JPH034940A - Preparation of inorganic ion exchange body - Google Patents

Preparation of inorganic ion exchange body

Info

Publication number
JPH034940A
JPH034940A JP13577889A JP13577889A JPH034940A JP H034940 A JPH034940 A JP H034940A JP 13577889 A JP13577889 A JP 13577889A JP 13577889 A JP13577889 A JP 13577889A JP H034940 A JPH034940 A JP H034940A
Authority
JP
Japan
Prior art keywords
coupling agent
added
inorganic ion
water
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13577889A
Other languages
Japanese (ja)
Inventor
Tomohisa Iinuma
知久 飯沼
Noriyuki Yamamoto
則幸 山本
Hideki Kato
秀樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP13577889A priority Critical patent/JPH034940A/en
Publication of JPH034940A publication Critical patent/JPH034940A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain the subject exchange body improved in dispersibility, flowability and the close adhesiveness to a solid material and reduced in a lowering of ion exchange capacity by adding a coupling agent aqueous solution to a reaction system when a water-soluble metal salt is hydrolyzed by water and/or an alkaline substance. CONSTITUTION:In hydrolyzing a water-soluble metal salt by water and/or an alkaline substance, by adding a coupling agent aqueous solution to a reaction system on the way of reaction or at the point of time when reaction is complet ed, an inorg. ion exchange body represented by formula I [MA<+> is a metal ion of valence A+ (A is an integer of 2-5), XB<-> is an anion of valency B-(B is a positive number), D and F are 0 or a positive number and E is positive number] is obtained. As the coupling agent to be used, one having a functional group having the compatibility with a solid material to which it is added and, for example, gamma-glycidixypropyltrimethoxysilane is pref. used in case of the addi tion to an epoxy resin.

Description

【発明の詳細な説明】 (イ)発明の目的 〔産業上の利用分野〕 本発明はイオン交換及びイオン吸着を利用する各種の用
途、例えば水溶液や有機溶剤中の不純物イオンの除去、
産業廃液中の有害イオンの。除去、産業廃水や海水から
の有価物の回収、高純度薬品の製造、電気・電子材料中
の不純物イオンの吸着固定、気体中のイオン性成分の吸
着回収又は吸着除去、更にはイオン交換を利用したpH
11街やpH調整等の用途に用いて好適な無機イオン交
換体の製造方法に関するものである。
Detailed Description of the Invention (a) Purpose of the Invention [Field of Industrial Application] The present invention is applicable to various applications that utilize ion exchange and ion adsorption, such as the removal of impurity ions in aqueous solutions and organic solvents,
of harmful ions in industrial wastewater. removal, recovery of valuables from industrial wastewater and seawater, production of high-purity chemicals, adsorption and fixation of impurity ions in electrical and electronic materials, adsorption recovery or adsorption removal of ionic components in gases, and the use of ion exchange. pH
The present invention relates to a method for producing an inorganic ion exchanger suitable for use in applications such as pH adjustment and pH adjustment.

〔従来の技術〕[Conventional technology]

無機イオン交換体の製法の一つとして、金属の水溶性塩
を下記(1)弐のように逐次加水分解反応させる方法が
知られている。
As one method for producing an inorganic ion exchanger, a method is known in which a water-soluble salt of a metal is subjected to a sequential hydrolysis reaction as described in (1) 2 below.

(MA+)II(XB−)A+a ・(Z”)(叶−)
D→B・ (MA+)(02−)+1(OH−)E(X
B−)F+(a /B) ・(ZC−)a(Xl′−)
C+BD−H,O・・・(1) ここでMA+は価数A+ (Aは正数)の金属イオン、
Xl′−は価数B−(Bは正数)の陰イオン、ZC−は
、価数C+ (Cは正数)の金属イオン、水素イオン又
はアンモニウムイオンを示す。
(MA+)II (XB-)A+a ・(Z”) (Kano-)
D→B・(MA+)(02-)+1(OH-)E(X
B-)F+(a/B) ・(ZC-)a(Xl'-)
C+BD-H,O...(1) where MA+ is a metal ion with valence A+ (A is a positive number),
Xl'- represents an anion with a valence of B- (B is a positive number), and ZC- represents a metal ion, hydrogen ion, or ammonium ion with a valence of C+ (C is a positive number).

