JPH0273932A - Highly corrosion resistant zn-mg alloy powder - Google Patents
Highly corrosion resistant zn-mg alloy powderInfo
- Publication number
- JPH0273932A JPH0273932A JP22627988A JP22627988A JPH0273932A JP H0273932 A JPH0273932 A JP H0273932A JP 22627988 A JP22627988 A JP 22627988A JP 22627988 A JP22627988 A JP 22627988A JP H0273932 A JPH0273932 A JP H0273932A
- Authority
- JP
- Japan
- Prior art keywords
- alloy powder
- phase
- rust
- powder
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims abstract description 74
- 238000005260 corrosion Methods 0.000 title claims abstract description 38
- 230000007797 corrosion Effects 0.000 title claims abstract description 33
- 229910000861 Mg alloy Inorganic materials 0.000 title description 6
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 52
- 239000000956 alloy Substances 0.000 claims abstract description 52
- 229910009369 Zn Mg Inorganic materials 0.000 claims abstract description 35
- 229910007573 Zn-Mg Inorganic materials 0.000 claims abstract description 35
- 229910052725 zinc Inorganic materials 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 2
- 239000003973 paint Substances 0.000 abstract description 40
- 229910000831 Steel Inorganic materials 0.000 abstract description 32
- 239000010959 steel Substances 0.000 abstract description 32
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 abstract description 23
- 241001163841 Albugo ipomoeae-panduratae Species 0.000 abstract description 6
- 238000004090 dissolution Methods 0.000 abstract description 4
- 230000002829 reductive effect Effects 0.000 abstract description 2
- 230000003449 preventive effect Effects 0.000 abstract 2
- 239000000853 adhesive Substances 0.000 abstract 1
- 230000001070 adhesive effect Effects 0.000 abstract 1
- 150000002500 ions Chemical class 0.000 abstract 1
- 239000011701 zinc Substances 0.000 description 40
- 238000000576 coating method Methods 0.000 description 26
- 239000011248 coating agent Substances 0.000 description 25
- 239000000463 material Substances 0.000 description 14
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 13
- 230000000694 effects Effects 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 238000011282 treatment Methods 0.000 description 6
- 239000003822 epoxy resin Substances 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- 229920000647 polyepoxide Polymers 0.000 description 5
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 4
- 229910001425 magnesium ion Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229910009367 Zn M Inorganic materials 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- -1 chlorine ions Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- YWYZEGXAUVWDED-UHFFFAOYSA-N triammonium citrate Chemical compound [NH4+].[NH4+].[NH4+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O YWYZEGXAUVWDED-UHFFFAOYSA-N 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 229910021511 zinc hydroxide Inorganic materials 0.000 description 1
Landscapes
- Paints Or Removers (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、例えば防錆塗料として用いたときに優れた防
食能を発揮するZn−Mg系合金粉末に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a Zn-Mg alloy powder that exhibits excellent anticorrosion ability when used, for example, as an anticorrosive paint.
[従来の技術]
産業機械、車両、建築物、化学工業施設や電力施設、そ
の他各種構造物に用いられている鉄鋼材料の腐食対策に
ついては、それらの使用環境に応じて合金組成的或は金
属組織的な腐食対策が施されているが、簡便な表面保護
対策として鉄鋼材料の表面に塗料を塗布することが行な
われている。[Prior Art] Corrosion countermeasures for steel materials used in industrial machinery, vehicles, buildings, chemical industry facilities, power facilities, and other various structures are based on alloy compositions or metals depending on the environment in which they are used. Although structural corrosion countermeasures have been taken, a simple surface protection measure is to apply paint to the surface of steel materials.
しかし、主に有機系樹脂よりなる塗膜層を鉄鋼材料表面
に形成して、該塗膜層で鉄t14trA料の表面を使用
環境から物理的に遮断するだけでは、塗膜自身が鉄鋼材
料に対する犠牲防食能を全く有しておらないので、塗膜
自体が劣化或は損傷を受た場合には、たちまちにして素
地である鉄鋼材料の腐食がおこり、赤錆の発生や塗膜の
ふくれ或は剥離が生ずる。However, simply forming a coating layer mainly made of organic resin on the surface of the steel material and physically shielding the surface of the iron t14trA material from the usage environment does not allow the coating film itself to be Since it does not have any sacrificial corrosion protection ability, if the paint film itself deteriorates or is damaged, the underlying steel material will immediately corrode, resulting in the formation of red rust, blistering of the paint film, or Peeling occurs.
