【発明の詳細な説明】[Detailed description of the invention]
(産業上の利用分野)
本発明は溶鋼の脱ガスを行う真空脱ガス槽内溶
鋼の昇温方法に関するものである。
(従来の技術)
内質欠陥のない鋼を製造するに当つて、溶鋼の
真空脱ガス処理を行う事は広く一般に行われてい
るが、この場合、処理時間経過と共に溶鋼の温度
が低下し、品質上、操業上の問題点となる。
この対策として真空脱ガス槽側壁から酸素ガス
を吹き込み昇温する方法が溶鋼の真空脱ガス方法
(特公昭56−50763号公報)として提案されてい
る。
この方法は第3図に示す如く、耐火物を内張り
した取鍋4内の溶鋼5を真空脱ガス槽1内に高真
空状態で吸い上げ、その溶鋼中へノズル3を通し
て酸素ガスを吹き込み、酸素と溶鋼内〔Al〕、
〔Si〕との発熱により溶鋼の昇温を行うものであ
る。
この方法は溶鋼の昇温は行えるが、次の問題が
ある。即ち、ノズルが常時溶鋼内に浸漬しており
昇温のための酸素吹き込みが終つた後も、ノズル
閉塞防止のため何らかのガス(以下保護ガスと云
う)を通しておかなければならない点である。
この結果として保護ガスのコストアツプとな
り、又溶鋼脱ガスのため真空槽内が高真空に進む
に従つて保護ガスを動力源とする溶鋼飛散が発生
し、これが真空槽内壁に付着し溶鋼ロスや付着地
金除去のための操業停止が発生している。
この付着地金防止のため、真空槽内を電極加熱
する事やガス予熱する事が行われているがいずれ
もコストアツプにつながり、不完全な成果しか上
げていない。
一方、付着地金防止のため第4図に示す様に真
空脱ガス槽内酸素吹き込みノズルを槽内溶鋼面よ
り高く取付け、前記酸素吹き込み終了後の溶鋼の
ノズル閉塞を回避し、かつ保護ガスコストを減じ
る方法がありこの方法では真空脱ガス槽内地金つ
きも少く好ましい方法であるが、真空脱ガス槽内
耐火物の溶損が甚しく槽寿命低下に伴う操業率低
下や耐火物コストアツプにつながつている。
(発明が解決しようとする問題点)
本発明は前記真空脱ガス槽内の地金つきを防止
し、かつ耐火物が甚だしく溶損するという欠点を
取り除き、真空脱ガス処理における酸素ガス吹込
みによる溶鋼温度昇温に際し、真空槽の使用寿命
を著しく伸ばし有利に利用出来る様にする方法に
関するものである。
(問題点を解決するための手段)
本発明の特徴は酸素吹き込み用ノズルを真空槽
内側壁に上下方向に多段に配置し、上段から順次
下段に切り換えて使用する事により真空槽内壁耐
火物の溶損を減少させる事を目的とするものであ
る。
上吹きノズル方式はRH槽内耐火物の溶損が大
きいとされているが、本発明者の研究では使用開
始時においては耐火物の溶損速度は大きくなく、
使用回数が経過する段階で耐火物の溶損がある時
点から急激に大きくなる事が判つた。その原因は
第4図に示すように、、使用開始時は基準通りセ
ツトされた上吹きノズルが、使用回数の経過に従
つて槽内耐火物が溶損し、これに伴つて上吹きノ
ズルが短くなるので、溶鋼に吹き込まれる酸素は
使用開始時より距離が遠ざかつた上吹き状態とな
り、酸素ガスの吹き付け力は使用回数の経過と共
に次第に弱くなる。この結果、溶鋼表面の加熱と
共に発生する溶鋼の撹拌力が弱まることから溶鋼
表面が局部昇温し、このため益々耐火物溶損が進
行する事が判明した。
本発明はこの点に着目しトータルとしての槽寿
命を延長させるためRH槽内耐火物の局部的溶損
により槽の寿命が比較的早く来ることを避け、使
用箇所を移動し、均等に溶損させることによつて
実現したものである。
即ちRH槽の使用回数の増加によつて槽内耐火
物が溶損し、併せて上吹きノズルも短かくなり溶
鋼への酸素は上吹き傾向になるが、使用回数途中
で、ノズルを上段から、耐火物が比較的健全な状
態をキープしている下段ノズルへと切り換える。
この結果、溶鋼へ吹きつける酸素はRH槽使用
開始時と同等となり、槽内耐火物の溶損も減少す
る。上下ノズルの段差については特に制限はない
が通常数十mmから200mm程度の範囲で有利に実施
される。この場合上吹きノズルを2段以外、更に
多段化する事も可能である。
ここで図面にもとずき簡単な説明を行う。
第3図は溶鋼真空脱ガス作業図で酸素吹き込み
ノズル浸漬方式(特公昭56−50763号公報)であ
り、真空脱ガス槽1は耐火物2で内壁を覆われ、
下方に酸素吹き込みノズル3を有しており、この
中を高真空にする事により取鍋4内の溶鋼5を真
空脱ガス槽内へ吸い上げるものである。なお6は
スラグである。
第4図は第3図に示した真空脱ガス槽内酸素吹
き込みノズルを吸い上げた溶鋼面より上に取りつ
けた上吹きノズル方式を示したものであり7が酸
素吹き込みノズルである。
第1図は、第4図の酸素上吹きノズル方式にお
いて槽内側壁のノズルを上下多段に取りつけたも
のであり、始め上方ノズル8を使用し、耐火物の
溶損の進行した後、下方ノズル9に切り替える事
により使用開始時ノズル先端と溶鋼面間距離Aが
耐火物およびノズルの溶損した結果Bに変化した
段階で、下方ノズル9に切り替える事により、ノ
ズル先端と溶鋼面との距離はCとなり適正値が確
保される事になる。
更に第2図は、真空脱ガス槽使用回数と溶鋼昇
温効率の変化を示す図であるが昇温効率は、使用
回数の経過と共に或る点を境に急激に悪化してお
り、この点において上段ノズルから下段ノズルへ
切り替える事が有効な事を示している。
(実施例)
次に本発明の実施例を示す。真空脱ガス装置お
よび操業状況を第1表に示す。
(Field of Industrial Application) The present invention relates to a method for increasing the temperature of molten steel in a vacuum degassing tank for degassing molten steel. (Prior art) In order to manufacture steel without internal defects, it is widely and generally practiced to perform vacuum degassing treatment on molten steel, but in this case, the temperature of molten steel decreases as the treatment time progresses, This poses a quality and operational problem. As a countermeasure to this problem, a method has been proposed as a vacuum degassing method for molten steel (Japanese Patent Publication No. 50763/1983), in which oxygen gas is blown into the side wall of the vacuum degassing tank to raise the temperature. As shown in Fig. 3, this method involves sucking up molten steel 5 in a refractory-lined ladle 4 into a vacuum degassing tank 1 in a high vacuum state, and blowing oxygen gas into the molten steel through a nozzle 3 to remove oxygen. Inside the molten steel [Al],