又、aは正数で、D及びFはO又は正の数を、Eは正の
数を表し、かつ(2D+E) ・B=a−c及びA−=
2D+E+BFを満足する。
Also, a is a positive number, D and F are O or a positive number, E is a positive number, and (2D+E) ・B=a-c and A-=
Satisfies 2D+E+BF.

この方法で得られる無機イオン交換体のうちの、加水分
解の程度の低いもの、即ちその構造中にXB−がまだ多
く残存しているものは、比較的流動性及び分散性に優れ
ているが、加水分解が高度に進行したものは、流動性、
分散性共に悪く、反応生成物を反応液から分離・水洗し
ようとするとブロック化し易く、その後の乾燥及び粉砕
が困難である。
Among the inorganic ion exchangers obtained by this method, those with a low degree of hydrolysis, that is, those with a large amount of XB- still remaining in their structure, have relatively excellent fluidity and dispersibility. , those with a high degree of hydrolysis have poor fluidity,
It has poor dispersibility, and when attempting to separate the reaction product from the reaction solution and wash it with water, it tends to form blocks, making subsequent drying and pulverization difficult.

更にたとえ粉砕ができたとしても、得られた製品を固体
材料、特にエポキシ樹脂等の有機材料中に添加した場合
、固体材料との密着性や親和性が不良となる場合が多く
、添加後の固体材料の脆性が悪(なり、熱を加えるとク
ラックが生じたりすることもあった。又、固体材料中へ
の分散も悪いため固体材料中の不純物イオンの吸着・固
定性能が低下したり、混合した時に粘度が上昇するため
、均一に混合しようとすると添加量が制限されるという
欠陥もあった。
Furthermore, even if pulverization is possible, when the resulting product is added to a solid material, especially an organic material such as an epoxy resin, the adhesion or affinity with the solid material is often poor, and the The brittleness of the solid material is poor (sometimes cracks occur when heat is applied).In addition, the adsorption and fixation performance of impurity ions in the solid material decreases due to poor dispersion into the solid material. Since the viscosity increases when mixed, there is also the drawback that the amount added is limited when trying to mix uniformly.

従来、無機材料と有機材料を複合化し、新たな特性を生
み出す可能性のある複合材料を開発する試みがなされて
おり、この場合無機材料と有機材料をつなぎ合わせる役
目としてカップリング剤を使用することは公知である。
In the past, attempts have been made to develop composite materials that have the potential to create new properties by combining inorganic and organic materials, and in this case, coupling agents are used to connect the inorganic and organic materials. is publicly known.

本発明者等は、固体材料中に無機イオン交換体を添加す
る際の密着性及び分散性を改良するために、無機イオン
交換体をカップリング剤で処理する手段が有効ではない
かと考えた。
The present inventors thought that treating an inorganic ion exchanger with a coupling agent might be effective in improving the adhesion and dispersibility when adding the inorganic ion exchanger to a solid material.

カップリング剤には、シラン系やチタニウム系等があり
、化学的結合の他、界面における相互作用により、異種
の物質を結びつけ、表面や界面を改質することに利用さ
れている。
Coupling agents include silane-based, titanium-based, etc., and are used to bind different substances together through chemical bonding and interaction at the interface, and to modify surfaces and interfaces.

一般にカップリング剤による無機材料の表面処理方法と
しては、カップリング剤を濃度数%の水溶液として用い
、(1)乾燥した無機材料を撹拌し、カップリング剤水
溶液をスプレー又は気化して散布する方法、(2)乾燥
した無機材料を再び水に分散させスラリー化し、これを
攪拌しながらカップリング剤水溶液を添加して処理する
方法、及び(3)乾燥終了後の高温無機材料にカップリ
ング剤水溶液をスプレー状に気化して散布する方法等が
知られている。
In general, methods for surface treatment of inorganic materials using a coupling agent include a method in which the coupling agent is used as an aqueous solution with a concentration of several percent, and (1) the dry inorganic material is stirred and the aqueous solution of the coupling agent is sprayed or vaporized and dispersed. (2) A method of dispersing the dried inorganic material in water again to form a slurry, and adding an aqueous coupling agent solution to the slurry while stirring, and (3) adding an aqueous coupling agent solution to the high-temperature inorganic material after drying. A method of vaporizing and dispersing it in the form of a spray is known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記カップリング剤による無機材料の表面処理方法を、
無機イオン交換体に応用する場合には、次のような欠点
があった。
The method for surface treatment of inorganic materials using the above coupling agent,
When applied to inorganic ion exchangers, there are the following drawbacks.

