JPH028397A - Rustproof steel sheet having superior suitability to coating by electrodeposition - Google Patents
Rustproof steel sheet having superior suitability to coating by electrodepositionInfo
- Publication number
- JPH028397A JPH028397A JP15757988A JP15757988A JPH028397A JP H028397 A JPH028397 A JP H028397A JP 15757988 A JP15757988 A JP 15757988A JP 15757988 A JP15757988 A JP 15757988A JP H028397 A JPH028397 A JP H028397A
- Authority
- JP
- Japan
- Prior art keywords
- coating
- steel sheet
- electrodeposition
- alloy
- urethane resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 60
- 239000010959 steel Substances 0.000 title claims abstract description 60
- 238000000576 coating method Methods 0.000 title claims abstract description 57
- 239000011248 coating agent Substances 0.000 title claims abstract description 56
- 238000004070 electrodeposition Methods 0.000 title claims abstract description 31
- 238000007747 plating Methods 0.000 claims abstract description 34
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 25
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims abstract description 16
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 11
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 11
- 239000006087 Silane Coupling Agent Substances 0.000 claims abstract description 4
- 239000000126 substance Substances 0.000 claims abstract description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 11
- 239000000956 alloy Substances 0.000 claims description 11
- 239000002131 composite material Substances 0.000 claims description 5
- 238000005260 corrosion Methods 0.000 abstract description 27
- 230000007797 corrosion Effects 0.000 abstract description 26
- 229910000599 Cr alloy Inorganic materials 0.000 abstract description 15
- QQHSIRTYSFLSRM-UHFFFAOYSA-N alumanylidynechromium Chemical compound [Al].[Cr] QQHSIRTYSFLSRM-UHFFFAOYSA-N 0.000 abstract description 11
- 150000001875 compounds Chemical class 0.000 abstract 1
- 230000008878 coupling Effects 0.000 abstract 1
- 238000010168 coupling process Methods 0.000 abstract 1
- 238000005859 coupling reaction Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 33
- 238000000034 method Methods 0.000 description 16
- 239000011701 zinc Substances 0.000 description 13
- 229910019142 PO4 Inorganic materials 0.000 description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 8
- 239000010452 phosphate Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 238000010422 painting Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000010960 cold rolled steel Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000011247 coating layer Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000003973 paint Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 229910001297 Zn alloy Inorganic materials 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- 229910009369 Zn Mg Inorganic materials 0.000 description 1
- 229910007570 Zn-Al Inorganic materials 0.000 description 1
- 229910007573 Zn-Mg Inorganic materials 0.000 description 1
- 229910007567 Zn-Ni Inorganic materials 0.000 description 1
- 229910007614 Zn—Ni Inorganic materials 0.000 description 1
- -1 amino compound Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002440 hydroxy compounds Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- YWYZEGXAUVWDED-UHFFFAOYSA-N triammonium citrate Chemical compound [NH4+].[NH4+].[NH4+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O YWYZEGXAUVWDED-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/24—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2222/00—Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
- C23C2222/20—Use of solutions containing silanes
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Laminated Bodies (AREA)
- Chemical Treatment Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は自動車用車体、家庭用電気製品、建築材料等に
用いられる電着塗装性に優れた防錆鋼板に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a rust-preventing steel sheet with excellent electrodeposition coating properties, which is used for automobile bodies, household electric appliances, building materials, and the like.
[従来の技術]
鋼板の防錆技術としては色々な手段が知られているが、
防錆鋼板の中でもっとも一般的ものであるZn、Zn合
金めっき鋼板(以下Zn系めっき鋼板と記す)やAI、
A1合金めつき鋼板(以下A1めっき鋼板と記す)は素
地鋼板に対するめっ包金属の犠牲防食能を利用して防錆
を行うものであり、それぞれの特徴を生かし使用目的に
応じた使い分けが行なわれている。[Conventional technology] Various methods are known for rust prevention technology for steel plates.
Among the most common rust-proof steel sheets, Zn, Zn alloy plated steel sheets (hereinafter referred to as Zn-based plated steel sheets), AI,
A1 alloy-plated steel sheets (hereinafter referred to as A1-plated steel sheets) are used to prevent rust by utilizing the sacrificial anti-corrosion ability of the plating metal against the base steel sheet, and they can be used depending on the purpose of use by taking advantage of their respective characteristics. It is.
即ちZn系めっき鋼板については、めっき層表面に燐酸
塩処理を施すと優れた塗装性が得られるという性質を利
用し、塗装を施して美観の要求される自動車や一般家庭
用電気製品の塗装外板等として多く使用されている。In other words, for Zn-based plated steel sheets, we take advantage of the property that phosphate treatment on the surface of the plating layer provides excellent paintability. It is often used as a board.
