JP5007424B2 - Projection material for mechanical plating and highly corrosion-resistant coating - Google Patents

Projection material for mechanical plating and highly corrosion-resistant coating

Info

Publication number
JP5007424B2
JP5007424B2 JP2005149160A JP2005149160A JP5007424B2 JP 5007424 B2 JP5007424 B2 JP 5007424B2 JP 2005149160 A JP2005149160 A JP 2005149160A JP 2005149160 A JP2005149160 A JP 2005149160A JP 5007424 B2 JP5007424 B2 JP 5007424B2
Authority
JP
Japan
Prior art keywords
mass
film
alloy
projection material
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005149160A
Other languages
Japanese (ja)
Other versions
JP2006328434A (en
Inventor
武明 長崎
雅司 重歳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa IP Creation Co Ltd
Original Assignee
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa IP Creation Co Ltd filed Critical Dowa IP Creation Co Ltd
Priority to JP2005149160A priority Critical patent/JP5007424B2/en
Priority to EP06010413A priority patent/EP1726684B8/en
Priority to ES06010413T priority patent/ES2328388T3/en
Priority to AT06010413T priority patent/ATE439459T1/en
Priority to US11/436,588 priority patent/US20060263622A1/en
Priority to DE602006008381T priority patent/DE602006008381D1/en
Priority to KR1020060046023A priority patent/KR100923651B1/en
Priority to CN200610084846A priority patent/CN100595331C/en
Publication of JP2006328434A publication Critical patent/JP2006328434A/en
Priority to HK07104750.5A priority patent/HK1098515A1/en
Priority to KR1020090045322A priority patent/KR101188120B1/en
Application granted granted Critical
Publication of JP5007424B2 publication Critical patent/JP5007424B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C11/00Selection of abrasive materials or additives for abrasive blasts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12181Composite powder [e.g., coated, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Coating With Molten Metal (AREA)
  • Chemically Coating (AREA)
  • Glass Compositions (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

Shot material for mechanical plating is provided, comprising steel core particles clad with an alloy comprising 1 to 5% by weight of aluminum, 3 to 15% by weight of magnesium, preferably 5 to 15% by weight of magnesium, and the balance of zinc and unavoidable impurities. The alloy may contain a total of 1% by weight of impurities. An Fe-Zn alloy layer may be provided between the alloy cladding and the steel core. The shot material may contain 3 to 80% by weight of iron. The preferable average diameter of the shot particles is 100 to 600 µm.

Description

本発明は、金属材料表面に高耐食性皮膜を形成するためのメカニカルプレーティングに使用する投射材およびそれを用いて形成される高耐食性皮膜に関する。   The present invention relates to a projection material used for mechanical plating for forming a highly corrosion-resistant film on the surface of a metal material and a high corrosion-resistant film formed using the same.

鉄系金属材料の耐食性改善手法として亜鉛または亜鉛合金の皮膜(以下「亜鉛系皮膜」という)を形成する手法が広く採用されており、具体的には、溶融めっき、リン酸塩めっき、電気めっき、メカニカルプレーティング等の技術が工業的に実用化されている。   As a method for improving the corrosion resistance of ferrous metal materials, a method of forming a zinc or zinc alloy film (hereinafter referred to as a “zinc-based film”) is widely employed. Specifically, hot-dip plating, phosphate plating, electroplating In addition, techniques such as mechanical plating have been put into practical use industrially.

亜鉛めっき等の一般的な亜鉛系皮膜を形成した材料をそのまま大気環境に曝すと、比較的短期間で亜鉛の白錆が発生し、当該皮膜の消耗を早めることがある。特に屋外環境においては顕著である。このため、亜鉛系皮膜の上にさらに保護皮膜を形成する処理(例えばクロメート処理)が行われる。   If a material on which a general zinc-based film such as galvanizing is formed is exposed to the atmospheric environment as it is, white rust of zinc is generated in a relatively short period of time, and the consumption of the film may be accelerated. This is particularly noticeable in outdoor environments. For this reason, the process (for example, chromate process) which forms a protective film further on a zinc-type film | membrane is performed.

メカニカルプレーティングで形成した亜鉛系皮膜はフレークが積層したような構造(いわゆる「パイ生地状」)であるため、その上からクロメート処理を施した場合、皮膜内部にまでクロメート処理液が十分に浸透し、その結果顕著な耐食性改善効果が発揮される。例えば、塩水噴霧試験(JIS Z2371に準じた試験をいう、以下同様)による赤錆発生までの時間が24h程度の亜鉛皮膜をメカニカルプレーティングで形成した場合、クロメート処理を施すことにより同3000h程度まで飛躍的に耐食性が改善される。   The zinc-based film formed by mechanical plating has a structure in which flakes are stacked (so-called “pie dough-like”). Therefore, when chromate treatment is applied from above, the chromate treatment solution penetrates sufficiently into the film. As a result, a remarkable effect of improving corrosion resistance is exhibited. For example, when a zinc coating with a time of about 24 h until the occurrence of red rust by a salt spray test (referring to a test according to JIS Z2371) is formed by mechanical plating, it jumps to about 3000 h by applying chromate treatment. Corrosion resistance is improved.

クロメート処理は比較的安価で容易に保護効果の高い皮膜を形成することがでるため、広く実用に供されている。しかし、この処理には有毒の6価クロムを含有する溶液が使用される。6価クロムを使用しない保護皮膜形成処理として、3価クロムによる皮膜、高分子キレート皮膜、シリケート系無機質皮膜などを形成する手法もあるが、これらの皮膜による保護効果は6価クロメート皮膜に比べ見劣りするものである。その原因として、これらの皮膜には6価クロメート皮膜にみられるような自己修復性がないことが挙げられる。すなわち、傷が付いた箇所で著しい耐食性低下を引き起こしてしまう。また、これら6価クロムを使用しない手法では処理液の管理が煩雑で、処理後の特性にバラツキが生じやすいという欠点があり、処理コストは6価クロメートに比べかなり高くなる。   Since chromate treatment is relatively inexpensive and can easily form a highly protective film, it is widely used in practice. However, a solution containing toxic hexavalent chromium is used for this treatment. There are methods to form a film with trivalent chromium, a polymer chelate film, a silicate inorganic film, etc. as a protective film forming treatment that does not use hexavalent chromium. To do. The reason for this is that these films do not have the self-repairing property found in hexavalent chromate films. That is, the corrosion resistance is remarkably lowered at the scratched portion. In addition, these techniques that do not use hexavalent chromium have the disadvantages that the management of the treatment liquid is complicated and the characteristics after treatment tend to vary, and the treatment cost is considerably higher than that of hexavalent chromate.