即ち、(1)及び(3)の方法では、均−処理及び処理
効率を上げるためには無機材料の分散が良好であること
が必要であるが、逐次加水分解法で得た無機イオン交換
体は、乾燥させた場合、ブロック化しており、均一処理
を行うには不適当である。
That is, in methods (1) and (3), it is necessary to have good dispersion of the inorganic material in order to improve the uniform treatment and treatment efficiency, but the inorganic ion exchanger obtained by the sequential hydrolysis method When dried, it forms blocks and is unsuitable for uniform treatment.

更にこれらの方法でカップリング処理を施した場合、カ
ップリング剤の散布量が多かったり、不均一に散布され
た場合に、無機イオン交換体のイオン交換容量が大幅に
低下してしまうこともある。
Furthermore, when coupling treatment is performed using these methods, the ion exchange capacity of the inorganic ion exchanger may be significantly reduced if the amount of coupling agent sprayed is large or unevenly distributed. .

これは無機イオン交換体のイオン交換基は、活性なOH
基であるが、この基がカップリング剤のシラノール基等
と容易に結合するため、イオン交換に関与するOH基が
カップリング剤と必要以上に結合してしまい、その結果
イオン交換容量が低下したためと考えられる。
This means that the ion exchange group of the inorganic ion exchanger is an active OH
However, because this group easily bonds with the silanol group of the coupling agent, the OH group involved in ion exchange bonds with the coupling agent more than necessary, resulting in a decrease in ion exchange capacity. it is conceivable that.

一方(2)の方法は、均一に処理でき、かつ処理効率も
よいが、−度乾燥された物質を再び水に分散して処理す
るために、再濾過や再乾燥の工程を余分に行わなければ
ならず、コスト的に問題があった。
On the other hand, method (2) can be processed uniformly and has good processing efficiency, but it requires extra steps of refiltration and redrying in order to redisperse the dried material in water and process it. However, there was a cost problem.

(ロ)発明の構成 〔課題を解決するための手段] 本発明者等は上記課題を解決すべく鋭意検討をした結果
、逐次加水分解反応で無機イオン交換体を製造する際、
反応系に水溶性カップリング剤を添加することにより、
分散性及び流動性に優れており、生成物の乾燥及び粉砕
が容易で、更にこれを固体材料中に添加した場合に、固
体材料との密着性や親和性が優れ、かつイオン交換容量
が低下しない無機イオン交換体を得られることを見出し
本発明を完成するに至った。
(B) Structure of the Invention [Means for Solving the Problems] As a result of intensive studies to solve the above problems, the present inventors found that when producing an inorganic ion exchanger by sequential hydrolysis reactions,
By adding a water-soluble coupling agent to the reaction system,
It has excellent dispersibility and fluidity, making it easy to dry and grind the product, and when added to solid materials, it has excellent adhesion and affinity with solid materials, and reduces ion exchange capacity. The present inventors have discovered that it is possible to obtain an inorganic ion exchanger that does not contain any of the following.

即ち本発明は、金属の水溶性塩を水及び/又はアルカリ
性物質で加水分解する無機イオン交換体の製造方法にお
いて、反応系にカップリング剤水溶液を添加することを
特徴とする下式で表される無機イオン交換体の製造方法
である。
That is, the present invention provides a method for producing an inorganic ion exchanger in which a water-soluble salt of a metal is hydrolyzed with water and/or an alkaline substance, which is represented by the following formula, characterized in that an aqueous solution of a coupling agent is added to the reaction system. This is a method for producing an inorganic ion exchanger.