他方Al系めっき鋼板は塗装性が悪く、耐食性に優れて
いるという利点を十分に生かす場が与えられていない。On the other hand, Al-based plated steel sheets have poor paintability and have not been given the opportunity to fully utilize their advantage of excellent corrosion resistance.
これはAIめっきでは塗装前処理として不可欠である燐
酸塩処理性(燐酸塩皮膜形成性)が非常に悪い為である
。したがってAI系めっき鋼板に塗装を施す時は塗装前
処理としてクロメート処理を行なっている。しかしクロ
メート処理に際しては有害なりロムイオンを含有する溶
液を使用することが必要であるため、製造環境上好まし
くないという問題があると共に必ずしも十分な塗装性が
得られる訳ではない。更にAl系めっぎ鋼板では電着塗
装を施すに当たって、電圧を上げていくとクレータ−と
呼ばれる塗装むらが発生してくるので、塗装電圧におの
ずと制限が生じ、生産効率の低下をきたす等の問題も有
り、Al系めっ籾鋼板を用いて製品を製造する際には塗
装性に起因する数多くの問題を有している。This is because AI plating has very poor phosphate treatment properties (phosphate film formation properties), which are essential as a pre-painting treatment. Therefore, when painting AI-based plated steel sheets, chromate treatment is performed as a pre-painting treatment. However, in the chromate treatment, it is necessary to use a solution containing harmful ROM ions, which poses the problem of being unfavorable in terms of the manufacturing environment, and does not necessarily provide sufficient paintability. Furthermore, when applying electrodeposition coating to Al-based steel sheets, as the voltage is increased, coating unevenness called craters occurs, which naturally limits the coating voltage and causes a decrease in production efficiency. There are also problems, and when manufacturing products using Al-based galvanized steel sheets, there are many problems due to paintability.
そこでA1系めっき鋼板における塗装性を改善する方法
としてA1めっき表面にジンクリッチペイントを塗布す
ることが行われている。しかしながらジンクリッチペイ
ントによる塗膜ではZnまたはZn合金粉末の含有量が
多いため、プレス加工等の成形加工を行なったときに、
樹脂層がパウダー状に剥離してこれが加工傷の原因とな
る等の問題がある。そこで皮膜中におけるZnまたはZ
n粉末の含有量を低く抑えることも考えられ、これによ
って加工性は良くなるであろうが、皮膜の電気伝導性が
悪くなり電着塗装性が悪くなる。Therefore, as a method for improving the paintability of A1-based plated steel sheets, a zinc-rich paint is applied to the A1-plated surface. However, since the coating film made with zinc-rich paint contains a large amount of Zn or Zn alloy powder, when forming processes such as press working are performed,
There are problems such as the resin layer peeling off into powder form, which causes processing scratches. Therefore, Zn or Z in the film
It may be possible to keep the content of n powder low, which would improve processability, but the electrical conductivity of the film would deteriorate, resulting in poor electrodeposition coating properties.
[発明が解決しようとする課題]
以上の様にAl系めっき鋼板は塗装性が悪いので、せっ
かくの優れた耐食性と耐熱性を有しているにもかかわら
ず、無塗装分野、例えば自動車マフラ一部材、一般電気
製品の内板あるいは建材用等のように塗装を施さなくて
も良い箇所に使用されることがほとんどであり、Zn系
めっき鋼板に比べて用途範囲が限定されている。[Problems to be Solved by the Invention] As described above, Al-based plated steel sheets have poor paintability, so although they have excellent corrosion resistance and heat resistance, they are not used in the non-painted field, such as automobile mufflers. It is mostly used in areas that do not require painting, such as parts, inner panels of general electrical appliances, and building materials, and its range of applications is more limited than that of Zn-based plated steel sheets.
上記状況に鑑み本発明においては高耐食性を有し、しか
も電着塗装性および塗膜密着性に優れた防錆鋼板につい
て検討した。In view of the above circumstances, in the present invention, a rust-proof steel plate having high corrosion resistance and excellent electrodeposition coating properties and coating adhesion was investigated.
[課題を解決するための手段]
上記課題を解決することのできた本発明とは、鋼板上に
Crを5〜30重量%含有するAlCr合金めっき層が
形成され、クロメート処理層を介しまたは介さずにウレ
タン系樹脂および二酸化珪素を主成分とする皮膜が形成
されていることを要旨とするものであり、中でもウレタ
ン系樹脂および二酸化珪素がシランカップリング剤を介
して複合物質を形成しているものは塗膜密着性がより優
れたものとなる。[Means for Solving the Problems] The present invention that has solved the above problems is that an AlCr alloy plating layer containing 5 to 30% by weight of Cr is formed on a steel plate, with or without a chromate treatment layer. The gist is that a film containing urethane resin and silicon dioxide as main components is formed on the surface, and in particular, urethane resin and silicon dioxide form a composite material through a silane coupling agent. The coating film adhesion is even better.