メカニカルプレーティングにより形成される亜鉛系皮膜そのものの耐食性を改善する手法も検討されてきた。特許文献1〜3にはAl、Mg等の合金元素を添加したZn合金からなる粉末を使用することが開示されている。   A method for improving the corrosion resistance of the zinc-based coating itself formed by mechanical plating has been studied. Patent Documents 1 to 3 disclose the use of a powder made of a Zn alloy to which an alloy element such as Al or Mg is added.

一方、メカニカルプレーティングによる亜鉛系皮膜の耐久性を改善するためには、下地の金属素地に対する皮膜の密着性を向上させることも重要となる。特許文献4、5には鉄または鉄合金粒子を核として、その上に亜鉛または亜鉛合金を被覆した粒子を投射材として用いることが記載されている。硬く重い鉄系粒子の核をもつ粒子を被処理材料表面に衝突させることにより大きな投射エネルギーが得られ、その結果、被着物質の圧着効果が高まって皮膜密着性が向上するものと考えられる。   On the other hand, in order to improve the durability of the zinc-based film by mechanical plating, it is also important to improve the adhesion of the film to the underlying metal substrate. Patent Documents 4 and 5 describe that iron or iron alloy particles are used as a nucleus, and particles coated with zinc or zinc alloy are used as a projection material. It is considered that a large projection energy is obtained by colliding particles having nuclei of hard and heavy iron-based particles against the surface of the material to be treated, and as a result, the pressure-bonding effect of the adherend is increased and the film adhesion is improved.

特開昭55−119101号公報JP-A-55-119101 特開昭56−93801号公報JP 56-93801 A 特開昭57−110601号公報Japanese Unexamined Patent Publication No. 57-110601 特開昭56−45372号公報JP 56-45372 A 特開昭62−140768号公報Japanese Patent Laid-Open No. 62-140768

上述のように、メカニカルプレーティングによる亜鉛系皮膜はクロメート処理によって耐食性を大幅に向上させることができる。しかし、昨今、環境に対する規制が強化され、有毒な6価クロムの使用は厳しく制限されつつある。また、これに代わる効果的な保護皮膜を形成する処理方法も確立されていない。   As described above, the corrosion resistance of the zinc-based film by mechanical plating can be greatly improved by the chromate treatment. However, recently, regulations on the environment have been strengthened, and the use of toxic hexavalent chromium is being severely restricted. Moreover, the processing method which forms the effective protective film which replaces this is not established.

一方、メカニカルプレーティングで形成させた皮膜のままの状態で、その部品を使用することには、耐食性の面で限界がある。すなわち、特許文献1〜3に示されるような耐食性を改善した亜鉛合金粉を使用する手法によっても、塩水噴霧試験での赤錆発生までの時間はZn−Al−Mgの単純な合金組成で500h前後、Na、Be等の特殊元素を添加した組成で1500h程度まで引き上げるのが限度である。屋外で使用される部品用途においては塩水噴霧試験での赤錆発生までの時間が1800h程度以上となる耐食性を呈することが望まれる。また、自動車部品等、塩害の生じやすい環境では同3000h以上の耐食性が望まれるところである。単に耐食性の高い亜鉛合金を被着させるだけでは、このようなニーズに対応することは困難である。
また、特許文献4、5に開示されるような鉄系粒子の核をもつ投射材を用いる手法でも、耐食性の抜本的な改善には至っていない。
On the other hand, there is a limit in terms of corrosion resistance in using the part in the state of the film formed by mechanical plating. That is, even by the method using the zinc alloy powder having improved corrosion resistance as shown in Patent Documents 1 to 3, the time until the occurrence of red rust in the salt spray test is around 500 h with a simple alloy composition of Zn—Al—Mg. The upper limit is about 1500 h with a composition added with special elements such as Na and Be. In the use of parts used outdoors, it is desired to exhibit corrosion resistance such that the time until the occurrence of red rust in the salt spray test is about 1800 h or more. Further, in an environment where salt damage is likely to occur, such as automobile parts, corrosion resistance of 3000 h or more is desired. It is difficult to meet such needs simply by depositing a zinc alloy having high corrosion resistance.
Further, even a method using a projection material having iron-based particle nuclei as disclosed in Patent Documents 4 and 5 has not led to a drastic improvement in corrosion resistance.

本発明はこのような現状に鑑み、メカニカルプレーティングにおいて形成される亜鉛系皮膜そのものの耐食性を、クロメート処理等の保護皮膜形成処理に頼ることなく、顕著に向上させることを目的とする。   In view of such a current situation, an object of the present invention is to significantly improve the corrosion resistance of a zinc-based film itself formed in mechanical plating without depending on a protective film forming process such as a chromate process.

上記目的は、鋼粒子を核とし、その周囲にAl:1〜5質量%、Mg:3〜15質量%好ましくは5〜15質量%、残部Znおよび不純物からなる合金を被覆したメカニカルプレーティング用投射材よって達成される。合金中の不純物は概ね合計1質量%程度までの混入が許容される。このような被覆された合金と中心部の鋼との間にはFe−Zn合金層が介在していて構わない。   The above-mentioned purpose is for mechanical plating in which steel particles are used as a core, and the periphery thereof is coated with an alloy of Al: 1 to 5% by mass, Mg: 3 to 15% by mass, preferably 5 to 15% by mass, the remainder Zn and impurities. This is achieved with a projectile. The impurities in the alloy are allowed to be mixed up to about 1% by mass in total. An Fe—Zn alloy layer may be interposed between the coated alloy and the central steel.

この投射材中に含まれるFeの含有量は3〜80質量%とすることができる。また、平均粒径が100〜600μmである投射材が好適な対象となる。   Content of Fe contained in this projection material can be 3-80 mass%. Moreover, the projection material whose average particle diameter is 100-600 micrometers becomes a suitable object.

また本発明では、このような投射材を鋼材等の金属材料の表面に衝突させることによって当該金属材料表面に形成される皮膜であって、Al:1〜5質量%、Mg:3〜15質量%、Fe:20質量%以下、残部Znおよび不純物で構成される厚さ2〜15μmの高耐食性皮膜が提供される。この場合の不純物も概ね合計1質量%程度までの混入が許容される。   Moreover, in this invention, it is a film | membrane formed in the said metal material surface by making such a projection material collide with the surface of metal materials, such as steel materials, Comprising: Al: 1-5 mass%, Mg: 3-15 mass %, Fe: 20% by mass or less, the remaining Zn and impurities, and a high corrosion resistance film having a thickness of 2 to 15 μm is provided. The impurities in this case are allowed to be mixed up to about 1% by mass in total.