(M^つ(0”)o (OH−)F (X ”−)Fこ
こでMA+は価数A+ (Aは2〜5の整数)の金属イ
オン、xi−は価数B−(Bは正数)の陰イオンを示す
(M^tsu(0”)o (OH-)F (X ”-)F where MA+ is a metal ion with valence A+ (A is an integer from 2 to 5), xi- is a valence B- (B is Indicates an anion (positive number).

又、D及びFは0又は正の数を、Eは正の数を表す。Further, D and F represent 0 or a positive number, and E represents a positive number.

逐次加水分解反応は、前述の式(1)で示されるが、出
発物質である水溶性塩(MA″)、(XB−)Aを構成
する価数が+2〜+5の金属イオンMA+としては、次
のものが挙げられる。
The sequential hydrolysis reaction is shown by the above-mentioned formula (1), and the metal ion MA+ with a valence of +2 to +5 constituting the water-soluble salt (MA'') and (XB-)A, which are the starting materials, is as follows. These include:

価数が+2 : FeXCo、 Ni、 Cu、 Zn
、 Pb価数が+3 : Fe、 AI、Sb、 Bi
価数が+4 : Ti、、Zr、、Mn、 Si、 S
n価数が+5:Sb 上記の内、Pb、 AI、 Sb、 Bi、 Ti、 
Zr及びSnが無機イオン交換体となった場合のイオン
交換容量が大きく好ましく、更に好ましいのはBiであ
る。
Valence is +2: FeXCo, Ni, Cu, Zn
, Pb valence is +3: Fe, AI, Sb, Bi
Valence is +4: Ti, Zr, Mn, Si, S
n valence is +5: Sb Among the above, Pb, AI, Sb, Bi, Ti,
Zr and Sn are preferred because they have a large ion exchange capacity when used as inorganic ion exchangers, and Bi is more preferred.

もう一方の成分である陰イオン又は陰イオン性基Xトは
、M^゛と共に水溶性塩を形成するものならば、特に種
類は問わない。
The type of anion or anionic group X which is the other component is not particularly limited as long as it forms a water-soluble salt with M.

上記水溶性塩を加水分解する( Z ”) (OH−)
 cは水又は水溶性のアルカリ性物質(以下「アルカリ
性物質」と称する。)でZC−は、アルカリ金属イオン
、アルカリ土類金属イオン、水素イオン又はアンモニウ
ムイオンである。
Hydrolyze the above water-soluble salt (Z”) (OH-)
c is water or a water-soluble alkaline substance (hereinafter referred to as "alkaline substance"), and ZC- is an alkali metal ion, an alkaline earth metal ion, a hydrogen ion, or an ammonium ion.

逐次加水分解反応が完全になされた場合に最終的に得ら
れる無機イオン交換体は、上記金属Mの含水酸化物(オ
キシ水酸化物)である。
The inorganic ion exchanger finally obtained when the sequential hydrolysis reaction is completed is a hydrous oxide (oxyhydroxide) of the metal M.

本発明は、前記金属元素Mの水溶性塩(MA″)R(X
l′−)Aをアルカリ性物質で加水分解すると共に、そ
の反応途中又は反応終了時点で反応系にカップリング剤
水溶液を添加することにより、無機イオン交換体を製造
する方法に関するものである。
The present invention provides a water-soluble salt of the metal element M (MA″)R(X
The present invention relates to a method for producing an inorganic ion exchanger by hydrolyzing l'-)A with an alkaline substance and adding an aqueous coupling agent solution to the reaction system during or at the end of the reaction.

本発明における加水分解反応は、所要量の金属水溶性塩
を反応系にまず存在させ、次にこの系にアルカリ性物質
を逐次連続的に又は断続的に添加することにより行わせ
ることが望ましい。
The hydrolysis reaction in the present invention is preferably carried out by first making the required amount of metal water-soluble salt present in the reaction system, and then adding an alkaline substance to the system successively or intermittently.