[作用コ
以下本発明の完成に至った研究の経緯に沿って説明する
。[Function] The following will explain the process of the research that led to the completion of the present invention.
かねてより本発明者らは、A1めっき層内体の耐食性を
改善する目的で、Atに種々の合金化元素を添加したA
1−合金めつき層を冷延鋼板上に形成し、At系めっき
鋼板の耐食性がどの様に変るかを検討していた。For some time now, the present inventors have developed A by adding various alloying elements to At for the purpose of improving the corrosion resistance of the inner body of the A1 plating layer.
1- An alloy plating layer was formed on a cold-rolled steel sheet, and it was investigated how the corrosion resistance of the At-based plated steel sheet would change.
耐食性を評価するための腐食試験は、以下に示す様に塩
水噴露から乾燥までを1サイクル(1サイクル/30分
)とし、
塩水浸漬(5%NaC1溶液、35℃×7.5分)→湿
潤(R895%以上、40℃×15分)→乾燥(60℃
×7.5分)
上述のサイクル腐食試験を1000回行なった後、冷延
鋼板の腐食による穴あ籾深さを調べた。The corrosion test for evaluating corrosion resistance consists of one cycle (1 cycle/30 minutes) from salt water spray to drying as shown below, and salt water immersion (5% NaCl solution, 35°C x 7.5 minutes) → Wet (R895% or higher, 40℃ x 15 minutes) → Dry (60℃
x 7.5 minutes) After performing the above-mentioned cyclic corrosion test 1000 times, the depth of pit holes caused by corrosion in the cold-rolled steel plate was investigated.
その結果合金化元素としてCrを用いたAl−Cr合金
めつき鋼板では穴あき深さが最も小さく耐食性に優れて
いることが分かった。As a result, it was found that the Al-Cr alloy plated steel sheet using Cr as the alloying element had the smallest perforation depth and excellent corrosion resistance.
そこで次にAl−Cr合金めっき層中のCr含有量を種
々変更して防食性(上記サイクル試験における穴あき深
さ)がどの様に変化するかを調べた。その結果を第1図
に示す。第1図から明らかな様にめっき層中のCr含有
量が5%以上になれば素地鋼板の穴あき深さが顕著に改
善され、30%を超えると穴あき深さの低減効果が減少
し始め50%になるとその効果はほとんど認められなく
なる。即ちめっき層中のCrは多ければ良いというので
はなく5〜30%という特定された範囲内に限って優れ
た防食能を顕著に発揮する。Therefore, we next investigated how the corrosion resistance (hole depth in the above cycle test) changes by variously changing the Cr content in the Al--Cr alloy plating layer. The results are shown in FIG. As is clear from Figure 1, when the Cr content in the coating layer is 5% or more, the perforation depth of the base steel sheet is significantly improved, and when it exceeds 30%, the effect of reducing the perforation depth decreases. At the beginning, when it reaches 50%, the effect becomes almost unrecognizable. That is, the amount of Cr in the plating layer is not limited to a large amount, but only within a specified range of 5 to 30% will exhibit excellent anticorrosion ability.
この様な検討成果を踏まえて塗装性の改善についての検
討を開始した。即ちAl−Cr合金めっ籾層中における
Cr含有量を5〜30%にして、塗装前処理となる燐酸
塩処理性について検討を行なった。Al系めりきの燐酸
塩処理性が悪いことは前述した通りであるが、Al−C
r合金めっきに関して調べたところでも第2図のNo、
1〜3に示す様に従来の傾向を確認する様な結果が得ら
れ、該めっき層表面には燐酸塩皮膜がほとんど付着しな
いことが分かった[尚比較のためにZn系(2層)めっ
き鋼板および冷延鋼板を同様に処理したものについても
併記する]。Based on the results of these studies, we began investigating ways to improve paintability. That is, the Cr content in the Al--Cr alloy plating layer was set to 5 to 30%, and the phosphate treatment properties used as pre-painting treatment were investigated. As mentioned above, Al-based plating has poor phosphate treatment properties, but Al-C
When I investigated r-alloy plating, No. 2 in Figure 2 was found.
As shown in 1 to 3, results were obtained that confirmed the conventional trends, and it was found that almost no phosphate film adhered to the surface of the plating layer [For comparison, Zn-based (two-layer) plating Steel plates and cold-rolled steel plates treated in the same manner are also listed].
次いで前記燐酸塩処理を施した各種鋼板にカチオン電着
塗装を行ない、電着塗装電圧と塗膜におけるクレータ−
発生状態の関係を調べた。その結果を同じく第2図に示
す。Next, cationic electrodeposition coating was applied to various steel plates that had been subjected to the phosphate treatment, and the electrodeposition coating voltage and crater in the coating film were determined.