そのため鉄鋼材料表面にクロメート処理等の化成処理を
施したり、或は亜鉛めっきを施した上で塗装することも
行なわれているが、使用環境によっては必ずしも十分と
は言えない。For this reason, chemical conversion treatments such as chromate treatment are applied to the surface of steel materials, or zinc plating is applied and then painted, but this is not always sufficient depending on the usage environment.
これに対し最近は塗膜成分を亜鉛粉末と有機系樹脂で構
成したジンクリッチペイントが開発されている。このジ
ンクリッチペイントは塗膜における亜鉛粉末の犠牲防食
作用によって鉄鋼材料の腐食を抑制し、また亜鉛粉末の
導電性を利用して電着塗装やスポット溶接を可能とする
など多くの特長を持った防錆塗料である。In response to this, recently, zinc-rich paints have been developed whose coating components are composed of zinc powder and organic resin. This zinc-rich paint has many features, such as suppressing corrosion of steel materials through the sacrificial anticorrosive action of zinc powder in the coating film, and enabling electrodeposition coating and spot welding by utilizing the conductivity of zinc powder. It is an anti-rust paint.
しかしながらジンクリッチペイントを塗布した塗膜は、
前述の様に亜鉛の犠牲防食能を利用して防食性を発揮さ
せるものであるため、使用環境によっては、亜鉛の腐食
による消失速度が大きく鋼材に対する保護作用が長続き
しない。そこで塗膜中の亜鉛粉末の含有量を高めたり、
塗膜を厚くして鉄鋼材料に対する保護作用を多少でも持
続させる様にしている。しかしこれらの手段は単にコス
ト高を招く非木質的な解決手段である他、鉄鋼材料に対
する塗膜の密着性を悪化させたり、塗膜そのもののパウ
ダリング性を悪くして、加工性を損ねている。また製品
によっては塗膜厚に制限を受りる場合もあるので上記手
段は工業的に万全なものとは言えない。However, the paint film applied with zinc-rich paint,
As mentioned above, since the sacrificial anticorrosion ability of zinc is used to exhibit corrosion protection, depending on the usage environment, the rate of loss of zinc due to corrosion is high and the protective effect on steel materials does not last long. Therefore, by increasing the content of zinc powder in the coating film,
The coating film is made thicker to maintain its protective effect on steel materials. However, these methods are non-wood solutions that simply increase costs, and they also worsen the adhesion of the coating film to steel materials, worsen the powdering properties of the coating film itself, and impair workability. There is. Further, depending on the product, there may be restrictions on the coating thickness, so the above-mentioned means cannot be said to be industrially perfect.
この様な状況であるから、従来のジンクリッチベイン]
・の長所を保持したまま更に高い防食能を有し、且つ鋼
材に対する犠牲防食能を長期間に亘って発揮し得るジン
クリッチペイントに対するニーズが高まっており、例え
ば特開昭59−52645号、同59−167249号
、同59−198142号公報等には亜鉛粉末の他にZ
n−Mg合金粉末やMn粉末を含有させたジンクリッチ
ペイントが提案され、また特開昭59 159334号
公報には防錆顔料とZnMg合金粉末を含有する塗料に
関する技術が開示されている。たしかにこれらの混合塗
料を塗布すると、Zn粉末単独のものや防錆顔料のみの
ものに比べて防食性や加工性は向上する。Due to this situation, conventional zinc rich vein]
There is a growing need for zinc-rich paints that have even higher anti-corrosion ability while retaining the advantages of ・and can exhibit sacrificial anti-corrosion ability for steel materials over a long period of time. In addition to zinc powder, Z
A zinc-rich paint containing n-Mg alloy powder or Mn powder has been proposed, and Japanese Patent Application Laid-Open No. 159334/1983 discloses a technique regarding a paint containing a rust-preventing pigment and ZnMg alloy powder. It is true that when these mixed paints are applied, the corrosion resistance and processability are improved compared to those using only Zn powder or only antirust pigments.
しかし上記塗料を適用しても防錆性や加工性が十分であ
るとは言え−す、また上記公報中にはZ n −Mg合
金粉末の防食性におよぼす効果、特にZn−Mg合金中
のMg含有量と防食性の相関等に関しては何ら開示され
ておらす、唯一つ特開昭59〜198142号公報中に
おいて、工業的に安価に製造できるという単なる製法上
の理由に基づいてZ n −M g合金中のMg含有量
を規制することが述べられているのみである。However, even if the above paint is applied, it can be said that the rust prevention property and workability are sufficient, and the above publication also describes the effect of the Zn-Mg alloy powder on the corrosion resistance, especially the effect of Zn-Mg alloy powder on the corrosion resistance. In the only Japanese Patent Application Laid-open No. 1981-142, which discloses nothing about the correlation between Mg content and corrosion resistance, Z n − It only mentions regulating the Mg content in the Mg alloy.