本発明で使用されるカップリング剤は、水溶性であれば
シラン系又はチタニウム系等のいずれでもよいが、無機
イオン交換体を固体材料中に添加して使用する場合の固
体材料との親和性を考慮すると、その固体材料と親和性
のある官能基を持つものが望ましい。
The coupling agent used in the present invention may be either silane-based or titanium-based as long as it is water-soluble, but it has no affinity with solid materials when an inorganic ion exchanger is added to the solid material. Considering this, it is desirable to have a functional group that has an affinity with the solid material.

例えば、無機イオン交換体をエポキシ樹脂中に添加する
場合に好ましいカップリング剤としては、T−グリシド
キシプロビルトリメトキシシラン、N−β(アミノエチ
ル)γ−アミノプロピルトリメトキシシラン、N−β(
アミノエチル)γ−アミノプロピルメチルジメトキシシ
ラン、T−メルカプトプロピルトリメトキシシラン、γ
−アミノプロピルトリメトキシシラン等が挙げられる。
For example, when an inorganic ion exchanger is added to an epoxy resin, preferred coupling agents include T-glycidoxypropyltrimethoxysilane, N-β(aminoethyl)γ-aminopropyltrimethoxysilane, N- β(
aminoethyl) γ-aminopropylmethyldimethoxysilane, T-mercaptopropyltrimethoxysilane, γ
-aminopropyltrimethoxysilane and the like.

次いでカップリング剤の添加時期について述べる。Next, the timing of adding the coupling agent will be described.

一般に、金属塩水溶液のアルカリ性物質による加水分解
反応は前記式(1)で表すことができ、アルカリ性物質
を添加して行くにつれて逐次加水分解生成物(以下「生
成物」と称する。)が生成する。
In general, the hydrolysis reaction of an aqueous metal salt solution with an alkaline substance can be expressed by the above formula (1), and as the alkaline substance is added, hydrolysis products (hereinafter referred to as "products") are successively produced. .

そして生成物中のOH基の数は、アルカリ性物質の添加
と共に逐次増加していき、水溶性金属塩の使用量ABが
アルカリ性物質の添加量aCと等しくなった時に、加水
分解が完了する。
The number of OH groups in the product gradually increases with the addition of the alkaline substance, and when the amount AB of the water-soluble metal salt used becomes equal to the amount aC of the alkaline substance added, hydrolysis is completed.

反応途中でカップリング剤水溶液を添加すると、カップ
リング剤中の官能基と生成物中のOH基が脱水縮合反応
を起こす。
When an aqueous coupling agent solution is added during the reaction, a dehydration condensation reaction occurs between the functional groups in the coupling agent and the OH groups in the product.

加水分解反応前期、即ちAB/2≧aCの場合、生成物
中に存在するOH基は少なく、カップリング剤中のシラ
ノール基等の官能基とOH基の縮合が起こり難い。又こ
の時点で加水分解反応を終了して得られる無機イオン交
換体は、それ自体で流動性及び分散性が比較的良好であ
リ、カップリング剤の添加による効果はそれほどではな
い。
In the early stage of the hydrolysis reaction, that is, when AB/2≧aC, there are few OH groups present in the product, and condensation of the OH groups with functional groups such as silanol groups in the coupling agent is difficult to occur. Furthermore, the inorganic ion exchanger obtained by completing the hydrolysis reaction at this point has relatively good fluidity and dispersibility by itself, and the effect of adding a coupling agent is not so great.

加水分解反応が進み、AB=aC1即ち生成物が完全な
オキシ水酸化物となった時点で、カップリング剤水溶液
を添加した場合、生成物中に多数のOH基が存在するが
、反応液の液性がアルカリ性となるために、カップリン
グ剤中のシラノール基等の官能基と、生成物中のOH基
との縮合反応が阻害される。
When the hydrolysis reaction progresses and AB=aC1, that is, the product becomes a complete oxyhydroxide, when an aqueous coupling agent solution is added, a large number of OH groups are present in the product, but the Since the liquid becomes alkaline, the condensation reaction between functional groups such as silanol groups in the coupling agent and OH groups in the product is inhibited.

