Laid-Open No. 556-139679 (Nippon Paint), etc. Relatively recently, one of the present applicants has developed an extremely stable non-aqueous chromate treatment agent using fluorinated chlorinated hydrocarbon as a solvent (Japanese Patent Application No. 1983). While any non-aqueous chromating agent can be used in the present invention, it is advantageous to use fluorinated chlorinated hydrocarbon solvents. The present inventors have investigated various treatment methods that exhibit excellent corrosion prevention effects in combination with blast zinc coating, and have discovered that the combination with non-aqueous chromate treatment exhibits the most excellent corrosion prevention effects. completed. Structure of the Invention That is, according to the present invention, particles are made of an aggregate of independent adhered particles having iron or an iron alloy as a core and zinc or a zinc alloy around the core through an iron-zinc alloy layer. A zinc coating film is formed on the surface of iron or iron alloy by projecting a blasting material of A method for surface treatment of iron alloys is provided. The method of the present invention can compensate for the corrosion resistance effect, which is the weak point of the blast zinc coating method, without sacrificing its advantages. DETAILED DESCRIPTION OF THE INVENTION The blast zinc coating method is described in detail in the above-mentioned published patent application and will not be described in detail here. The organic solvent used in the non-aqueous chromate treatment of the present invention is a halogenated hydrocarbon containing chlorine and/or fluorine having 1 to 2 carbon atoms, such as methylene chloride, chloroform, carbon tetrachloride, trichloroethane, trichloroethylene, perchloride, etc. Ethylene, trichlorotrifluoroethane, trichloromonofluoromethane, dichlorotetrafluoroethane, tetrachlorodifluoroethane, mixtures thereof, and the like can be suitably used. Considerations in selecting a solvent include that it forms a homogeneous solution with the other ingredients, and that it is liquid at a temperature at which the chromate reaction proceeds at a significant rate. The chromic acid used in the method of the present invention is called chromic anhydride or chromium trioxide, and has the chemical formula
It is equivalent to CrO3 . The chromic anhydride is used in an amount of 0.01 to 10 parts, preferably 0.1 to 10 parts, per 100 parts by weight of the halogenated hydrocarbon solvent (hereinafter simply referred to as parts).
Used at a concentration of 5 parts. The amount of chromic anhydride
If it is less than 0.01 part, the rate of the chromate reaction will be slow, and if it is more than 10 parts, the decomposition of the halogenated hydrocarbon solvent and solubilizer in the bath will be significant, preventing normal film formation and reducing corrosion resistance. This gives rise to a tendency to The solubilizing agent used in the process of the invention is a secondary or tertiary alcohol soluble in the halogenated hydrocarbon solvent and having 3 to 20 carbon atoms. Generally, secondary propanol, tertiary butanol, tertiary amyl alcohol, triphenyl carbinol, etc. are preferably used, but they uniformly dissolve the components of the treatment liquid of the present invention and are stable even during long-term use. Tertiary butanol (hereinafter referred to as t-butanol) is most preferred because it has a regular price. Solubilizer is 100 parts of halogenated hydrocarbon solvent,
At least 1 part or more is required, and the amount may be 20 parts or more. The larger the amount of solubilizer is, the more chromic anhydride is dissolved. If the amount of solubilizer is less than 1 part, the solubilizing power will be insufficient and it will be difficult to dissolve the ingredients uniformly.It is possible to use 20 parts or more, but it may be flammable depending on the usage conditions. It is preferable to set the upper limit to this point. The stabilizers used in the method of the present invention include amines,
Many known compounds such as quinones, nitro, azo or azoxy aromatic compounds, thioureas, dienes, organic nitrites, zinc fluoride, zinc oxide, etc. are stable in the case of chlorinated fluorinated hydrocarbon solvents. There is no need to use a curing agent, which is advantageous in this respect. Examples of these compounds include N-nitrodiphenylamine, azoxybenzene, hydroquinone, diisobutylamine, pentadiene, amyl nitrite, and many others. These can be used alone or in combination
It can be used in combination of more than one species, and the amount thereof is 0.001 to 5 parts per 100 parts of halogenated hydrocarbon solvent.
part is preferred. Use of amounts outside this range will have little or no expected effect or will be wasteful beyond the limits of effectiveness. The reaction accelerator used in the method of the present invention is hydrogen fluoride, organic acid, water, etc., and these compounds may be used alone or in a mixture of two or more, and depending on the situation, they may not be used at all. good. The organic acid may be any organic acid having 1 to 20 carbon atoms as long as it is soluble in the mixture of the above components. General formula, R-
In (COOH) o , R may have a linear, branched, or cyclic structure, and may also have a substituent. Also, n is 1~
3 is preferred. Examples of these organic acids include the following. formic acid, acetic acid,