本発明によれば、メカニカルプレーティングで形成されたままの皮膜状態で、部品の耐食性を飛躍的に向上させることができた。このため、クロメート処理を施すことなく、従来の様々な部品用途に適用することができ、部品製造コストの低減および環境規制への適切な対応が可能になる。特に、投射材を構成する亜鉛系合金被覆層中のMg含有量を高めた場合には、塩水噴霧試験での赤錆発生までの時間が4000hを超えるような極めて高い耐食性を呈する鉄系部品が得られる。また、皮膜厚さは15μm以下あるいはさらに2〜5μm程度と薄くても十分な効果が得られるため、厚目付となってしまう溶融めっきが適用できないような部品、例えば「ねじ」などにも高耐食性が付与できる。このため、例えば高価なステンレス鋼を使用せざるを得なかった屋外構造物の部品を本発明の皮膜を有するもので代替するなどして、大きなコスト低減効果が得られる。   According to the present invention, the corrosion resistance of the component can be dramatically improved in the state of the film as formed by mechanical plating. For this reason, it can be applied to various conventional parts applications without performing chromate treatment, and it becomes possible to reduce parts manufacturing costs and appropriately respond to environmental regulations. In particular, when the Mg content in the zinc-based alloy coating layer constituting the projection material is increased, an iron-based component exhibiting extremely high corrosion resistance such that the time until occurrence of red rust in the salt spray test exceeds 4000 h is obtained. It is done. Also, even if the film thickness is 15 μm or less, or even as thin as 2 to 5 μm, a sufficient effect can be obtained, so that high corrosion resistance can be obtained even for parts that cannot be applied with hot dip plating, such as screws. Can be granted. For this reason, for example, a large cost reduction effect can be obtained by substituting parts of the outdoor structure for which expensive stainless steel had to be used with those having the coating of the present invention.

発明者らは種々検討の結果、以下の2点を組み合わせたとき、極めて顕著な耐食性改善効果が得られることを知見した。
i) メカニカルプレーティングにより被着させる被着物質をZn−Al−Mg系合金とし、かつそのMg含有量を少なくとも3質量%以上、好ましくは5質量%以上とする。
ii) メカニカルプレーティングにより被着させる被着物質を鋼粒子の核をもつ投射材に組み込んで被処理材料の表面に衝突させる。
これらi)ii)は、いずれも単独では顕著な耐食性改善効果が認められなかったものであり、本発明ではi)とii)の相乗作用による新たな耐食性向上効果を利用するものである。これらi)ii)の相乗作用をもたらすメカニズムについては現時点で必ずしも明確にされていない。
As a result of various studies, the inventors have found that when the following two points are combined, an extremely remarkable corrosion resistance improvement effect can be obtained.
i) The deposition material to be deposited by mechanical plating is a Zn—Al—Mg alloy, and the Mg content is at least 3 mass%, preferably at least 5 mass%.
ii) The material to be deposited by mechanical plating is incorporated into a projection material having a core of steel particles and collides with the surface of the material to be treated.
None of these i) and ii) alone have been found to have a significant effect on improving corrosion resistance, and the present invention utilizes a new effect of improving corrosion resistance due to the synergistic action of i) and ii). The mechanism causing the synergistic action of i) ii) is not necessarily clarified at present.

〔Zn−Al−Mg系被着物質〕
メカニカルプレーティングによって形成された皮膜において、ZnとAlとの間で非常に緻密な腐食生成物が生成し、これによって封孔された安定な皮膜が構築される。このような作用を十分に発揮させるには、形成された皮膜中に1質量%以上のAlが含有されていることが好ましい。しかし、5質量%を超えても添加増量に見合った効果は期待できない。投射材の鋼粒子核の周囲を構成する合金被覆層の組成は、概ねそのまま部品表面に形成される皮膜組成に反映されるので、本発明では投射材の合金被覆層中におけるAl含有量を1〜5質量%に規定する。
[Zn-Al-Mg-based adherent]
In the film formed by mechanical plating, a very dense corrosion product is generated between Zn and Al, and thereby a stable film sealed is constructed. In order to sufficiently exhibit such an action, it is preferable that 1% by mass or more of Al is contained in the formed film. However, even if it exceeds 5% by mass, an effect commensurate with the added amount cannot be expected. Since the composition of the alloy coating layer that forms the periphery of the steel particle core of the projection material is almost directly reflected in the coating composition formed on the surface of the component, in the present invention, the Al content in the alloy coating layer of the projection material is 1 It is prescribed to ˜5% by mass.

Mgは、メカニカルプレーティングによって形成された皮膜において、酸化物または水酸化物を形成する。Mgの酸化物や水酸化物は、電気絶縁性が高いため皮膜中のZnが腐食する際の腐食電流を抑制する。また、酸素の透過を防ぐのでZnの腐食に対して保護作用を示す。Mgは電位的にはZnより卑であるが、腐食環境下では安定な腐食生成物を生じるとともにZnのガルバニック作用を緩和させる。これにより皮膜中のZnの溶出が抑制され、防食効果が高まるものと考えられる。発明者らの詳細な検討によれば、皮膜中のMg含有量を3質量%以上にしたとき、このようなMgの効果が顕在化することがわかった。5質量%以上とすることが好ましい。さらに7質量%以上の高いMg濃度を実現すると、前記ii)の効果(鋼粒子の核をもつ投射材を衝突させる効果)と相俟って、クロメート処理を施した場合を上回る極めて顕著な耐食性改善効果が発揮されるようになるのである。ただし、MgはZn合金溶湯中で酸化しやすいため、あまり高いMg含有量を確保しようとすると後述するようなZn合金の溶湯を用いた投射材の製造が困難になる。このため皮膜中のMg含有量は15質量%以下とする必要がある。通常、12質量%以下の範囲で良好な結果が得られる。
以上のことから、本発明では投射材の合金被覆層中におけるMg含有量を3〜15質量%に規定する。合金被覆層中のより好ましいMg含有量の範囲は5〜15質量%、一層好ましい範囲は7〜12質量%である。
Mg forms an oxide or hydroxide in a film formed by mechanical plating. Mg oxides and hydroxides have high electrical insulation, and therefore suppress the corrosion current when Zn in the film corrodes. In addition, since it prevents oxygen permeation, it exhibits a protective action against Zn corrosion. Although Mg is lower in potential than Zn in terms of potential, it produces a stable corrosion product in a corrosive environment and relaxes the galvanic action of Zn. This is considered to suppress the elution of Zn in the film and increase the anticorrosion effect. According to detailed investigations by the inventors, it has been found that when the Mg content in the film is 3% by mass or more, such an effect of Mg becomes apparent. It is preferable to set it as 5 mass% or more. Furthermore, when a high Mg concentration of 7% by mass or more is realized, in combination with the effect of the above ii) (the effect of colliding a projection material having a core of steel particles), extremely remarkable corrosion resistance exceeding that when chromate treatment is performed. The improvement effect comes to be demonstrated. However, since Mg is easily oxidized in the molten Zn alloy, it is difficult to produce a projection material using a molten Zn alloy as will be described later if an excessively high Mg content is to be secured. For this reason, Mg content in a film needs to be 15 mass% or less. Usually, good results are obtained in the range of 12% by mass or less.
From the above, in the present invention, the Mg content in the alloy coating layer of the projection material is regulated to 3 to 15% by mass. A more preferable range of the Mg content in the alloy coating layer is 5 to 15% by mass, and a more preferable range is 7 to 12% by mass.