なお、カップリング剤を添加することなく反応を行わせ
、生成物を反応液から分離した場合には、前述のように
無機イオン交換体はブロック化を起こすため、カップリ
ング剤の添加は困難である。
Note that if the reaction is carried out without adding a coupling agent and the product is separated from the reaction solution, it is difficult to add a coupling agent because the inorganic ion exchanger will block as described above. be.

従ってカップリング剤水溶液は、水溶性金属塩の使用量
ABとアルカリ性物質の添加量aCの関係が、AB/2
<aC<ABの段階で添加することが好ましく、より好
ましくは、(6/10)  ・AB<a C< (9/
10)  ・ABの範囲である。
Therefore, in the coupling agent aqueous solution, the relationship between the amount AB of the water-soluble metal salt used and the amount aC of the alkaline substance added is AB/2.
It is preferable to add at the stage of <aC<AB, more preferably (6/10) ・AB<a C< (9/
10) - It is within the range of AB.

カップリング剤水溶液の添加時期は、生成物の組成分析
εこより求めることもできるが、−船釣には、原料水溶
性金属塩と添加するアルカリ性物質の種類を決定し、反
応式(1)に従って、目的とする組成の生成物を得るの
に必要なアルカリ性物質の添加量を計算で求め、この量
を反応系に添加後、アルカリ性物質が消費された時点で
、カップリング剤水溶液を添加すればよい。
The timing of addition of the coupling agent aqueous solution can also be determined from the composition analysis ε of the product, but for boat fishing, determine the raw material water-soluble metal salt and the type of alkaline substance to be added, and follow the reaction equation (1). Calculate the amount of alkaline substance necessary to obtain a product with the desired composition, add this amount to the reaction system, and then add the coupling agent aqueous solution when the alkaline substance is consumed. good.

アルカリ性物質全量の消費は、反応液のpHの変化がな
くなることで把握できる。
Consumption of the total amount of alkaline substances can be determined by no change in the pH of the reaction solution.

本発明ではカップリング剤の添加後、更に無機イオン交
換体が目的組成となるまで、アルカリ性物質の添加を継
続させることができる。
In the present invention, after addition of the coupling agent, addition of the alkaline substance can be continued until the inorganic ion exchanger has the desired composition.

最終的な生成物を得るのに必要なアルカリ性物質の添加
量の決定は前記式(1)に従い、又反応の終点の把握は
、pH測定によりそれぞれ行えばよい。
The amount of alkaline substance added necessary to obtain the final product can be determined according to the above formula (1), and the end point of the reaction can be determined by pH measurement.

加水分解で使用するアルカリ性物質は、前記金属塩水溶
液の攪拌下に、定量ポンプを用いて添加することが好ま
しい。
The alkaline substance used in hydrolysis is preferably added to the metal salt aqueous solution using a metering pump while stirring.

添加速度は、加水分解反応速度に合わせることが望まし
いが、生成物を得るのに必要な量のアルカリ性物質を先
に添加して、平衡に達するのを待ってもよい。但し、B
i系の無機イオン交換体の場合は、pHが急激に上昇す
ると結晶化してイオン交換能が低下するおそれがあるの
で、アルカリ性物質を一時に多量に添加することは避け
るべきである。
Although the addition rate is desirably adjusted to the hydrolysis reaction rate, it is also possible to add the amount of alkaline substance necessary to obtain the product first and wait for equilibrium to be reached. However, B
In the case of an i-based inorganic ion exchanger, if the pH rapidly increases, it may crystallize and reduce its ion exchange ability, so it should be avoided to add a large amount of an alkaline substance at once.

アル功り性物質の濃度は、カップリング剤水溶液の添加
後は、組成の制御のし易いよう、低濃度にすることが好
ましい。
It is preferable that the concentration of the alkaline active substance be low after the addition of the coupling agent aqueous solution so that the composition can be easily controlled.

次に、カップリング剤の添加量について述べる。Next, the amount of the coupling agent added will be described.