The temperature of molten steel is raised by heat generation with [Si]. Although this method can raise the temperature of molten steel, it has the following problems. That is, the nozzle is constantly immersed in the molten steel, and even after the oxygen injection to raise the temperature has ended, some kind of gas (hereinafter referred to as "protective gas") must be passed through the nozzle to prevent it from clogging. As a result, the cost of the protective gas increases, and as the vacuum chamber progresses to a high vacuum to degas the molten steel, molten steel scatters using the protective gas as a power source, and this adheres to the inner wall of the vacuum chamber, causing molten steel loss and adhesion. Operations have been suspended to remove metal. In order to prevent this metal from adhering, electrode heating and gas preheating within the vacuum chamber have been carried out, but both lead to increased costs and only incomplete results have been achieved. On the other hand, in order to prevent metal adhesion, the oxygen blowing nozzle in the vacuum degassing tank is installed higher than the surface of the molten steel in the tank, as shown in Figure 4, to avoid clogging of the molten steel nozzle after the oxygen blowing is completed, and to reduce the cost of protective gas. There is a method to reduce this, and this method is preferable because it reduces metal buildup in the vacuum degassing tank, but the refractories in the vacuum degassing tank are severely eroded, leading to a decrease in operating efficiency and an increase in the cost of refractories due to a shortened tank life. It's on. (Problems to be Solved by the Invention) The present invention prevents metal build-up in the vacuum degassing tank, eliminates the drawbacks of severe melting and loss of refractories, and solves the problem of molten steel by blowing oxygen gas during vacuum degassing treatment. This invention relates to a method for significantly extending the service life of a vacuum chamber and making it more advantageous to use when the temperature increases. (Means for Solving the Problems) The present invention is characterized by arranging oxygen blowing nozzles in multiple stages vertically on the inner wall of the vacuum chamber, and by sequentially switching from the upper stage to the lower stage. The purpose is to reduce erosion loss. It is said that the top blow nozzle method causes a large amount of erosion of the refractories in the RH tank, but the inventor's research shows that the rate of erosion of the refractories is not large at the beginning of use.