[発明が解決しようとする課題]
そこて木発明者等はMgの好ましい配合量について検討
してみた。[Problems to be Solved by the Invention] Therefore, the inventors of the present invention investigated the preferable amount of Mg to be added.
今仮にMg含有量が40%以上にも及ぶ高MgのZn−
Mg合金粉末を用いたとすると、Znと合金化していな
いMgが系中に存在することになる。このMgは鉄鋼材
料に対する犠牲防食能を有しているが、Znに比べて電
気化学的に卑な金属であるため純Znより腐食による消
失速度が極めて速く、Zn−Mg合金粉末全体として見
れば犠牲防食作用を示す期間は純Zn粉末を用いたもの
とさほど変らず、場合によっては純Zn粉末を用いた場
合より短くなってしまう。更にMg相があるレベル以上
になると腐食環境下において、Mgの溶解反応(アノー
ド反応)に対してH2の発生反応(カソード反応)がお
こり、このH2は塗膜ふくれ及び剥離の原因となる。ま
たMgはZnに比べて高価であるのでMg含有量の多過
ぎるZn−Mg合金粉末を用いることはコスト的にも不
利になる。Now suppose that high Mg Zn-
If Mg alloy powder is used, Mg that is not alloyed with Zn will exist in the system. This Mg has a sacrificial corrosion protection ability for steel materials, but since it is an electrochemically less base metal than Zn, it disappears at a much faster rate due to corrosion than pure Zn, and when viewed as a whole Zn-Mg alloy powder, The period during which the sacrificial anticorrosion effect is exhibited is not much different from that when pure Zn powder is used, and in some cases, it is shorter than when pure Zn powder is used. Furthermore, when the Mg phase exceeds a certain level, a H2 generation reaction (cathode reaction) occurs in response to the Mg dissolution reaction (anode reaction) in a corrosive environment, and this H2 causes paint film blistering and peeling. Furthermore, since Mg is more expensive than Zn, using a Zn-Mg alloy powder with an excessively large Mg content is disadvantageous in terms of cost.
上記状況に鑑み、本発明においてはZn−Mg合金粉末
の防食性に及ぼすMgの影響について鋭意研究し、防錆
塗料として用いたときに鉄鋼材料に対して従来よりも優
れた耐食性を付与することがてきるZn−Mg合金粉末
について検討した。In view of the above circumstances, the present invention has conducted extensive research on the influence of Mg on the anticorrosion properties of Zn-Mg alloy powder, and aims to impart superior corrosion resistance to steel materials than before when used as an anticorrosive paint. We investigated the Zn-Mg alloy powder that can be used in this study.
[課題を解決するための手段コ
上記課題を解決することのできた本発明の高耐食性Zn
−Mg系合金粉末とはZn1Mgおよび不可避不純物か
らなるZn−Mg系合金粉末であって、該Z n −M
g系合金が実質的にZn2Mg相およびZn相より構
成されていることを要旨とするものである。[Means for solving the problem] Highly corrosion resistant Zn of the present invention that can solve the above problem
-Mg-based alloy powder is Zn-Mg-based alloy powder consisting of Zn1Mg and inevitable impurities, and the Zn-M
The gist is that the g-based alloy is substantially composed of a Zn2Mg phase and a Zn phase.
「作用]
本発明者らは純Zn粉末、純Mg粉末および種々組成の
Zn−Mg合金粉末を作成し、乾燥後の塗膜成分が純Z
n粉末とエポキシ系樹脂からなる様な塗料、純Mg粉末
とエポキシ樹脂からなる様な塗料およびMg含有量の異
なる各WiZ n −Mg合金粉末とエポキシ系樹脂か
らなる様な各種塗料を作成した。そしてこれらの塗料を
乾燥後の塗膜厚が5μm、該塗膜中のZn粉末、Mg粉
末またはZn−Mg合金粉末の含有量が80重量%(以
下単に%と記ず)となるように脱脂鋼板の表面にロール
コート法により塗布した。さらにJIS 22371
に基づいて塩水噴露試験を行ない鋼板の腐食による赤錆
発生時間を調べた。その結果を第1表に示す。また前記
夫々の金属粉末についてX線回折分析を行ない、それぞ
れの金属粉末を構成する相構造について調べた。その結
果を第1表にイ)を記する。"Function" The present inventors created pure Zn powder, pure Mg powder, and Zn-Mg alloy powder of various compositions, and after drying, the coating film components were pure Z.