一般の無機物質表面をカップリング処理する場合のカッ
プリング剤の添加量は、用いるカップリング剤の比表面
積(最小被覆面積)と、表面処理を施す物質の比表面積
より、該物質全表面に単分子層を形成するのに必要な量
を計算して決定する。
When coupling the surface of a general inorganic substance, the amount of the coupling agent added is determined based on the specific surface area (minimum coverage area) of the coupling agent used and the specific surface area of the substance to be surface-treated. Calculate and determine the amount needed to form a molecular layer.

本発明においては、生成した無機イオン交換体の表面が
力・7プリング剤で被覆されていると考えられるが、上
記の計算で得た量を無機イオン交換体に適用した場合、
無機イオン交換体の表面が広くカップリング剤の単分子
層で覆われるだけでなく、無機イオン交換体のイオン交
換に関与する交換基であるOH基が、カップリング剤の
シラノール基等の官能基と縮合を起こし、このため無機
イオン交換体のイオン交換容量が急激に低下する恐れが
ある。
In the present invention, it is thought that the surface of the produced inorganic ion exchanger is coated with the force/7 pulling agent, but when the amount obtained by the above calculation is applied to the inorganic ion exchanger,
Not only is the surface of the inorganic ion exchanger extensively covered with a monomolecular layer of the coupling agent, but also the OH group, which is an exchange group involved in ion exchange, of the inorganic ion exchanger is covered with a functional group such as a silanol group of the coupling agent. Condensation may occur, and as a result, the ion exchange capacity of the inorganic ion exchanger may decrease rapidly.

従ってカップリング剤の添加量は、その官能基数が最終
生成物中のOH基の当量数より少ないようにすることが
好ましく、その範囲で用途に応じて決定すればよい。
Therefore, the amount of the coupling agent added is preferably such that the number of functional groups thereof is smaller than the number of equivalents of OH groups in the final product, and may be determined within this range depending on the intended use.

例えば、最終的に無機イオン交換体に残しておきたいO
H基の当量数を決めて、その数基外の陰イオン(X ”
−) A全てを加水分解してOH基に変え、次いで該O
H基に相当する数の官能基を有するカップリング剤を添
加して全て反応させ、その後糸にアルカリ性物質を添加
して未反応の陰イオン全量をOH基に変える方法がある
For example, O that you want to ultimately leave in the inorganic ion exchanger
Determine the number of equivalents of H group, and add anion (X ”
-) All A is hydrolyzed to convert into OH groups, and then the O
There is a method in which a coupling agent having a number of functional groups corresponding to the number of H groups is added and all are reacted, and then an alkaline substance is added to the thread to convert the entire amount of unreacted anions into OH groups.

又、より簡便には、試験的にいくつかの異なった量のカ
ップリング剤を添加して、表面処理された無機イオン交
換体を生成させてその性能を試験した上、最も好ましい
添加量を求める方法もある。
Alternatively, it is more convenient to add several different amounts of the coupling agent on a trial basis to generate a surface-treated inorganic ion exchanger, test its performance, and then determine the most preferable amount. There is a way.

〔作用〕[Effect]

本発明で得られる無機イオン交換体は、高度に加水分解
反応がなされて得られた生成物であっても、流動性及び
分散性に優れており、生成物を反応液から分離・水洗し
てもブロック化し難(、その後の乾燥及び粉砕も容易で
ある。
The inorganic ion exchanger obtained by the present invention has excellent fluidity and dispersibility even if it is a product obtained through a highly hydrolyzed reaction, and the product can be separated from the reaction solution and washed with water. It is also difficult to form into blocks (and subsequent drying and pulverization are also easy).

更にイオン交換容量は従来のものと変わらな(、且つ他
の固体材料との親和性及び分散性も優れたものである。
Furthermore, the ion exchange capacity is the same as that of conventional products (and the affinity and dispersibility with other solid materials are also excellent).

この理由は定かでないが、本発明ではカップリング剤の
添加時期を特定することにより、無機イオン交換体の表
面に任意の量のカップリング剤を存在させることができ
、固体材料に添加した場合に、これが固体材料との親和
性に寄与し、一方力ツブリング剤と反応しなかった残存
0H基又はその後のアルカリ性物質との反応により生し
たOH基が、イオン交換に寄与するためと考えられる。
The reason for this is not clear, but in the present invention, by specifying the timing of addition of the coupling agent, it is possible to have any amount of the coupling agent present on the surface of the inorganic ion exchanger, and when added to the solid material, It is thought that this contributes to the affinity with the solid material, while the remaining 0H groups that did not react with the force-twisting agent or the OH groups generated by the subsequent reaction with the alkaline substance contribute to ion exchange.