It was found that as the number of times the refractory was used increased, the amount of erosion of the refractory material increased rapidly. As shown in Figure 4, the cause of this is that the top blow nozzle was set according to the standard at the beginning of use, but as the refractories inside the tank were used over time, the refractories inside the tank were eroded and the top blow nozzle became short. Therefore, the oxygen blown into the molten steel is in an upward blowing state where the distance is farther away than at the beginning of use, and the blowing force of oxygen gas gradually becomes weaker as the number of times of use progresses. As a result, it was found that the stirring force of the molten steel, which is generated as the molten steel surface is heated, weakens, resulting in a local temperature rise of the molten steel surface, which causes the refractory corrosion to progress even further. The present invention focuses on this point, and in order to extend the overall life of the tank, avoid the fact that the life of the tank comes to an end relatively early due to local erosion of the refractories in the RH tank, and move the area where it is used to ensure that the refractories in the RH tank are not eroded evenly. This was achieved by making In other words, as the number of times the RH tank is used increases, the refractories inside the tank will be eroded and the top blowing nozzle will also become shorter, causing a tendency for oxygen to blow upward into the molten steel. Switch to the lower nozzle where the refractory remains relatively healthy. As a result, the amount of oxygen blown onto the molten steel is the same as when the RH tank was first used, and erosion of the refractories in the tank is also reduced. There is no particular limit to the level difference between the upper and lower nozzles, but it is usually advantageously implemented within a range of several tens of mm to about 200 mm. In this case, it is also possible to have the top blow nozzle in more stages than just two stages. Here, a brief explanation will be given based on the drawings. Figure 3 is a diagram of molten steel vacuum degassing operation using the oxygen blowing nozzle immersion method (Japanese Patent Publication No. 56-50763).
It has an oxygen blowing nozzle 3 at the bottom, and by creating a high vacuum inside the nozzle 3, the molten steel 5 in the ladle 4 is sucked up into the vacuum degassing tank. Note that 6 is a slag. FIG. 4 shows a top-blowing nozzle system in which the oxygen blowing nozzle in the vacuum degassing tank shown in FIG. 3 is attached above the surface of the molten steel sucked up, and 7 is the oxygen blowing nozzle. Fig. 1 shows the oxygen top-blowing nozzle system shown in Fig. 4 in which the nozzles on the inner wall of the tank are installed in multiple stages, upper and lower.The upper nozzle 8 is used initially, and after the refractory material has melted down, the lower nozzle is installed. By switching to lower nozzle 9, when the distance A between the nozzle tip and the molten steel surface at the start of use changes to B as a result of melting of the refractory and nozzle, by switching to the lower nozzle 9, the distance between the nozzle tip and the molten steel surface becomes C, and an appropriate value is secured. Furthermore, Fig. 2 is a diagram showing the change in the temperature raising efficiency of molten steel with the number of times the vacuum degassing tank is used.The temperature raising efficiency rapidly deteriorates after a certain point as the number of times the vacuum degassing tank is used. This shows that it is effective to switch from the upper nozzle to the lower nozzle. (Example) Next, an example of the present invention will be shown. The vacuum degassing equipment and operating conditions are shown in Table 1.
【表】
第1表に示した装置および操業方法にて、酸素
吹き込みノズルを溶鋼浸漬方式にて、操業を行つ
た結果を第2表に示す。[Table] Table 2 shows the results of operating the oxygen injection nozzle using the molten steel immersion method using the equipment and operating method shown in Table 1.
【表】
なお操業に当つては真空脱ガス槽内地金つき防
止のためCOガスによる予熱は充分実施した。
これに対し、酸素吹き込みノズルを溶鋼上面に
取りつけた方法による操業結果を第3表に示す。[Table] During operation, sufficient preheating with CO gas was carried out to prevent metal buildup in the vacuum degassing tank. On the other hand, Table 3 shows the results of operation using a method in which the oxygen blowing nozzle was attached to the upper surface of the molten steel.