We investigated the relationship between occurrence conditions. The results are also shown in FIG.
第2図から明らかな様に塗装電圧が190〜210vで
クレータ−が発生し始め、塗装後の外観が著しく損われ
ることが分かった。これは純AIめっき鋼板のときと同
様の結果であり、A1−Cr合金めっき鋼板においても
従来のA1めっき鋼板と同様燐酸塩処理性および電着塗
装性が悪いため塗膜密着性不良、外観不良となり塗装用
めっき鋼板としては適していないことが分かった。As is clear from FIG. 2, craters began to occur at a coating voltage of 190 to 210 V, and the appearance after coating was significantly impaired. This is the same result as for the pure AI-plated steel sheet, and the A1-Cr alloy-plated steel sheet has poor phosphate treatment and electrodeposition coating properties as well as the conventional A1-plated steel sheet, resulting in poor coating adhesion and poor appearance. Therefore, it was found that it was not suitable as a plated steel sheet for painting.
そこでAl−Cr合金めっき鋼板の電着塗装性を改善す
べくさらに鋭意研究を行なったところ、At−Crめっ
き層の上にウレタン系樹脂および二酸化珪素を主成分と
する混合物または複合物質よりなる皮膜層、あるいはウ
レタン系樹脂と二酸化珪素がシランカップリング剤を介
して複合物質となっている皮膜層を形成させると、電着
塗装時のクレータ−が発生しにくくなり電着塗装性が改
善されることが分かった。尚木発明者等はウレタン系樹
脂以外のエポキシ系樹脂、アクリル系樹脂、フェノール
系樹脂、その他各種合成樹脂と二酸化珪素について同様
に検討を行なったが、前記ウレタン系樹脂と二酸化珪素
を主成分とする混合物または複合物質よりなる皮膜層を
形成させた場合に限って電着塗装性が顕著に改善され、
且つプレス加工等の成形に際しても塗膜剥離を生じない
といった優れた効果を発揮することが分かった。Therefore, we conducted further intensive research to improve the electrodeposition coating properties of Al-Cr alloy plated steel sheets, and found that a film made of a mixture or composite material mainly composed of urethane resin and silicon dioxide was formed on the At-Cr plating layer. By forming a layer or a film layer in which urethane resin and silicon dioxide are a composite material through a silane coupling agent, craters are less likely to occur during electrodeposition coating and the electrodeposition coating properties are improved. That's what I found out. The inventors of Naoki and others conducted similar studies on epoxy resins other than urethane resins, acrylic resins, phenol resins, and various other synthetic resins, as well as silicon dioxide. Electrodeposition coating properties are markedly improved only when a film layer is formed of a mixture or composite material that
In addition, it was found that excellent effects such as no peeling of the coating film were exhibited even during molding such as press working.
ウレタン系樹脂と二酸化珪素を主成分とする皮膜におけ
るウレタン系樹脂とは有機ポリイソシアネートと多価ヒ
ドロキシ化合物および多価アミノ化合物の反応物等が非
限定的に挙げられる。尚用途によっては少量のエポキシ
系樹脂、アクリル系樹脂、フェノール系樹脂、弗素系樹
脂、ビニル系樹脂、エステル系樹脂等の1種以上が塗装
性および成形性を損わない程度に添加されていても良い
。また上記皮膜の耐食性を改善するために、該皮膜中に
成形加工性およびスポット溶接性を損わない程度の少量
のZn、Zn−Fe合金、Zn−Ni合金、Zn−A1
合金、Zn−Mg合金。Examples of the urethane resin in a film containing urethane resin and silicon dioxide as main components include, but are not limited to, reaction products of an organic polyisocyanate, a polyhydric hydroxy compound, and a polyvalent amino compound. Depending on the application, a small amount of one or more of epoxy resins, acrylic resins, phenolic resins, fluorine resins, vinyl resins, ester resins, etc. may be added to an extent that does not impair paintability and moldability. Also good. In addition, in order to improve the corrosion resistance of the coating, a small amount of Zn, Zn-Fe alloy, Zn-Ni alloy, Zn-Al
alloy, Zn-Mg alloy.
Zn−Al−Mg合金等のZn系粉末あるいは防錆顔料
等が添加されていても良い。ただし皮膜中のZn系粉末
または防錆顔料の粒径は数μm以下好ましくは1μm以
下のものを使用することが美観上好ましい。Zn-based powder such as Zn-Al-Mg alloy or antirust pigment may be added. However, the particle size of the Zn-based powder or anticorrosion pigment in the coating is preferably several μm or less, preferably 1 μm or less, from the viewpoint of aesthetics.