Various paints were prepared, including a paint made of n powder and an epoxy resin, a paint made of pure Mg powder and an epoxy resin, and a paint made of WiZ n -Mg alloy powders with different Mg contents and an epoxy resin. These paints were degreased so that the film thickness after drying was 5 μm, and the content of Zn powder, Mg powder, or Zn-Mg alloy powder in the paint film was 80% by weight (hereinafter simply referred to as %). It was applied to the surface of a steel plate by a roll coating method. Furthermore, JIS 22371
Based on this, a salt water spray test was conducted to investigate the time required for red rust to develop due to corrosion of steel plates. The results are shown in Table 1. In addition, X-ray diffraction analysis was performed on each of the metal powders to investigate the phase structure constituting each metal powder. The results are shown in Table 1.
弔 1表 第1表から次の様なことが明らかとなった。Condolences 1 table The following things became clear from Table 1.
■純Zn粉末および純Mg粉末を用いたものは赤錆発生
時間が短かく、犠牲防食能を維持する能力か小さい。更
に純Mg粉末を用いたものでは腐食試験開始後、間もな
く塗膜ふくれ乃至塗膜剥離が発生し、素地鋼板と塗膜が
分離された状態となった。(2) Those using pure Zn powder and pure Mg powder have a short red rust generation time and have a low ability to maintain sacrificial corrosion protection. Furthermore, in the case where pure Mg powder was used, the paint film blistered or peeled off shortly after the start of the corrosion test, and the base steel sheet and the paint film were separated.
■Zn−M&合金粉末を用いたものは純Zn粉末や純M
g粉末を用いたものに比べて、赤錆発生時間が長くなっ
ており、中でもZn2Mg相とZn相より構成されてい
るZn−Mg合金を用いたものは赤錆発生時間が長く最
も耐食性に優れていた。またMg相を有するZn−Mg
合金粉末を用いたものにおいては純Mg粉末を用いたも
のと同様に塗膜ふくれ乃至塗膜剥離を生じ、素地鋼板に
赤錆が発生した。■Those using Zn-M & alloy powder are pure Zn powder and pure M.
Compared to those using g powder, the time to develop red rust was longer, and among them, the one using Zn-Mg alloy, which is composed of Zn2Mg phase and Zn phase, had a longer time to develop red rust and had the best corrosion resistance. . Also, Zn-Mg with Mg phase
In the case where alloy powder was used, as in the case where pure Mg powder was used, the paint film blistered or peeled, and red rust occurred on the base steel plate.
以上のことから、Zn−Mg系合金粉末においてZn2
Mg相およびZn相より構成されているZn−Mg系合
金粉末を防錆塗料に用いると、素地鋼板に対して犠牲防
食能を長時間発揮し優れた防食塗料を提供することがわ
かる。From the above, Zn2 in Zn-Mg alloy powder
It can be seen that when a Zn-Mg alloy powder composed of an Mg phase and a Zn phase is used in a rust-preventing paint, it exhibits sacrificial anti-corrosion ability against the base steel plate for a long time, providing an excellent anti-corrosion paint.
次いて本発明者等はZn2Mg相およびZn相より構成
されるZn−Mg系合金粉末が最も顕著な防食能を有す
る理由について検討した。その結果却下の3点によるも
のであることが明らかとなった。Next, the present inventors investigated the reason why a Zn-Mg alloy powder composed of a Zn2Mg phase and a Zn phase has the most remarkable anticorrosion ability. As a result, it became clear that the rejection was based on three points.
■実質的にZn2Mg相とZn相よりなるZnMg系合
金粉末は他の金属相を有するZn−Mg系合金粉末と同
様に素地鋼板に対して腐食環境下において犠牲防食能を
有している。その上池の金属相を有するものよりも溶解
速度が小さいため該合金粉末が消失してしまうまでの時
間が長く、結果として長時間に亘って素地鋼板を保護す
る。この様な作用はZn2Mg相とZn相の適度なバラ
ンス配分によって成し得るものであって、Zn含有量の
高いZn11Mg2やMgを含有するZnM g等の金
属間化合物相ではその作用が小さい。(2) A ZnMg alloy powder consisting essentially of a Zn2Mg phase and a Zn phase has a sacrificial anticorrosion ability against a base steel plate in a corrosive environment, similar to Zn-Mg alloy powders having other metal phases. Moreover, since the dissolution rate is lower than that of those having a metal phase, it takes a longer time for the alloy powder to disappear, and as a result, the base steel sheet is protected for a long time. Such an effect can be achieved by an appropriate balance distribution between the Zn2Mg phase and the Zn phase, and the effect is small in intermetallic compound phases such as Zn11Mg2 with a high Zn content and ZnMg containing Mg.