Lactic acid, stearic acid, oxalic acid, fumaric acid, malic acid. These reaction accelerators are preferably used in an amount of 0.001 part or more per 100 parts of the halogenated hydrocarbon solvent, and in the case of hydrogen fluoride and organic acids, it is preferably used in an amount of 0.12 parts or less. In such cases, it is preferable to use within a range that can maintain a uniformly dissolved system. If it is less than these ranges, the effect cannot be expected, and if it exceeds it, defects such as significant corrosive effects on the object to be treated or the equipment or inability to maintain a homogeneous system will occur. The chromate treatment liquid used in the method of the present invention is substantially non-aqueous, the halogenated hydrocarbon solvent performs the task of degreasing and cleaning, renders the treatment liquid non-flammable, and the solubilizer uniformly dissolves all components. It is essential that all components of the treatment liquid are dissolved uniformly; if they are not uniform, the coating will be formed unevenly and the corrosion resistance will deteriorate. In the method of the present invention, the treatment liquid is maintained at any temperature from 5°C to the boiling point, and the untreated metal is brought into contact with it for 1 second to 60 minutes, preferably 30 seconds to 5 minutes, and then the metal surface is dried. . The processing liquid is
If the temperature is lower than 5°C, substantially no chromating reaction will proceed, if the contact time is shorter than 1 second, substantially no effective coating will be obtained, and if the contact time is longer than 60 minutes, the coating will not proceed. This may result in non-uniformity and is not practical from a productivity standpoint. It is preferable that the metal to be treated is previously degreased and cleaned, and in particular a not excessive amount of oil is degreased by the treatment liquid during the chromate treatment. After the chromate treatment, the object to be treated can be further heated or subjected to post-treatment such as irradiation with ultraviolet rays to improve corrosion resistance. As described above, since all steps in the method of the present invention are substantially non-aqueous treatments, wastewater treatment measures are not required and an excellent corrosion-resistant coating can be formed at low cost. Comparing the product () produced using the metal surface anticorrosion treatment method of the present invention with a hot dip galvanized product () and a product () coated with hot dip zinc plating and further subjected to non-aqueous chromate treatment, () has the best corrosion resistance. Excellent, followed by (), and () is the worst. But in terms of price, () is ()
It costs about three times as much. In normal applications, () has insufficient corrosion protection, but () has excessive quality. Specific Description of the Invention The present invention will be illustrated in more detail below using Examples and Comparative Examples, but the present invention is not limited thereto. The test piece was an M10 x 40 mm hexagonal mild steel bolt. After vapor degreasing with trichloroethane, the above-mentioned iron-zinc blasting material was projected for 30 minutes, and the surface was heated to 100 mm.
An iron-zinc alloy film is produced with a basis weight of mg/dm 2 and subjected to a non-aqueous chromate treatment. Five treated specimens were subjected to the following corrosion resistance test. (1) Salt spray test Judgment and evaluation were performed according to the following criteria according to the test method of JIS-Z-2371. 5 points No red rust 4 points 3 points with pinhole-shaped red rust within 10 spots 2 points where the rust spreads and some rust fluid begins to flow 1 point where the rust fluid flows significantly Front surface is covered with red rust (2) Cast test JIS-D -0201-1971 test method. However, the pH of the spray liquid was set to 3.5. The criteria for determining rust are the same as above. (3) Outdoor water sprinkling test A sprinkler is placed on the asphalt pavement surface exposed to sunlight, and test pieces are arranged in a concentric circle around the sprinkler within a circumference of 1.4 m, and tap water is poured at 0.3 to 0.4 m.
It was applied continuously at a rate of m 3 /hr. (4) Cycle test Continuous salt spray test specified in JIS-Z-2371 for 4 hours, drying at 60℃ for 2 hours, 50
℃ and 90% or more humidity test for 2 hours, and this cycle was repeated. Example 1 100 parts of trichlorethylene, 0.5 parts of chromic anhydride
1 part, 0.01 part of zinc fluoride, and 10 parts of t-butanol were prepared, and the bolts blasted with the iron-subsalt alloy were heated to 1 part at reflux temperature.
After being immersed for a minute and subjected to steam cleaning, it was taken out and cooled to room temperature. The various tests described above were conducted on the samples thus prepared, and the results shown in Table 1 were obtained. Example 2 A treatment solution was prepared in the same manner as in Example 1 except that 100 parts of methylene chloride was used, and samples were prepared and tested in the same manner, and the results shown in Table 1 were obtained. Example 3 A treatment solution similar to that in Example 1 was prepared except that 100 parts of perchlorethylene was used, and samples were prepared and tested in the same manner to obtain the results shown in Table 1. Example 4 For 100 parts of trichlorotrifluoroethane,
A treatment solution containing 15 parts of t-butanol and 2 parts of chromic anhydride dissolved uniformly was prepared and treated in the same manner as in Example 1 to obtain the results shown in Table 1. Example 5 To 100 parts of trichlorofluoroethane, t-
15 parts of butanol, 2 parts of chromic anhydride, oxalic acid
A treatment solution containing 0.01 part of the solution was prepared and heated to the boiling point, and the same test as in Example 1 was conducted, and the results shown in Table 1 were obtained. Example 6 In Example 5, 0.01 part of fumaric acid was used instead of oxalic acid, and the reaction was carried out at 40°C (below the boiling point) to obtain the results shown in Table 1.