ウレタン系樹脂および二酸化珪素を主成分とする皮膜は
At−Crめっき鋼板に優れた電着塗装性を与えるため
の不可欠要件であるが、該皮膜の膜厚が大きくなると導
電性が低下し電着塗装性が悪くなってくる。しかし該皮
膜層は該皮膜の下地であるAl−Cr合金めつき層の腐
食環境下における保護作用も有しているので、耐食性の
点からはある程度の厚みは必要である。そこで電着塗装
性および耐食性の二つの観点から該皮膜層の厚さについ
て検討した結果、両者を満足する膜厚は0.5〜3゜0
μmであった。即ち膜厚が0.5μm未満ではAl−C
r合金めっき層を十分保護することができず、3.0μ
mを超えると導電性が低下し電着塗装性が低下してくる
。A film mainly composed of urethane resin and silicon dioxide is an essential requirement for giving At-Cr plated steel sheets excellent electrodeposition coating properties, but as the film thickness increases, the conductivity decreases and the electrodeposition becomes more difficult. Paintability deteriorates. However, since the coating layer also has a protective effect in a corrosive environment for the Al--Cr alloy plating layer that is the base of the coating, it is necessary to have a certain thickness from the viewpoint of corrosion resistance. Therefore, as a result of examining the thickness of the film layer from the two viewpoints of electrodeposition coating properties and corrosion resistance, the film thickness that satisfies both is 0.5 to 3°.
It was μm. That is, if the film thickness is less than 0.5 μm, Al-C
rThe alloy plating layer could not be sufficiently protected, and the thickness was 3.0μ.
If it exceeds m, the conductivity will decrease and the electrodeposition coating properties will decrease.
またAl−Cr合金めっき層とウレタン系樹脂および二
酸化珪素を主成分とする皮膜層の間にクロメート層を形
成させても良い。クロメート層の形成方法としては特に
限定されないが塗布型クロメート皮膜形成方法1及応型
クロメート皮膜形成方法、電解クロメート皮膜形成方法
を採用することができ、もちろんこれらの併用も可能で
あり、例えばAl−Cr合金めつぎ層の上に電解クロメ
ート法によってクロメート皮膜を形成させ、更にその後
塗布型クロメート処理を施したものは耐食性と皮膜密着
性がより優れた鋼板となる。Further, a chromate layer may be formed between the Al-Cr alloy plating layer and the coating layer containing urethane resin and silicon dioxide as main components. The method for forming the chromate layer is not particularly limited, but it is possible to adopt the coating type chromate film forming method 1, the reactive chromate film forming method, and the electrolytic chromate film forming method, and of course, a combination of these is also possible. For example, Al-Cr A chromate film is formed on the alloy abutment layer by an electrolytic chromate method, and then subjected to a coating-type chromate treatment, resulting in a steel sheet with better corrosion resistance and film adhesion.
ところで素地鋼板上に形成するAl−Cr合金めつぎ層
の形成方法は、溶融めっき、電気めっき、化学めっきお
よび蒸着めっき等何ら限定されないが、蒸着めっき法が
最も好ましい。即ち蒸着めっき法の実施に際しては、A
I地金用とCr地金層を別々のるつぼに減圧下で収納し
、電子線(EB)または高周波によりこれを加熱する。By the way, the method for forming the Al--Cr alloy plating layer on the base steel plate is not limited to hot-dip plating, electroplating, chemical plating, vapor deposition plating, etc., but vapor deposition plating is most preferred. That is, when carrying out the vapor deposition plating method, A
The I base metal layer and the Cr base metal layer are housed in separate crucibles under reduced pressure, and heated by electron beam (EB) or high frequency.
そして、各るつぼ毎に加熱源の出力をコントロールする
ことによって蒸発量を制御し、るつぼ上を通過する鋼板
上に所定の組成と膜厚のAl−Cr合金めっき層を形成
する。この際、めっき層を形成するAtとCrは酸素と
の親和性が高く、酸化されやすいので、真空容器内の真
空度は1O−2Torr以下、好ましくは1O−3To
rr以下であることが好ましい。また通常の真空蒸着法
(PVD法)以外に、Al、Crの蒸気を高周波等でイ
オン化せしめ、バイアス電圧を印加した鋼板上に蒸着さ
せる所謂イオンブレーティング法を用いてもよい。イオ
ンブレーティング法により得られるAl−Cr合金めっ
き層は結晶粒が微細化し緻密でピンホールの少ないめっ
き層となるため、より一層耐食性に優れたものとなる。Then, the amount of evaporation is controlled by controlling the output of the heating source for each crucible, and an Al--Cr alloy plating layer with a predetermined composition and thickness is formed on the steel plate passing over the crucible. At this time, since At and Cr forming the plating layer have a high affinity with oxygen and are easily oxidized, the degree of vacuum in the vacuum container is 1O-2Torr or less, preferably 1O-3Torr.