■塩素イオンが存在する様な腐食環境下て純Zn粉末と
Z n−M g系合金粉末を比較すると、形成される錆
(白錆)の化学構造が異なる。即ち純Zn粉末からはZ
nOで示される白錆が発生し、このZnOは塗膜との密
着性も悪く、ポーラスで且つ電気伝導度が高いので、腐
食環境下では塗膜中のZn粉末を保護する作用が小さい
。一方Zn−Mg系合金粉末からはZ n C12・4
Z n(OH)2で示される白錆を形成する。この錆
は六方晶結晶体が塗膜の厚み方向に配列した緻密な錆層
を形成し、錆層の密着性もZnOからなる白錆層に比較
して優れており、電気伝導性も小さい。したがって塗膜
層を保護する作用が大きくなるだけでなくZn−Mg系
合金粉末の溶出速度は更に低くなる。またZn−Mg系
合金粉末中のMgは腐食環境下でMgイオンとなって溶
出し、一部は錆層中にとどまり、ZnCl2・4Zn(
OH)2がZnOに進行するのを抑制する。(2) When pure Zn powder and Zn-Mg alloy powder are compared in a corrosive environment where chlorine ions are present, the chemical structure of the rust (white rust) that is formed is different. That is, from pure Zn powder, Z
White rust indicated by nO occurs, and since this ZnO has poor adhesion to the paint film, is porous, and has high electrical conductivity, it has little effect in protecting the Zn powder in the paint film in a corrosive environment. On the other hand, from Zn-Mg alloy powder, ZnC12.4
Forms white rust represented by Zn(OH)2. This rust forms a dense rust layer in which hexagonal crystals are arranged in the thickness direction of the coating film, and the adhesion of the rust layer is also superior to that of a white rust layer made of ZnO, and the electrical conductivity is also low. Therefore, not only the effect of protecting the coating film layer is increased, but also the elution rate of the Zn-Mg alloy powder is further reduced. In addition, Mg in the Zn-Mg alloy powder becomes Mg ions and elutes in a corrosive environment, and some of it remains in the rust layer and forms ZnCl2.4Zn(
OH)2 is inhibited from progressing to ZnO.
この様にZn−Mg系合金粉末より溶出するMgイオン
は防食性に優れたZ n C12・4Zn(OH)2を
維持するために不可欠な成分であることが分かった。尚
錆層中に存在してこの様な働きをするMgイオンの最適
量は定かではないが、本発明者等の検討の結果によれば
、Zn2 Mg相とZn相からなるZn−Mg系合金粉
末から溶出して錆層にとどまる程度のM gイオン量が
その最適量であるということが分かった。It has thus been found that Mg ions eluted from the Zn-Mg alloy powder are an essential component for maintaining ZnC12.4Zn(OH)2 with excellent corrosion resistance. Although the optimum amount of Mg ions that exist in the rust layer and have this function is not certain, according to the results of the study by the present inventors, a Zn-Mg alloy consisting of a Zn2 Mg phase and a Zn phase. It has been found that the optimum amount of Mg ions is such that it is eluted from the powder and remains in the rust layer.
■純M g合金粉末あるいはMg相を有するZn−Mg
系合金粉末は前記した様に腐食環境下において溶出速度
が速く、またMgの溶解によるアノード反応に対するカ
ソード反応によってH2ガスを発生して塗膜ふくれ乃至
塗膜剥離を生ずる。これに対しZn2Mg相とZn相か
らなるZn−Mg系合金粉末にはMg相が含まれておら
ずこの様な現象は生じない。■Pure Mg alloy powder or Zn-Mg with Mg phase
As described above, the alloy powder has a high elution rate in a corrosive environment, and also generates H2 gas by the cathode reaction in response to the anode reaction due to the dissolution of Mg, causing paint blistering or peeling. On the other hand, Zn--Mg based alloy powder consisting of Zn2Mg phase and Zn phase does not contain Mg phase, and thus such a phenomenon does not occur.
以上述べた様にZn−Mg系合金粉末はどの様な構成か
ら成るものでも良いというわけではなく、実質的にZn
2Mg相とZn相から構成されているものが最も高い耐
食性を示す。As mentioned above, the Zn-Mg alloy powder does not have to have any composition;
The one composed of 2Mg phase and Zn phase exhibits the highest corrosion resistance.