メカニカルプレーティングによって得られた皮膜中には、通常、投射材や部品に由来するFeが含まれる。皮膜中のFe含有量が20質量%以下(例えば0.1〜20質量%)の範囲で良好な結果が得られる。
Zn、Al、Mg、Feを除く不純物元素は合計1質量%以下の範囲に抑えることが望ましい。
The film obtained by mechanical plating usually contains Fe derived from the projection material and parts. Good results are obtained when the Fe content in the film is 20% by mass or less (for example, 0.1 to 20% by mass).
It is desirable to keep the impurity elements other than Zn, Al, Mg, and Fe within a total range of 1% by mass or less.

〔投射材〕
本発明では、投射材粒子として鋼粒子の核をもつものを採用する。すなわち本発明の粒子は、鋼粒子と前記亜鉛系合金からなる複合粒子である。このような複合構造の粒子を被処理材料の表面に衝突させることにより、従来知られていた皮膜密着性の向上効果が得られるが、被着物質をMg含有量の高いAl−Mg複合添加の組成とした場合には、さらに耐食性についても飛躍的な向上が達成されるのである。つまり、前記i)+ii)による相乗作用が発現する。これは、従来予測されなかった現象である。鋼粒子を核にもつ投射材を衝突させることにより、皮膜が下地金属に対し強固に被着するとともに皮膜自体も一層も強化され、皮膜損傷に対する抵抗力が向上すると考えられる。そして、被着物質のAlによる封孔作用とMg含有量を高めたことによるZnの溶出防止作用とが相俟って、結果的に大幅な耐食性向上効果が生じるのではないかと推察される。
[Projection material]
In the present invention, a projection material particle having a core of steel particles is employed. That is, the particles of the present invention are composite particles composed of steel particles and the zinc-based alloy. By colliding the particles having such a composite structure with the surface of the material to be treated, the conventionally known effect of improving the film adhesion can be obtained. In the case of the composition, a dramatic improvement in the corrosion resistance is achieved. That is, the synergistic effect of i) + ii) is expressed. This is a phenomenon that has not been predicted in the past. It is considered that the collision of the projecting material having the steel particles as nuclei firmly adheres the coating to the base metal and further strengthens the coating itself, thereby improving the resistance to coating damage. And it is guessed that the sealing effect by Al of the adherend and the elution prevention effect of Zn by increasing the Mg content may result in a significant improvement in corrosion resistance.

このような本発明に特有の効果を十分に発揮させるには、投射材中に含まれるFe含有量が3〜80質量%になるように、核となる鋼粒子とその周囲に被覆する亜鉛系合金層(被着物質)の量比をコントロールすることが望ましい。Fe含有量がこれより少ないと十分な投射エネルギーを得ることが難しくなり、これより多いと被着物質の量が相対的に少なくなって、メカニカルプレーティングを行うブラスト処理時に投射材の寿命が早期に尽きてしまい効率的でない。
核となる鋼粒子は硬さ200〜700HV程度のものを使用することが望ましい。また、投射材の粒径は全粒子の95質量%以上が10〜800μmの範囲にあることが望ましく、平均粒径は100〜600μmが好ましい。
In order to sufficiently exhibit such effects peculiar to the present invention, the steel particles that serve as nuclei and the zinc-based coating around them are made so that the Fe content contained in the projection material is 3 to 80% by mass. It is desirable to control the amount ratio of the alloy layer (deposited material). If the Fe content is less than this, it will be difficult to obtain sufficient projection energy, and if it is more than this, the amount of the deposited material will be relatively small, and the life of the projection material will be early during the blasting process for mechanical plating. It is exhausted and is not efficient.
It is desirable to use steel particles having a hardness of about 200 to 700 HV as the core. Further, the particle size of the projection material is desirably 95% by mass or more of all particles in the range of 10 to 800 μm, and the average particle size is preferably 100 to 600 μm.

〔皮膜厚さ〕
被処理金属材料の表面に形成する皮膜厚さは、少なくとも2μmを確保する必要がある。ただしメカニカルプレーティングで15μmを超えるような厚目付を行うことは経済的でない。通常、2〜15μm程度の皮膜厚さにコントロールすることで顕著な耐食性改善効果が得られる。
[Film thickness]
The film thickness formed on the surface of the metal material to be processed needs to ensure at least 2 μm. However, it is not economical to apply a weight per unit area exceeding 15 μm by mechanical plating. Usually, a remarkable corrosion resistance improvement effect is obtained by controlling the film thickness to about 2 to 15 μm.

〔投射材の製造法〕
本発明の投射材は、核となる鋼粒子を被着物質に相当する組成の亜鉛合金溶湯に投入して攪拌し、溶湯温度の降下に伴って半凝固状態となった時点でこれを取り出し、その後、粉砕、篩分けを行う工程で製造することができる。その際、投射材の粒子中に占めるFe含有量が3〜80質量%になるように亜鉛合金溶湯量と鋼粒子の投入量をコントロールすることが好ましい。このような手法で鋼粒子の周囲に亜鉛合金を付着させると、両者の界面付近にはFe−Zn合金層が形成される。Fe−Zn合金層は比較的脆いので、ブラスト処理時に当該投射材が被処理材料表面に衝突したとき、Fe−Zn合金層部分で微細にせん断した亜鉛合金の微粒子が被処理材料表面に圧着され、その結果、皮膜の均一性が向上する。
[Production method of projection material]
The projection material of the present invention, the steel particles that serve as nuclei are charged into a zinc alloy molten metal having a composition corresponding to the adherend, and stirred, and this is taken out when it becomes a semi-solidified state as the molten metal temperature decreases, Then, it can manufacture in the process of grind | pulverizing and sieving. At that time, it is preferable to control the amount of molten zinc alloy and the amount of steel particles charged so that the Fe content in the particles of the projection material is 3 to 80% by mass. When a zinc alloy is deposited around the steel particles by such a technique, an Fe—Zn alloy layer is formed in the vicinity of the interface between the two. Since the Fe-Zn alloy layer is relatively brittle, when the projection material collides with the surface of the material to be treated during the blasting process, finely-sheared zinc alloy fine particles are pressed onto the surface of the material to be treated. As a result, the uniformity of the film is improved.