It is preferable that it is below rr. In addition to the usual vacuum evaporation method (PVD method), a so-called ion blating method may be used in which Al and Cr vapors are ionized by high frequency waves and then deposited on a steel plate to which a bias voltage is applied. The Al-Cr alloy plating layer obtained by the ion blating method has finer crystal grains, resulting in a dense plating layer with fewer pinholes, so it has even better corrosion resistance.
以上の様にして得られる防錆鋼板は耐食性、耐熱性に優
れている上に電着塗装性、塗膜密着性に優れたものとな
るので、加工時塗膜剥離などをおこすことがない。また
各種塗装を施すことができるので自動車や家庭用電気製
品の外板としても用いることができ適用範囲が拡大され
る。The rust-proof steel sheet obtained in the above manner has excellent corrosion resistance and heat resistance, as well as excellent electrodeposition coating properties and coating adhesion, so that the coating film does not peel off during processing. Furthermore, since it can be coated with various types of coatings, it can be used as the outer panels of automobiles and household electrical appliances, expanding the range of applications.
[実施例]
真空チャンバー内に2つのるつぼを用意し、各るつぼの
夫々にA1とCrの地金を装入し、2本の電子線を各々
の地金に照射してAtおよびCrの地金を加熱・蒸発さ
せた。一方るつぼ上には予め真空中で表面を活性化させ
た冷延鋼板0.7mmtを用意し、2個の電子線の出力
をコントロールしながら、冷延鋼板上に所定膜厚、所定
Cr含有量のAl−Cr合金めっきを施してAl−Cr
めっき鋼板を得た。[Example] Two crucibles were prepared in a vacuum chamber, A1 and Cr metals were charged into each crucible, and two electron beams were irradiated onto each metal to form At and Cr metals. The gold was heated and evaporated. On the other hand, a cold-rolled steel plate of 0.7 mm thickness whose surface had been activated in vacuum in advance was prepared on the crucible, and while controlling the output of the two electron beams, a predetermined film thickness and a predetermined Cr content were applied to the cold-rolled steel plate. Al-Cr alloy plating is applied to
A plated steel plate was obtained.
得られたAl−Cr合金めっき鋼板をアルカリ脱脂、水
洗した後、クロメート皮膜中のCr含有量が50 mg
/m2になる様にクロメート塗布処理を行なった。クロ
メート塗布処理後更に
水溶性ウレタン系樹脂エマルジョン
コロイダルシリカ
蒸留水
の混合物を塗布溶液とし、バーコーターで塗装し、20
0℃で1分間焼き付けを行ないs i 02 /ウレタ
ン系樹脂:0.4膜厚:1.2〜2.0μm
となる様に皮膜層を形成して防錆鋼板を作成した。After the obtained Al-Cr alloy plated steel sheet was degreased with alkaline and washed with water, the Cr content in the chromate film was 50 mg.
Chromate coating treatment was carried out so that the thickness was /m2. After the chromate coating treatment, a mixture of water-soluble urethane resin emulsion colloidal silica distilled water was used as a coating solution, and it was coated with a bar coater.
Baking was carried out at 0° C. for 1 minute to form a film layer such that s i 02 /urethane resin: 0.4 film thickness: 1.2 to 2.0 μm to prepare a rust-proof steel plate.
得られた防錆鋼板を70mm’ x 150+nm’に
切り出し前記処理の施されていない部分(裏面と切り出
し端面)をテープシールして次に示す塩水噴霧から湿潤
までを1サイクル(1サイクル/8hr)としてサイク
ル腐食試験を200サイクル実施した。The obtained anti-rust steel plate was cut into 70mm' x 150+nm', the untreated parts (the back side and the cut end face) were sealed with tape, and the following cycle from salt water spraying to wetting was carried out (1 cycle/8 hr). A cyclic corrosion test was conducted for 200 cycles.
塩水噴霧(5%NaC1溶液、35℃X4hr。Salt water spray (5% NaCl solution, 35°C x 4 hr.
→乾燥(60tx2hr)−+湿潤(50tx2hr、
RH95%以上)→
次いでこのサイクル腐食鋼板をクエン酸アンモニウム溶
液中で除錆し、ダイヤルゲージを用いて素地鋼板の腐食
による穴あき深さを求めた。その結果を比較例と共に第
3図に示す。尚第3図においてNo、5〜8は本発明の
範囲外のめっき層組成のもの、No、9は皮膜層組成の
異なるものである。→ Dry (60tx2hr) - + Wet (50tx2hr,
(RH 95% or higher) → Next, this cycle-corroded steel plate was derusted in an ammonium citrate solution, and the depth of holes due to corrosion in the base steel plate was determined using a dial gauge. The results are shown in FIG. 3 together with comparative examples. In FIG. 3, Nos. 5 to 8 have plating layer compositions outside the range of the present invention, and No. 9 has a different coating layer composition.