次に木発明者らは塗膜中におけるZn−Mg系合金粉末
の含有量が耐食性にどの様な影響を及ぼすかについて検
討した。その結果、塗膜中におけ1す
る該粉末の含有量が増加すると素地鋼板に対する犠牲防
食能は向上するが、含有量が80%程度でほぼ一定とな
り、90%を超えて含有させたものについてはむしろ塗
膜密着性が低下し、加工性に悪影響を及ぼすことがわか
った。よって該Zn−Mg系合金粉末の塗膜中における
含有量は90%以下にすることが望まれる。また含有量
の下限については特に限定されるものではないが、犠牲
防食能の高い60%以上にすることが望まれる。Next, the inventors studied how the content of Zn-Mg alloy powder in the coating film affects corrosion resistance. As a result, as the content of this powder in the coating film increases, the sacrificial anticorrosion ability against the base steel sheet improves, but the content remains almost constant at about 80%, and when the content exceeds 90%, On the contrary, it was found that the adhesion of the coating film decreased and had an adverse effect on processability. Therefore, it is desirable that the content of the Zn-Mg alloy powder in the coating film be 90% or less. The lower limit of the content is not particularly limited, but it is desirable to set it to 60% or more, which provides high sacrificial corrosion protection.
更にZn−Mg系合金粉末の粒径について検討を行なっ
た結果、Zn−Mg系合金粉末の平均粒径が15μmを
超えて大きくなると、塗膜中に同じ重量比で含有させて
も耐食性が若干低下する傾向が認められ、また塗装後の
表面の凹凸が顕著になり、外観上好ましくない。従って
Zn−Mg系合金粉末の平均粒径は15μm以下、好ま
しくは5μm以下がよい。Furthermore, as a result of examining the particle size of the Zn-Mg alloy powder, it was found that when the average particle diameter of the Zn-Mg alloy powder exceeds 15 μm, the corrosion resistance slightly decreases even if it is contained in the same weight ratio in the coating film. A tendency to decrease was observed, and the surface became noticeably uneven after painting, which was unfavorable in terms of appearance. Therefore, the average particle size of the Zn-Mg alloy powder is preferably 15 μm or less, preferably 5 μm or less.
また防錆塗料を製造するに際して、バインダとして用い
る樹脂としては、エポキシ系樹脂、ウレタン系樹脂、ア
クリル系樹脂、フェノキシ果樹脂、ポリエステル系樹脂
およびその他一般塗料のバインダーとして用いるものを
使用することができる。また塗料のタイプとしてはエマ
ルジョンタイプ、溶剤タイプのいずれでも良く、Mg−
Zn系合金粉末の防錆性を損なわない限り分散剤その他
の添加剤を加えることもできる。In addition, when manufacturing anti-corrosion paints, resins used as binders include epoxy resins, urethane resins, acrylic resins, phenoxy fruit resins, polyester resins, and other resins used as binders for general paints. . The type of paint may be either emulsion type or solvent type, and Mg-
Dispersants and other additives can also be added as long as they do not impair the rust prevention properties of the Zn-based alloy powder.
上記の様にして得た防錆塗料は一般的には直接鋼板に塗
布するが、燐酸塩処理、クロメート処理等を施した鋼板
に適用すれば、より優れた耐食性を有する塗装鋼板を得
ることができる。またこの防錆塗料を塗布した各fli
t鋼板にカチオン電着塗装または通常のスプレー塗装等
の方法で塗膜を形成してやると防食機能をさらに高める
ことができる。The anticorrosive paint obtained as described above is generally applied directly to steel plates, but if applied to steel plates that have been subjected to phosphate treatment, chromate treatment, etc., it is possible to obtain coated steel plates with better corrosion resistance. can. In addition, each fli coated with this anti-rust paint
The anticorrosion function can be further enhanced by forming a coating film on the steel plate by cationic electrodeposition coating or ordinary spray coating.
[実施例]
実施例1
冷延鋼板0.7mmtをアルカリ脱脂して水洗乾燥し、
燐酸塩処理を施して燐酸塩皮膜を形成させた後、第2表
に示す塗膜成分からなる各種金属粉末と、汎用のエポキ
シ系樹脂よりなる様な塗料を塗布し、各塗装鋼板を70
mmX 150mmに切断した。塗装を施していない裏
面および切断面はテープシールし、塩水噴露試験(5%
NaC1溶液35℃)によって鋼板の赤錆発生時間を調
べた。[Example] Example 1 A 0.7 mm thick cold-rolled steel plate was degreased with alkaline, washed with water, and dried.
After performing phosphate treatment to form a phosphate film, each coated steel plate was coated with a paint consisting of various metal powders consisting of the coating film components shown in Table 2 and a general-purpose epoxy resin.
It was cut into 150mm x 150mm. The unpainted back and cut surfaces were sealed with tape and subjected to a salt water spray test (5%
The red rust generation time of the steel plate was investigated using a NaCl solution (35°C).
結果を第2表に示す。The results are shown in Table 2.