【表】【table】

【表】 註;* 鉄−亜鉛ブラストのみでクロメ
ート処理を施さない試料
** 鉄−亜鉛ブラストボルトに、水
系クロメート処理を施した試料
[Table] Note; * Samples with iron-zinc blasting only and no chromate treatment
** Sample of iron-zinc blast bolt subjected to aqueous chromate treatment

Claims (1)

【特許請求の範囲】[Claims] 1 鉄または鉄合金を核とし、この核の周囲に鉄
亜鉛合金層を介して亜鉛または亜鉛合金を被着し
てなる独立した被着粒子の集合体からなるブラス
ト材料を鉄または鉄合金の表面に投射することに
よつて鉄または鉄合金表面に亜鉛被覆被膜を形成
し、このように形成された表面に、非水系クロメ
ート処理を施すことからなる鉄または鉄合金の表
面処理法。
1 A blasting material consisting of an aggregate of independent deposited particles made of iron or iron alloy as a core and zinc or zinc alloy deposited around this core through an iron-zinc alloy layer is applied to the surface of iron or iron alloy. A method for surface treatment of iron or iron alloys, which comprises forming a zinc coating on the surface of iron or iron alloys by spraying on the surface of iron or iron alloys, and subjecting the thus formed surfaces to non-aqueous chromate treatment.
JP59188784A 1984-09-11 1984-09-11 Surface treatment of metal Granted JPS6167773A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP59188784A JPS6167773A (en) 1984-09-11 1984-09-11 Surface treatment of metal
AU46949/85A AU562978B2 (en) 1984-09-11 1985-09-02 Chromate layer on mechanically zn plated iron materials
EP85111452A EP0177786B1 (en) 1984-09-11 1985-09-10 Anti-corrosion treatment process for iron materials
KR1019850006596A KR890004790B1 (en) 1984-09-11 1985-09-10 Anti-corrosion treatment process for iron materials
DE8585111452T DE3568458D1 (en) 1984-09-11 1985-09-10 Anti-corrosion treatment process for iron materials
BR8504350A BR8504350A (en) 1984-09-11 1985-09-10 PROCESS FOR SURFACE TREATMENT OF FERROUS MATERIALS
CA000490501A CA1243561A (en) 1984-09-11 1985-09-11 Anti-corrosion treatment process for iron materials
CN 85107030 CN1012969B (en) 1984-09-11 1985-09-20 The anticorrosive treatment process of iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59188784A JPS6167773A (en) 1984-09-11 1984-09-11 Surface treatment of metal

Publications (2)

Publication Number Publication Date
JPS6167773A JPS6167773A (en) 1986-04-07
JPH0349989B2 true JPH0349989B2 (en) 1991-07-31

Family

ID=16229729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59188784A Granted JPS6167773A (en) 1984-09-11 1984-09-11 Surface treatment of metal

Country Status (7)