第3図から明らかな様にNo、1〜4のCrを5〜15
%含有するAl−Cr合金めっき鋼板にウレタン系樹脂
と5in2の混合物質を主成分とする皮膜層を施したも
のは腐食試験による素地鋼板の穴あき深さが極めて小さ
いことがわかる。As is clear from Figure 3, 5 to 15 Cr of No. 1 to 4
It can be seen that the perforation depth of the base steel plate in the corrosion test of the Al-Cr alloy plated steel plate containing 5 in.
一方No、5(Crを含有しない純A1めっき鋼板)、
No、6 (Crの含有量が本発明の範囲外のもの)、
No、7.8 (Zn系めっき鋼板のもの)およびNo
、9(めっき層組成は本発明で規制した範囲内のもので
あっても皮膜組成の異なるもの)は穴あき深さが犬で耐
食性に劣っていることがわかる。On the other hand, No. 5 (pure A1 plated steel sheet that does not contain Cr),
No. 6 (Cr content is outside the range of the present invention),
No. 7.8 (Zn-based plated steel sheet) and No.
, No. 9 (those with different coating compositions even though the plating layer composition is within the range regulated by the present invention) have poor perforation depth and poor corrosion resistance.
次に防錆鋼板の電着塗装性を調べるために前記サイクル
耐食試験に供したものと同様にして得た防錆鋼板(70
mmwx 150mm’ )を、防錆処理を施してない
裏面はマグネットゴムでシールを行ない、以下に示す条
件でカチオン型電着塗装を行なった。Next, in order to investigate the electrodeposition coating property of the rust-proof steel plate, a rust-proof steel plate (70
mmwx 150 mm'), the back surface of which was not subjected to rust prevention treatment was sealed with magnetic rubber, and cationic electrodeposition coating was performed under the conditions shown below.
電気塗装条件
塗料 :カチオン型塗料
液温 :28℃
通電方法:30秒立上り制御法
通電時間:2.5分
電圧 :180v〜320Vまi’20V毎昇圧
電着塗装後の焼付条件:165℃x20min電着塗装
性の評価は、塗装表面のクレータ−の発生状況の目視観
察により行なった。結果を第4図に示す。Electric coating conditions Paint: Cation type paint Liquid temperature: 28℃ Current application method: 30 seconds rise control method Current application time: 2.5 minutes Voltage: 180V to 320V every 20V Baking conditions after electrodeposition coating: 165℃ x 20 min The electrodeposition coating properties were evaluated by visually observing the occurrence of craters on the coating surface. The results are shown in Figure 4.
第4図から明らかな様に本発明例は比較例に比べて電着
塗装性が極めて優れており、電着塗装電圧が320■に
おいてもクレータ−の発生は全く認められなかった。As is clear from FIG. 4, the electrodeposition coating properties of the examples of the present invention were extremely superior to those of the comparative examples, and no craters were observed even at an electrodeposition coating voltage of 320 .mu.m.
以上の様に本発明の防錆鋼板は、高耐食性を有し優れた
電着塗装性を有するものであることがわかる。As described above, it can be seen that the rust-proof steel sheet of the present invention has high corrosion resistance and excellent electrodeposition coating properties.
[発明の効果]
本発明は以上の様に構成されているので本発明の防錆鋼
板は耐食性に優れている上に電着塗装性に優れたもので
ある。[Effects of the Invention] Since the present invention is configured as described above, the rust-proof steel sheet of the present invention has excellent corrosion resistance and also excellent electrodeposition coating properties.
第1図はAl−Cr合金めつき綱板におけるAt−Cr
合金めつき層中のCr含有量と素地鋼板の穴あき深さの
関係を示す図、第2図は各種鋼板における電着塗装電圧
と塗膜表面のクレータ−発生状態との関係を示す図、第
3図はサイクル腐食試験における各種防錆鋼板と最大穴
あき深さの関係を示す図、第4図は各種鋼板における電
着塗装電圧と塗膜表面のクレータ−発生状態との関係を
示す図である。Figure 1 shows At-Cr in Al-Cr alloy plated steel sheet.
Figure 2 is a diagram showing the relationship between the Cr content in the alloy plating layer and the perforation depth of the base steel plate, and Figure 2 is a diagram showing the relationship between the electrodeposition coating voltage and the crater generation state on the coating film surface for various steel plates. Figure 3 is a diagram showing the relationship between various rust-preventing steel plates and maximum perforation depth in a cycle corrosion test, and Figure 4 is a diagram showing the relationship between electrodeposition coating voltage and crater generation state on the coating surface for various steel plates. It is.