鋼粒子としては市販のスチールショットが使用できる。投射材を構成する粒子(合金被覆後)は前述のように粒径10〜800μmの範囲にあることが好ましい。その平均粒径は100〜600μmであることが好ましく、特に、100〜400μm、あるいは150〜300μmの範囲とすることができる。また、投射材粒子中に占めるFe含有量は3〜80質量%程度が好ましいため、これらの目標値に応じて使用する鋼粒子のサイズ・量を設定することが望ましい。   Commercial steel shots can be used as the steel particles. The particles constituting the projection material (after alloy coating) are preferably in the range of 10 to 800 μm in particle size as described above. The average particle diameter is preferably 100 to 600 μm, and in particular, can be in the range of 100 to 400 μm, or 150 to 300 μm. Further, since the Fe content in the projection material particles is preferably about 3 to 80% by mass, it is desirable to set the size and amount of the steel particles to be used according to these target values.

〔発明例1〕
Zn−3.5質量%Al−8.0質量%Mg(その他の不純物1質量%未満)の組成を有する亜鉛合金の溶湯50kgを570℃に保持して均一化したのち、570℃に保持する目的で焚いているバーナーを消し、その直後に、スチールショット65kgを当該溶湯中に攪拌しながら投入した。使用したスチールショットは、平均粒径237μm、平均硬さ312HVを有する市販品である。温度降下に伴って溶湯が半凝固状態になった時点で亜鉛合金とスチールショットの混合物を取り出し、完全に凝固しないうちに粉砕機に移し、粉砕を開始した。そして、個々のスチールショットが分離し、概ね球形に近い表面性状となるまで粉砕を続けて投射材を得た。
[Invention Example 1]
50 kg of molten zinc alloy having a composition of Zn-3.5 mass% Al-8.0 mass% Mg (less than 1 mass% of other impurities) is kept at 570 ° C. and homogenized, and then kept at 570 ° C. The burner scooping for the purpose was turned off, and immediately after that, 65 kg of steel shot was put into the molten metal with stirring. The steel shot used is a commercial product having an average particle diameter of 237 μm and an average hardness of 312 HV. When the molten metal became a semi-solid state as the temperature dropped, the mixture of zinc alloy and steel shot was taken out and transferred to a pulverizer before it completely solidified to start pulverization. Then, the individual steel shots were separated, and pulverization was continued until the surface properties were almost spherical, thereby obtaining a projection material.

この投射材の平均粒径は218μmであった。また、投射材の粒子の断面についてEDS法(エネルギー分散型X線分光法)による観察を行った結果、中心部にスチールショットに由来する鋼粒子の核をもち、その周囲にスチールショットと溶湯の反応で形成した合金層を介して亜鉛合金被覆層を有していた。更にこの断面を分析したところ、スチールショットと溶湯の反応で形成した合金層はFe−Zn合金層であり、周囲を構成する亜鉛合金被覆層は概ね初期の溶湯組成をそのまま反映した組成を有することがわかった。また、投射材のサンプルをJIS M8212−1958 鉄鉱石中の全鉄定量方法、過マンガン酸カリウム滴定容量法で組成分析した結果、投射材中に占めるFeの含有量は49.9質量%であった。   The average particle diameter of this projection material was 218 μm. Moreover, as a result of observing the cross section of the particles of the projecting material by the EDS method (energy dispersive X-ray spectroscopy), the core has a core of steel particles derived from the steel shot, and the periphery of the steel shot and the molten metal. It had a zinc alloy coating layer through an alloy layer formed by the reaction. Further, when this cross section was analyzed, the alloy layer formed by the reaction between the steel shot and the molten metal was an Fe-Zn alloy layer, and the surrounding zinc alloy coating layer had a composition reflecting the initial molten metal composition as it was. I understood. In addition, as a result of analyzing the composition of the sample of the projection material by the total iron determination method in JIS M8212-1958 iron ore and the potassium permanganate titration volume method, the Fe content in the projection material was 49.9% by mass. It was.

この投射材を用いて、メカニカルプレーティング装置により市販の4Tボルト(鋼製)の表面に亜鉛合金皮膜を形成した。投射の条件は、投射量:60kg/min、投射粒子の速度:初速度約51m/sec、投射時間:80minとした。皮膜形成後のボルトについて断面をEDS法で観察した結果、皮膜厚さは約4.4μmであった。また、形成された皮膜の組成を調べた結果、Al:約3.3質量%、Mg:約7.5質量%、Fe:約5.5質量%、残部は実質的にZnであった。それ以外の元素(不純物)の総量は1質量%未満である。   Using this projection material, a zinc alloy film was formed on the surface of a commercially available 4T bolt (made of steel) by a mechanical plating apparatus. The projection conditions were: projection amount: 60 kg / min, projection particle velocity: initial velocity of about 51 m / sec, and projection time: 80 min. As a result of observing the cross section of the bolt after film formation by the EDS method, the film thickness was about 4.4 μm. Further, as a result of examining the composition of the formed film, Al: about 3.3 mass%, Mg: about 7.5 mass%, Fe: about 5.5 mass%, and the balance was substantially Zn. The total amount of other elements (impurities) is less than 1% by mass.

〔発明例2〕
亜鉛合金の溶湯組成をZn−3.5質量%Al−6.0質量%Mg(その他の不純物1質量%未満)とし、溶湯保持温度を535℃としたこと以外、発明例1と同様の条件で投射材を得た。
この投射材の平均粒径は217μmであり、中心部にスチールショットに由来する鋼粒子の核をもち、その周囲にスチールショットと溶湯の反応で形成した合金層を介して亜鉛合金被覆層を有していた。測定の結果、スチールショットと溶湯の反応で形成した合金層はFe−Zn合金層であり、周囲を構成する亜鉛合金被覆層は概ね初期の溶湯組成をそのまま反映した組成を有することがわかった。また、投射材中に占めるFeの含有量は54.8質量%であった。
[Invention Example 2]
The same conditions as in Invention Example 1 except that the molten metal composition of the zinc alloy was Zn-3.5 mass% Al-6.0 mass% Mg (other impurities less than 1 mass%) and the molten metal holding temperature was 535 ° C. A projectile was obtained.
This projection material has an average particle diameter of 217 μm, has a core of steel particles derived from steel shot in the center, and has a zinc alloy coating layer around the alloy layer formed by the reaction of steel shot and molten metal. Was. As a result of the measurement, it was found that the alloy layer formed by the reaction between the steel shot and the molten metal was an Fe—Zn alloy layer, and the surrounding zinc alloy coating layer had a composition reflecting the initial molten metal composition as it was. The content of Fe in the projection material was 54.8% by mass.