第2表から明らかな様にZ n 2 M g相およびZ
n相より構成されているZn−Mg系合金粉末を用いて
塗膜を形成させた鋼板は、他の金属粉末を用いたものに
比べて、鋼板の赤錆発生時間が長いこと、および塗膜の
ふくれや剥離か無いことから、耐食性が優れていること
が分かる。As is clear from Table 2, Z n 2 M g phase and Z
Steel sheets on which a coating film is formed using Zn-Mg alloy powder, which is composed of n-phase, have a longer red rust generation time than those using other metal powders, and the coating film has a longer time to form. It can be seen that the corrosion resistance is excellent because there is no blistering or peeling.
実施例2
電気めっき法によってZn系めっき(Znめっき、Zn
−12%N1合金めっき)を施した鋼板0.7mmtに
クロメート処理を施してクロメート皮膜(クロム含有量
: 50 mg/m2)を形成させ、塗膜成分が第3表
に示す各種金属粉末とウレタン系樹脂からなる塗料を塗
布して塗膜を形成した。このようにして得た防錆塗装鋼
板を以下に示す様な塩水噴霧から湿潤までを1サイクル
として腐食試験を200サイクル行なった。Example 2 Zn-based plating (Zn plating, Zn
-12%N1 alloy plating) was subjected to chromate treatment to form a chromate film (chromium content: 50 mg/m2), and the coating film components were various metal powders and urethane shown in Table 3. A coating film was formed by applying a paint made of a resin based resin. The anticorrosive coated steel sheet thus obtained was subjected to a corrosion test for 200 cycles, with one cycle ranging from salt spray to wetness as shown below.
塩水DJ露(35℃x4hr)−乾燥(60℃×2hr
)→湿潤(50℃x2hr)
さらに腐食試験後の試験片をくえん酸アンモニウム溶液
で防錆した後、鋼板における侵食深さを測定した。結果
を第3表に示す。尚試験片のサイズは70mm×150
mmとし、非塗装面および切断面はテープシールを行な
って腐食試験を実施し、侵食深さは試験片における最も
深い穴あき部を測定した。Saltwater DJ Dew (35℃ x 4hr) - Drying (60℃ x 2hr)
) → Moisture (50° C. x 2 hr) Furthermore, after the test piece after the corrosion test was rust-proofed with an ammonium citrate solution, the corrosion depth in the steel plate was measured. The results are shown in Table 3. The size of the test piece is 70mm x 150
The corrosion test was carried out by tape-sealing the unpainted surface and the cut surface, and the corrosion depth was measured at the deepest perforated part of the test piece.
第3表から明らかな様に下地のZn系めっきの組成によ
って絶対的侵食深さは異なるが、本発明のZn2Mg相
およびZn相からなるZn−Mg系合金粉末を含有する
塗膜を形成させた防錆鋼板は他のものに比へて穴あき深
さが最も小さくなっていることが分かる。As is clear from Table 3, the absolute erosion depth varies depending on the composition of the underlying Zn-based plating, but a coating film containing the Zn-Mg-based alloy powder consisting of the Zn2Mg phase and Zn phase of the present invention was formed. It can be seen that the rust-proof steel plate has the smallest perforation depth compared to other types.
[発明の効果]
本発明は以上の様に構成されているので本発明のZn−
Mg系合金粉末を用いた防錆塗料は鉄鋼材料に対して優
れた防食能を発揮する。[Effects of the Invention] Since the present invention is configured as described above, the Zn-
Anticorrosion paints using Mg-based alloy powder exhibit excellent anticorrosion ability on steel materials.