Claims (2)
r合金めっき層が形成され、クロメート処理層を介しま
たは介さずにウレタン系樹脂および二酸化珪素を主成分
とする皮膜が形成されていることを特徴とする電着塗装
性に優れた防錆鋼板。(1) Al-C containing 5 to 30% by weight of Cr on a steel plate
A rust-proof steel sheet with excellent electrodeposition coating properties, characterized in that an r-alloy plating layer is formed, and a film mainly composed of urethane resin and silicon dioxide is formed with or without a chromate treatment layer.
リング剤を介して複合物質を形成している請求項(1)
の電着塗装性に優れた防錆鋼板。(2) Claim (1) in which the urethane resin and silicon dioxide form a composite substance via a silane coupling agent.
Rust-proof steel plate with excellent electrodeposition coating properties.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15757988A JPH028397A (en) | 1988-06-25 | 1988-06-25 | Rustproof steel sheet having superior suitability to coating by electrodeposition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15757988A JPH028397A (en) | 1988-06-25 | 1988-06-25 | Rustproof steel sheet having superior suitability to coating by electrodeposition |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH028397A true JPH028397A (en) | 1990-01-11 |
Family
ID=15652780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15757988A Pending JPH028397A (en) | 1988-06-25 | 1988-06-25 | Rustproof steel sheet having superior suitability to coating by electrodeposition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH028397A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109134815A (en) * | 2018-08-14 | 2019-01-04 | 陕西科技大学 | A kind of hard section contains two kinds of heteroatomic polyurethane elastomers, modified polyurethane anticorrosion peelable film and its preparation method and application |
-
1988
- 1988-06-25 JP JP15757988A patent/JPH028397A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109134815A (en) * | 2018-08-14 | 2019-01-04 | 陕西科技大学 | A kind of hard section contains two kinds of heteroatomic polyurethane elastomers, modified polyurethane anticorrosion peelable film and its preparation method and application |
CN109134815B (en) * | 2018-08-14 | 2020-12-04 | 陕西科技大学 | Polyurethane elastomer with hard segment containing two heteroatoms, modified polyurethane anti-corrosion strippable film, and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2429084C2 (en) | Steel flat section and procedure for production of steel sheet | |
EP1036862A1 (en) | Zn-Mg electroplated metal sheet and fabrication process thereof | |
JPH06506263A (en) | Phosphate treatment method for metal surfaces | |
JP4312583B2 (en) | Painted Zn-Al alloy plated steel sheet with excellent corrosion resistance | |
CN110114499A (en) | Corrosion resistance and the excellent plating Zn-Mg alloy steel products of plating adhesion | |
JPH0452284A (en) | High corrosion-resistant two-layer plated steel sheet and its production | |
JPH03138389A (en) | Zn-mg alloy plated steel sheet having excellent plating adhesion and corrosion resistance and its production | |
Kawafuku et al. | Properties of zinc alloy coated steel sheets obtained by continuous vapor deposition pilot-line | |
US6623868B1 (en) | Galvanized steel for use in vehicle body | |
KR100311062B1 (en) | Manufacturing method of zinc-containing metal plated steel sheet with excellent black resistance and whiteness | |
JP2968147B2 (en) | Acid displacement plating solution composition for zinc-containing metal plated steel sheet | |
JP2005262526A (en) | Coated aluminium plated steel sheet excellent in corrosion resistance | |
JPH0494928A (en) | High corrosion resistant damping steel sheet | |
JPH028397A (en) | Rustproof steel sheet having superior suitability to coating by electrodeposition | |
JPH0525679A (en) | High corrosion resistance surface treated steel sheet excellent in impact adhesion resistance | |
JP2963806B2 (en) | Aluminum alloy plate with excellent phosphatability and corrosion resistance after painting | |
JP3358468B2 (en) | Zinc-based composite plated metal sheet and method for producing the same | |
JP2000313967A (en) | Surface treated steel sheet excellent in corrosion resistance | |
JP3600759B2 (en) | Phosphate-treated galvanized steel sheet excellent in workability and method for producing the same | |
JPH0432576A (en) | Solution for zinc phosphate chemical conversion treatment | |
JP2000313965A (en) | High corrosion resistance surface treated steel sheet and its production | |
JPH02173249A (en) | Multilayered plated steel sheet having excellent flaking resistance | |
JPH0225563A (en) | Manufacture of zinc-ti composite-plated steel sheet excellent in bare and after-painting corrosion resistance | |
JP2003286556A (en) | Hot-dip galvannealed steel sheet superior in powder coating property | |
JPS6240398A (en) | Double-plated steel sheet having high corrosion resistance |