この投射材を用いて、発明例1と同様の条件で市販の4Tボルト(鋼製)の表面に亜鉛合金皮膜を形成した。得られた皮膜は厚さ約4.5μmであり、皮膜組成は、Al:約3.3質量%、Mg:約5.6質量%、Fe:約6.2質量%、残部は実質的にZnであった。それ以外の元素(不純物)の総量は1質量%未満である。   Using this projection material, a zinc alloy film was formed on the surface of a commercially available 4T bolt (made of steel) under the same conditions as in Invention Example 1. The obtained film was about 4.5 μm thick, and the film composition was Al: about 3.3% by mass, Mg: about 5.6% by mass, Fe: about 6.2% by mass, and the balance being substantially the same. Zn. The total amount of other elements (impurities) is less than 1% by mass.

〔比較例1〕
Znの溶湯(その他の不純物1質量%未満)を使用し、溶湯保持温度を480℃としたこと以外、発明例1と同様の条件で投射材を得た。
この投射材の平均粒径は235μmであり、中心部にスチールショットに由来する鋼粒子の核をもち、その周囲にスチールショットと溶湯の反応で形成した合金層を介して亜鉛層を有していた。投射材中に占めるFeの含有量は55.7質量%であった。
[Comparative Example 1]
A projection material was obtained under the same conditions as in Invention Example 1 except that a molten metal of Zn (less than 1% by mass of other impurities) was used and the molten metal retention temperature was 480 ° C.
This projection material has an average particle size of 235 μm, has a core of steel particles derived from steel shot in the center, and has a zinc layer around the alloy layer formed by the reaction of steel shot and molten metal around it. It was. The Fe content in the projection material was 55.7% by mass.

この投射材を用いて、発明例1と同様の条件で市販の4Tボルト(鋼製)の表面に亜鉛合金皮膜を形成した。得られた皮膜は厚さ約4.6μmであり、皮膜組成は、Znの他、Feを約13.7質量%含むものであった。   Using this projection material, a zinc alloy film was formed on the surface of a commercially available 4T bolt (made of steel) under the same conditions as in Invention Example 1. The obtained film had a thickness of about 4.6 μm, and the film composition contained about 13.7% by mass of Fe in addition to Zn.

〔比較例2〕
比較例1で形成した皮膜の上に、従来の一般的な方法でクロメート処理を施したボルトを作製した。
[Comparative Example 2]
On the film formed in Comparative Example 1, a bolt subjected to chromate treatment by a conventional general method was produced.

〔塩水噴霧試験〕
各発明例、比較例で得たボルトについて、JIS Z2371に準じた方法で塩水噴霧試験を行い、赤錆が発生するまでの時間を調べた。その結果、
・発明例1:5160h、
・発明例2:1920h、
・比較例1:<24h、
・比較例2(クロメート処理):3000h、
であった。
本発明に従うと、塩水噴霧での赤錆発生までの時間が1800hを上回る高耐食性が付与でき、特に、皮膜中のMg含有量を高めたもの(発明例1)ではクロメート処理材を大きく上回る極めて優れた耐食性を付与できることがわかる。
[Salt spray test]
About the bolt obtained by each invention example and the comparative example, the salt spray test was done by the method according to JISZ2371, and time until red rust generate | occur | produced was investigated. as a result,
Invention Example 1: 5160h,
Invention Example 2: 1920h,
Comparative Example 1: <24h,
Comparative Example 2 (chromate treatment): 3000 h
Met.
According to the present invention, high corrosion resistance exceeding 1800 h can be imparted until the occurrence of red rust by salt water spraying, and in particular, the one with an increased Mg content in the coating (Invention Example 1) is extremely superior to the chromate treatment material. It can be seen that corrosion resistance can be imparted.

実施例1で示した各発明例および比較例において、被処理材料としてボルトの代わりに板厚0.8mmの冷間圧延鋼板(SPCC)を用いて、その表面に同様の条件でメカニカルプレーティングを施し、各種特性を調べた。すなわち、以下のとおりである。
〔発明例3〕発明例1と同様条件。
〔発明例4〕発明例2と同様条件。
〔比較例3〕比較例1と同様条件。
〔比較例4〕比較例2と同様条件(クロメート処理)。
各例の試料について、以下の特性を調べた。
・皮膜密着性:JIS H8504のめっき密着性試験による曲げ試験、およびJIS K5400の碁盤目テープテストにより評価した。
・自己修復性(犠牲防食性):クロスカットを入れてJIS Z2371の塩水噴霧試験により赤錆発生までの時間を調べ評価した。
・耐候性:JIS Z2381−1987の屋外暴露試験(直接暴露試験)により赤錆発生までの日数を調べて評価した。
結果を表1に示す。
In each invention example and comparative example shown in Example 1, using a cold-rolled steel plate (SPCC) having a thickness of 0.8 mm instead of a bolt as the material to be treated, mechanical plating was performed on the surface under the same conditions. And various characteristics were examined. That is, it is as follows.
[Invention Example 3] The same conditions as in Invention Example 1.
[Invention Example 4] The same conditions as in Invention Example 2.
[Comparative Example 3] Same conditions as in Comparative Example 1.
[Comparative Example 4] The same conditions as in Comparative Example 2 (chromate treatment).
The following characteristics were examined for the samples of each example.
-Film adhesion: evaluated by a bending test by plating adhesion test of JIS H8504 and a cross-cut tape test of JIS K5400.
-Self-healing property (sacrificial anticorrosive property): A cross-cut was inserted, and the time until red rust occurred was evaluated by a salt spray test of JIS Z2371.
-Weather resistance: JIS Z2381-1987 outdoor exposure test (direct exposure test) was used to examine and evaluate the number of days until red rust occurred.
The results are shown in Table 1.