Country Link
EP (1) EP0177786B1 (en)
JP (1) JPS6167773A (en)
KR (1) KR890004790B1 (en)
AU (1) AU562978B2 (en)
BR (1) BR8504350A (en)
CA (1) CA1243561A (en)
DE (1) DE3568458D1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266579A (en) * 1985-05-22 1986-11-26 Nippon Dakuro Shamrock:Kk Surface treatment of metal
JPS6293383A (en) * 1985-10-17 1987-04-28 Sumitomo Metal Ind Ltd Surface treated steel material having superior corrosion resistance and its manufacture
JPH0673932B2 (en) * 1986-04-11 1994-09-21 住金鋼材工業株式会社 Decorative building material and method for manufacturing decorative steel material used for manufacturing the same
JPS63230885A (en) * 1987-03-20 1988-09-27 Dowa Teppun Kogyo Kk Surface treatment of metal
JP2950481B2 (en) * 1990-11-29 1999-09-20 株式会社日本ダクロシャムロック Metal surface treatment method
JPH10204654A (en) * 1997-01-21 1998-08-04 Aoyama Seisakusho Co Ltd Treatment of surface of metal
FR2790983B1 (en) * 1999-03-15 2001-06-22 Dacral Sa METHOD OF FORMING METAL PARTS BY COLD DEFORMATION
FR2799211B1 (en) * 1999-09-30 2002-05-10 Dacral Sa COATING AND METHOD FOR ANTI-CORROSION TREATMENT OF METAL PARTS
KR100678406B1 (en) 2001-10-23 2007-02-02 수미도모 메탈 인더스트리즈, 리미티드 Hot press forming method for steel material
KR100561949B1 (en) * 2004-03-15 2006-03-21 (주)이지테크 A light metals provide with jade powder in surface and therefor coating method
JP5007424B2 (en) * 2005-05-23 2012-08-22 Dowaエレクトロニクス株式会社 Projection material for mechanical plating and highly corrosion-resistant coating
TWI405917B (en) 2006-09-06 2013-08-21 Tsubakimoto Chain Co Water rust paint, water rust coating and high corrosion resistant surface treatment chain
CN102477553B (en) * 2010-11-25 2015-05-20 北京中科三环高技术股份有限公司 Surface treatment method for mechanical plating of neodymium iron boron workpiece
JP6155006B2 (en) * 2012-10-12 2017-06-28 日油株式会社 Aqueous chromium-free treatment solution
CN104523052A (en) * 2014-12-04 2015-04-22 许昌学院 Stadium-dedicated stand seat and manufacturing method thereof
DE102017211076B4 (en) * 2017-06-29 2019-03-14 Thyssenkrupp Ag Method for producing a coated steel component and steel component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645372A (en) * 1979-09-13 1981-04-25 Dowa Teppun Kogyo Kk Material for blast and surface treatment method by use of said material
JPS56139679A (en) * 1980-04-02 1981-10-31 Nippon Paint Co Ltd Metal surface treating solution

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL295602A (en) * 1962-07-26 1965-05-10 E.I. Du Pont De Nemours & Co. METHOD OF TREATMENT OF METAL SURFACES
US3382081A (en) * 1965-09-02 1968-05-07 Diamond Shamrock Corp Chemical composition and method
DE2400354C3 (en) * 1974-01-04 1982-04-29 Lindemann & Co GmbH, 6081 Geinsheim Aqueous acidic solution for chromating zinc surfaces
JPS5347063B2 (en) * 1974-01-28 1978-12-18
JPS5597476A (en) * 1979-01-19 1980-07-24 Nippon Paint Co Ltd Metal surface treating liquid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645372A (en) * 1979-09-13 1981-04-25 Dowa Teppun Kogyo Kk Material for blast and surface treatment method by use of said material
JPS56139679A (en) * 1980-04-02 1981-10-31 Nippon Paint Co Ltd Metal surface treating solution

Also Published As

Publication number Publication date
KR890004790B1 (en) 1989-11-27
EP0177786B1 (en) 1989-03-01
AU4694985A (en) 1986-03-20
BR8504350A (en) 1986-07-08
CA1243561A (en) 1988-10-25
JPS6167773A (en) 1986-04-07
EP0177786A1 (en) 1986-04-16
AU562978B2 (en) 1987-06-25
KR860002588A (en) 1986-04-26
DE3568458D1 (en) 1989-04-06

Similar Documents

Publication Publication Date Title
JPH0349989B2 (en)
CN100370056C (en) Method for producing metal member with intensified corrosion-resisting property by salt-bath nitrizing
EP2044239B1 (en) Method for making a corrosion resistant coating on metal surfaces using an improved trivalent chromium-containing composition
JPH04293789A (en) Method of coating steel with innoxious, inorganic and corrosion-resistant coating
CA2500801C (en) Chrome free final rinse for phosphated metal surfaces
JPH0693462A (en) Method for sealing chromate converting film on electroplated zinc
AU595331B2 (en) Treatment of chromate coating
JPH05117869A (en) Metallic surface treating agent for forming composite film
EP0074211B1 (en) Coated metal substrate and method of coating a metal substrate
JP2950481B2 (en) Metal surface treatment method
US9039821B2 (en) Methods and compositions for coating aluminum substrates
US5888315A (en) Composition and process for forming an underpaint coating on metals
EP0639627A1 (en) Chromium and fluoride free metal treatment
US3112231A (en) Protective coating
JPS6242999B2 (en)
US4089707A (en) Method of improving corrosion resistance of lead and lead alloy coated metal
JPH0781193B2 (en) Metal surface treatment method
EP0203514B1 (en) A process for treating metal surface
JPH045753B2 (en)
Narayanan et al. Influence of Detergent Type Amines on Phosphate Coatings
JPH1180973A (en) Chromate surface treating agent for alminum or aluminum alloy and method for surface treatment
KR100398171B1 (en) Method for manufacturing zinc electroplating steel sheet and a chemical abradant solution for zinc electroplating steel sheet
CA2118856A1 (en) Enhanced corrosion resistant one-step coatings and treated metallic substrates
JP2001059182A (en) Rust preventive treating method for galvanizing
JPH0686667B2 (en) Metal surface treatment method