Claims (1)
金粉末であって、該Zn−Mg系合金は実質的にZn_
2Mg相およびZn相より構成されていることを特徴と
する高耐食性Zn−Mg系合金粉末。A Zn-Mg alloy powder consisting of Zn, Mg and inevitable impurities, the Zn-Mg alloy containing substantially Zn_
A highly corrosion-resistant Zn-Mg alloy powder characterized by being composed of a 2Mg phase and a Zn phase.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22627988A JPH0273932A (en) | 1988-09-08 | 1988-09-08 | Highly corrosion resistant zn-mg alloy powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22627988A JPH0273932A (en) | 1988-09-08 | 1988-09-08 | Highly corrosion resistant zn-mg alloy powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0273932A true JPH0273932A (en) | 1990-03-13 |
Family
ID=16842721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22627988A Pending JPH0273932A (en) | 1988-09-08 | 1988-09-08 | Highly corrosion resistant zn-mg alloy powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0273932A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008029960A1 (en) | 2006-09-08 | 2008-03-13 | Nippon Steel Corporation | Zn ALLOY PARTICLES FOR HIGHLY ANTICORROSIVE AND RUST-INHIBITING PAINT, PROCESS FOR PRODUCTION OF THE PARTICLES, HIGHLY ANTICORROSIVE AND RUST-INHIBITING PAINT CONTAINING THE PARTICLES, HIGHLY CORROSION-RESISTING STEEL MATERIAL COATED WITH THE PAINT, AND STEEL STRUCTURES MADE BY USING THE STEEL MATERIAL |
WO2008038828A1 (en) | 2006-09-28 | 2008-04-03 | Nippon Steel Corporation | Highly corrosion-resistant rust-preventive coating material, steel material with high corrosion resistance, and steel structure |
WO2011058021A1 (en) * | 2009-11-10 | 2011-05-19 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Corrosion protection coatings, in particular for metals, selected from the group made up of aluminum, aluminum alloys, steel, and steel having a coating comprising zinc, and mixtures for the production thereof |
-
1988
- 1988-09-08 JP JP22627988A patent/JPH0273932A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008029960A1 (en) | 2006-09-08 | 2008-03-13 | Nippon Steel Corporation | Zn ALLOY PARTICLES FOR HIGHLY ANTICORROSIVE AND RUST-INHIBITING PAINT, PROCESS FOR PRODUCTION OF THE PARTICLES, HIGHLY ANTICORROSIVE AND RUST-INHIBITING PAINT CONTAINING THE PARTICLES, HIGHLY CORROSION-RESISTING STEEL MATERIAL COATED WITH THE PAINT, AND STEEL STRUCTURES MADE BY USING THE STEEL MATERIAL |
US8105699B2 (en) | 2006-09-08 | 2012-01-31 | Nippon Steel Corporation | Zn alloy particles for high corrosion resistance rust protection paint, method of production of particles, high corrosion resistance rust protection paint containing particles, high corrosion resistance steel material coated with paint, and steel structure having steel material |
WO2008038828A1 (en) | 2006-09-28 | 2008-04-03 | Nippon Steel Corporation | Highly corrosion-resistant rust-preventive coating material, steel material with high corrosion resistance, and steel structure |
US8114527B2 (en) | 2006-09-28 | 2012-02-14 | Nippon Steel Corporation | Highly corrosion-resistant, rust-prevention coating material, highly corrosion-resistant steel, and steel structure |
WO2011058021A1 (en) * | 2009-11-10 | 2011-05-19 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Corrosion protection coatings, in particular for metals, selected from the group made up of aluminum, aluminum alloys, steel, and steel having a coating comprising zinc, and mixtures for the production thereof |
EP3381987A1 (en) * | 2009-11-10 | 2018-10-03 | ECKART GmbH | Base body with anticorrosive coating and method for producing an anticorrosive coating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5640312B2 (en) | Zinc-based alloy-plated steel with excellent corrosion resistance and weldability and painted steel with excellent corrosion resistance | |
JPS60149788A (en) | Weldable painted steel sheet having excellent resistance to powdering | |
EP1726684B1 (en) | Shot material for mechanical plating, and high corrosion resistant coating using the same | |
JPH0212179B2 (en) | ||
JPH0273932A (en) | Highly corrosion resistant zn-mg alloy powder | |
JP6201012B2 (en) | Projection material for mechanical plating and highly corrosion-resistant coating | |
JPS5918765A (en) | Coating material composition for coated steel plate | |
JPH01311178A (en) | High corrosion resistant coating | |
JPS581705B2 (en) | Zn alloy anti-rust pigment powder for highly corrosion-resistant anti-rust paints | |
JP5014594B2 (en) | Surface treated steel | |
JP3543194B2 (en) | Chrome-free surface treatment agent for metal materials and surface-treated metal materials | |
JPS6241629B2 (en) | ||
JPS6017462B2 (en) | Zn alloy anti-rust pigment powder for highly corrosion-resistant anti-rust paints | |
JPH022422B2 (en) | ||
JP2000248374A (en) | Rust preventing treated steel | |
JPH0212176B2 (en) | ||
JP4392079B2 (en) | Painted metal plate with excellent anti-corrosion paint and corrosion resistance | |
JPS5952646A (en) | Welding painted steel plate having excellent powdering-resisting property | |
JPS5936871B2 (en) | High corrosion resistance composite coated steel plate | |
JPS6220024B2 (en) | ||
JPS59169850A (en) | Weldable coated steel plate having excellent corrosion protection | |
JPS61171778A (en) | Corrosion-proofing coating composition | |
JP2000282253A (en) | Rust-proof treatment and rust-proof treated metallic material | |
JPH028397A (en) | Rustproof steel sheet having superior suitability to coating by electrodeposition | |
JPH06228772A (en) | Surface-treated steel sheet with high corrosion resistance |