Figure 0005007424
Figure 0005007424

表1からわかるように、本発明に従ったものは皮膜密着性を良好に維持しながら、自己修復性および耐候性の顕著な改善が実現できる。特に皮膜中のMg含有量を高めたもの(発明例3)ではクロメート処理材と同等以上の自己修復性を呈する点が注目にあたいする。   As can be seen from Table 1, those according to the present invention can achieve significant improvements in self-repairability and weather resistance while maintaining good film adhesion. Of particular note is the fact that the Mg content in the film is increased (Invention Example 3) and exhibits a self-repairing property equal to or higher than that of the chromate treatment material.

Claims (6)

鋼粒子を核とし、その周囲にAl:1〜5質量%、Mg:5.5〜15質量%、残部Znおよび不純物からなる亜鉛合金を被覆した粒子で、該亜鉛合金がFe−Zn合金層を介して該鋼粒子の周囲に被覆されており、Feの含有量が3〜80質量%であるメカニカルプレーティング用投射材。   Steel particles are used as cores, and the surrounding particles are coated with a zinc alloy composed of Al: 1 to 5% by mass, Mg: 5.5 to 15% by mass, the balance Zn and impurities, and the zinc alloy is an Fe—Zn alloy layer. The projecting material for mechanical plating, wherein the steel particles are coated around the steel particles, and the Fe content is 3 to 80% by mass. 鋼粒子を核とし、その周囲にAl:1〜5質量%、Mg:7〜15質量%、残部Znおよび不純物からなる亜鉛合金を被覆した粒子で、該亜鉛合金がFe−Zn合金層を介して該鋼粒子の周囲に被覆されており、Feの含有量が3〜80質量%であるメカニカルプレーティング用投射材。   The steel particles are cores, and the periphery is coated with a zinc alloy composed of Al: 1 to 5 mass%, Mg: 7 to 15 mass%, the balance Zn and impurities, and the zinc alloy is interposed through the Fe-Zn alloy layer. A projection material for mechanical plating, which is coated around the steel particles and has a Fe content of 3 to 80% by mass. 平均粒径が100〜600μmである請求項1または2に記載のメカニカルプレーティング用投射材。   The projection material for mechanical plating according to claim 1 or 2, wherein the average particle size is 100 to 600 µm. 請求項1または3に記載の投射材を金属材料表面に衝突させることによって当該金属材料表面に形成される皮膜であって、Al:1〜5質量%、Mg:5.5〜15質量%、Fe:0.1〜20質量%、残部Znおよび不純物で構成される厚さ2〜15μmの高耐食性皮膜。 It is a film | membrane formed in the said metal material surface by making the projection material of Claim 1 or 3 collide with the metal material surface, Comprising: Al: 1-5 mass%, Mg: 5.5-15 mass%, Fe: 0.1 to 20% by mass , balance 2 and 15 μm thick highly corrosion-resistant film composed of impurities and impurities. 請求項2または3に記載の投射材を金属材料表面に衝突させることによって当該金属材料表面に形成される皮膜であって、Al:1〜5質量%、Mg:7〜15質量%、Fe:0.1〜20質量%、残部Znおよび不純物で構成される厚さ2〜15μmの高耐食性皮膜。 It is a film | membrane formed in the said metal material surface by making the projection material of Claim 2 or 3 collide with the metal material surface, Comprising: Al: 1-5 mass%, Mg: 7-15 mass%, Fe: A highly corrosion-resistant film having a thickness of 2 to 15 μm composed of 0.1 to 20% by mass , the balance Zn and impurities. 前記金属材料がボルトである請求項4または5に記載の高耐食性皮膜。   The high corrosion-resistant film according to claim 4 or 5, wherein the metal material is a bolt.
JP2005149160A 2005-05-23 2005-05-23 Projection material for mechanical plating and highly corrosion-resistant coating Active JP5007424B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2005149160A JP5007424B2 (en) 2005-05-23 2005-05-23 Projection material for mechanical plating and highly corrosion-resistant coating
ES06010413T ES2328388T3 (en) 2005-05-23 2006-05-19 GRANALLA MATERIAL FOR MECHANICAL COATING AND COVERING HIGHLY RESISTANT TO CORROSION USING THE SAME.
AT06010413T ATE439459T1 (en) 2005-05-23 2006-05-19 RADIATION POWDER FOR MECHANICAL COATING AND CORROSION-RESISTANT COATING
US11/436,588 US20060263622A1 (en) 2005-05-23 2006-05-19 Shot material for mechanical plating, and high corrosion resistant coating using same
DE602006008381T DE602006008381D1 (en) 2005-05-23 2006-05-19 Irradiation powder for mechanical coating and corrosion-resistant coating
EP06010413A EP1726684B8 (en) 2005-05-23 2006-05-19 Shot material for mechanical plating, and high corrosion resistant coating using the same
KR1020060046023A KR100923651B1 (en) 2005-05-23 2006-05-23 Shot material for mechanical plating, and high corrosion resistant coating using same
CN200610084846A CN100595331C (en) 2005-05-23 2006-05-23 Shot material for mechanical plating, and high corrosion resistant coating using the same
HK07104750.5A HK1098515A1 (en) 2005-05-23 2007-05-04 A shot material used in mechanical plating and a high corrosion resistant coating
KR1020090045322A KR101188120B1 (en) 2005-05-23 2009-05-25 Shot material for mechanical plating, and high corrosion resistant coating using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005149160A JP5007424B2 (en) 2005-05-23 2005-05-23 Projection material for mechanical plating and highly corrosion-resistant coating

Publications (2)

Publication Number Publication Date
JP2006328434A JP2006328434A (en) 2006-12-07
JP5007424B2 true JP5007424B2 (en) 2012-08-22

Family

ID=36608521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005149160A Active JP5007424B2 (en) 2005-05-23 2005-05-23 Projection material for mechanical plating and highly corrosion-resistant coating

Country Status (9)