【表】
上記のように上吹きノズル方式は、真空脱ガス
槽内地金付着を浸漬ノズル方式に比較して大幅に
減少させる事が出来、溶鋼の損失、装置休止時間
の短縮更に地金切り要員の大幅削減等産業上大き
く貢献する事が判つた。
しかもこの上吹き方式を長期間採用した結果、
真空脱ガス槽寿命が浸漬ノズル方式に比較して、
大幅に低下した。その比較を第4表に示す。[Table] As shown above, the top blow nozzle method can significantly reduce metal adhesion inside the vacuum degassing tank compared to the immersion nozzle method, reduce the loss of molten steel, reduce equipment downtime, and reduce the amount of metal cutting personnel required. It has been found that this makes a significant contribution to industry, such as a significant reduction in Moreover, as a result of using this top-blowing method for a long time,
The lifespan of the vacuum degassing tank is longer than that of the immersion nozzle method.
It has decreased significantly. The comparison is shown in Table 4.
【表】
このため、本発明者が種々研究した結果、上吹
きノズル方式においては、真空脱ガス槽内壁に設
置されたノズルが、内壁耐火物の溶損と共に短か
くなり、結果として槽内溶鋼面への酸素吹き込み
状態が変化し内壁耐火物の損傷を甚しくしている
事が判り、改善策として上下多段にノズルを設置
し、内壁の損傷の進行に合せて、上ノズルから下
ノズルへと切り替える事が真空脱ガス槽寿命延長
に効果的な事を発見した。
この上吹きノズル多段設置方式による操業結果
を第5表に示すが、槽内地金つきは、従来の上吹
き方式と差はなく、真空脱ガス槽寿命が大幅に向
上し、地金付着によるデメリツトの回避と、槽寿
命延長との双方のメリツトを受ける事が出来る。[Table] For this reason, as a result of various studies conducted by the present inventor, in the top-blowing nozzle method, the nozzle installed on the inner wall of the vacuum degassing tank becomes shorter due to erosion of the inner wall refractories, and as a result, the molten steel inside the tank becomes shorter. It was discovered that the oxygen blowing conditions to the surface were changing, causing severe damage to the inner wall refractories.As a countermeasure, we installed multiple nozzles above and below, moving from the upper nozzle to the lower nozzle as the damage to the inner wall progressed. It was discovered that switching to the vacuum degassing tank is effective in extending the life of the vacuum degassing tank. Table 5 shows the operation results using this top-blowing nozzle multi-stage installation method. There is no difference in the amount of metal deposited inside the tank compared to the conventional top-blowing method, and the life of the vacuum degassing tank is greatly improved, with no disadvantages due to metal adhesion. It is possible to enjoy the benefits of both avoiding the problem and extending the life of the tank.
【表】【table】
【図面の簡単な説明】[Brief explanation of drawings]
第1図は本発明による酸素上吹ノズル多段方式
概要図、第2図は本発明と従来法の昇熱効率の変
化を示す図、第3図は真空脱ガス槽浸漬ノズルに
よる溶鋼昇温法の従来法を示す図、第4図は真空
脱ガス浴面上部の吹込みノズルによる溶鋼昇温法
の従来法を示す図である。
1:真空脱ガス槽、2:耐火物、3:酸素吹込
みノズル、4:取鍋、5:溶鋼、6:スラグ、
7:酸素吹込みノズル、8:上方ノズル、9:下
方ノズル。
Figure 1 is a schematic diagram of the multi-stage oxygen top-blowing nozzle system according to the present invention, Figure 2 is a diagram showing the change in heating efficiency between the present invention and the conventional method, and Figure 3 is a diagram showing the method for raising the temperature of molten steel using a vacuum degassing tank immersion nozzle. Figure 4 shows a conventional method for raising the temperature of molten steel using a blowing nozzle above the surface of a vacuum degassing bath. 1: Vacuum degassing tank, 2: Refractory, 3: Oxygen injection nozzle, 4: Ladle, 5: Molten steel, 6: Slag,
7: Oxygen blowing nozzle, 8: Upper nozzle, 9: Lower nozzle.