Country Link
US (1) US20060263622A1 (en)
EP (1) EP1726684B8 (en)
JP (1) JP5007424B2 (en)
KR (2) KR100923651B1 (en)
CN (1) CN100595331C (en)
AT (1) ATE439459T1 (en)
DE (1) DE602006008381D1 (en)
ES (1) ES2328388T3 (en)
HK (1) HK1098515A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5190235B2 (en) * 2006-09-08 2013-04-24 新日鐵住金株式会社 Zn alloy particles for high corrosion resistance rust preventive paint having crushing surface, manufacturing method thereof, high corrosion resistance rust preventive paint, high corrosion resistance steel material and steel structure
WO2009080167A1 (en) * 2007-12-22 2009-07-02 Jünger+Gräter Gmbh Feuerfestbau Wall lining of industrial ovens
US10907257B2 (en) 2015-10-23 2021-02-02 Dowa Ip Creation Co., Ltd. Projection material for mechanical plating and high corrosion-resistant coating
JP2019171512A (en) * 2018-03-28 2019-10-10 トヨタ自動車東日本株式会社 Slide member and method for manufacture thereof
CN110423981B (en) * 2019-09-07 2021-06-01 盐城科奥机械有限公司 Permeation-aid agent for zinc-aluminum-magnesium mechanical energy permeation aid and using method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3505043A (en) * 1969-01-08 1970-04-07 Inland Steel Co Al-mg-zn alloy coated ferrous metal sheet
JPS55119101A (en) * 1979-03-02 1980-09-12 Mitsui Mining & Smelting Co Ltd Zinc-aluminium alloy powder for mechanical plating
JPS599312B2 (en) * 1979-09-13 1984-03-01 同和鉄粉工業株式会社 Blasting material and surface treatment method using this material
JPS57110601A (en) * 1980-12-29 1982-07-09 Mitsui Mining & Smelting Co Ltd Zinc alloy powder for mechanical plating
JPS6138870A (en) * 1984-07-30 1986-02-24 Dowa Teppun Kogyo Kk Continuous mechanical plating and mixture powder therefor
JPS6167773A (en) * 1984-09-11 1986-04-07 Nippon Dakuro Shamrock:Kk Surface treatment of metal
US4871194A (en) * 1986-05-02 1989-10-03 Sumitomo Metal Industries, Ltd. Oil well pipe joint and manufacturing method therefor
JP2963272B2 (en) * 1992-02-14 1999-10-18 同和鉄粉工業株式会社 Projection material for mechanical plating and mechanical plating method using the same
KR100324893B1 (en) * 1996-12-13 2002-08-21 닛신 세이코 가부시키가이샤 HOT-DIP Zn-Al-Mg COATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE AND SURFACE APPEARANCE AND PROCESS FOR THE PRODUCTION THEREOF
US6015586A (en) * 1998-02-19 2000-01-18 Acheson Industries, Inc. Cold dry plating process for forming a polycrystalline structure film of zinc-iron by mechanical projection of a composite material
JP2000064010A (en) * 1998-08-13 2000-02-29 Nippon Steel Corp HIGH CORROSION RESISTANCE HOT DIP Zn-Mg-Al PLATED STEEL SHEET
JP2000239817A (en) * 1999-02-22 2000-09-05 Nisshin Steel Co Ltd PRE-HOT DIP Zn-Mg-Al BASED ALLOY PLATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE IN CUT EDGE FACE
JP2001020049A (en) * 1999-07-06 2001-01-23 Nippon Steel Corp HOT DIP Zn-Al-Mg PLATED STEEL EXCELLENT IN CORROSION RESISTANCE UNDER NONCOATING AND AFTER COATING AND ITS PRODUCTION
DE60029428T2 (en) * 1999-10-25 2007-04-19 Nippon Steel Corp. METAL-COATED STEEL WIRE WITH EXCELLENT CORROSION RESISTANCE AND PROCESSABILITY AND MANUFACTURING METHOD
US6610423B2 (en) * 2000-02-29 2003-08-26 Nippon Steel Corporation Plated steel product having high corrosion resistance and excellent formability and method for production thereof
JP3931564B2 (en) * 2001-01-25 2007-06-20 住友金属工業株式会社 Threaded joint for steel pipes with excellent seizure resistance and rust resistance
JP3779941B2 (en) * 2002-01-09 2006-05-31 新日本製鐵株式会社 Galvanized steel sheet with excellent post-painting corrosion resistance and paint clarity

Also Published As

Publication number Publication date
EP1726684A2 (en) 2006-11-29
EP1726684B1 (en) 2009-08-12
KR20090069152A (en) 2009-06-29
CN100595331C (en) 2010-03-24
KR20060121716A (en) 2006-11-29
JP2006328434A (en) 2006-12-07
ATE439459T1 (en) 2009-08-15
KR101188120B1 (en) 2012-10-09
EP1726684A3 (en) 2007-07-11
CN1869283A (en) 2006-11-29
HK1098515A1 (en) 2007-07-20
KR100923651B1 (en) 2009-10-28
DE602006008381D1 (en) 2009-09-24
ES2328388T3 (en) 2009-11-12
EP1726684B8 (en) 2009-09-23
US20060263622A1 (en) 2006-11-23

Similar Documents

Publication Publication Date Title
JP5661698B2 (en) Hot-dip Zn-Al alloy-plated steel sheet
US4655832A (en) Blast material for mechanical plating and continuous mechanical plating using the same
WO2008038828A1 (en) Highly corrosion-resistant rust-preventive coating material, steel material with high corrosion resistance, and steel structure
TW200540235A (en) Paint for highly corrosion-resistant zinc-alloy coated steels and steel structure having coated film of said paint
JP5007424B2 (en) Projection material for mechanical plating and highly corrosion-resistant coating
JP4637978B2 (en) Corrosion-resistant paint and corrosion-resistant steel material coated with the same
WO2004050942A1 (en) Corrosion resistant poly-metal diffusion coatings and a method of applying same
JP2001164194A (en) Zinc-rich coating excellent in corrosion-resistant property and coated metal plate
JP6201012B2 (en) Projection material for mechanical plating and highly corrosion-resistant coating
JPS5918765A (en) Coating material composition for coated steel plate
JP2019131844A (en) Metallic member being subjected to rust-preventive treatment and coating paint
JP3305573B2 (en) Thermal spray coating with excellent corrosion and scratch resistance
JP5661699B2 (en) Manufacturing method of resin-coated steel sheet
JP5101250B2 (en) Resin coated steel sheet
JP2005336432A (en) Coating for steel material and steel material having excellent corrosion resistance and rust preventing property
JPS581705B2 (en) Zn alloy anti-rust pigment powder for highly corrosion-resistant anti-rust paints
Alvarenga et al. Effect of the metallic substrate and zinc layer on the atmospheric corrosion resistance of phosphatized and painted electrogalvanized steels
JPH0273932A (en) Highly corrosion resistant zn-mg alloy powder
JPS6241629B2 (en)
JPS6017462B2 (en) Zn alloy anti-rust pigment powder for highly corrosion-resistant anti-rust paints
JPH01311178A (en) High corrosion resistant coating
WO2005116148A1 (en) Paint for steel product excellent in corrosion resistance and rust resistance
JP2003171782A (en) Steel for electric corrosion protection, coating material for electric corrosion protection, and marine structure of excellent electric corrosion protection property
JPH0551791A (en) Zn-ni-p organic composite plated steel sheet having excellent corrosion resistance, coating adhesion and pitting resistance,

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110613

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120426

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5007424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250