[実施例] 以下、実施例及び比較例を挙げて本発明を更に詳しく説
明する。なお、各側におLfる「部」は「重量部」を表
す。
[Example] Hereinafter, the present invention will be explained in more detail by giving Examples and Comparative Examples. Note that "parts" on each side represent "parts by weight."

実施例1 硝酸ビスマス水溶液(硝酸ビスマス含量40゜9%、フ
リーな硝酸5.2%)600gに、攪拌下、液温15〜
25゛Cの条件で、’15%水酸化ナトリウム水溶液6
80gを定量ポンプを用いて30分かけて添加し、その
後30分攪拌した。
Example 1 600 g of bismuth nitrate aqueous solution (bismuth nitrate content 40.9%, free nitric acid 5.2%) was added at a temperature of 15 to 15% while stirring.
At 25°C, add 15% sodium hydroxide aqueous solution 6.
80 g was added over 30 minutes using a metering pump, followed by stirring for 30 minutes.

得られたスラリーを一部採り、反応生成物の組成分析を
行ったところ、BihO6(OH) 3.11(NOz
)z−0・0.9H20であった。
When a portion of the obtained slurry was taken and the composition of the reaction product was analyzed, it was found that BihO6(OH) 3.11 (NOz
)z-0・0.9H20.

シランカップリング剤(A−187、日本ユニカー味製
;T−グリシドキシプロビルトリメトキシシラン、平均
分子量236.1分子3官能(1分子中に3個のシラノ
ール基が存在する。
Silane coupling agent (A-187, manufactured by Nippon Unicar Aji; T-glycidoxyprobyltrimethoxysilane, average molecular weight 236.1 molecule trifunctional (3 silanol groups are present in one molecule).

)6gと純水100gからなる水溶液を生成スラリーに
添加し、60分間攪拌し、反応を十分行った。
) and 100 g of pure water were added to the resulting slurry and stirred for 60 minutes to allow sufficient reaction.

引続き2%水酸化ナトリウム水溶液600g、4%水酸
化ナトリウム水溶液1500gを、それぞれ1時間かけ
て定量ポンプを用いて添加した。
Subsequently, 600 g of a 2% aqueous sodium hydroxide solution and 1500 g of a 4% aqueous sodium hydroxide solution were each added over 1 hour using a metering pump.

得られたスラリーをNα2濾祇で濾過し、蒸留水で水洗
後、箱型乾燥機内で110°C115時間乾燥し、次い
で卓上粉砕機で粉砕し、組成がBi、06(OH)bで
ある無機イオン交換体の粉体約150gを得た。
The resulting slurry was filtered through Nα2 filter, washed with distilled water, dried in a box-type dryer at 110°C for 115 hours, and then ground in a tabletop grinder to produce an inorganic material with a composition of Bi, 06(OH)b. Approximately 150 g of ion exchanger powder was obtained.

実施例2 実施例1と同じ硝酸ビスマス水溶液600gに15%水
酸化ナトリウム水溶液680gを定量ポンプを用いて3
0分かけて添加した。
Example 2 680 g of a 15% sodium hydroxide aqueous solution was added to 600 g of the same bismuth nitrate aqueous solution as in Example 1 using a metering pump.
Added over 0 minutes.

30分攪拌後、実施例1と同じシランカップリング剤3
gと純水100gからなる水溶液を生成スラリーに添加
し、60分間攪拌し、反応を十分行った。
After stirring for 30 minutes, the same silane coupling agent 3 as in Example 1 was added.
An aqueous solution consisting of 100 g of pure water and 100 g of pure water was added to the produced slurry, and stirred for 60 minutes to sufficiently carry out the reaction.

以下、実施例1と同様の操作を行い、無機イオン交換体
の粉体を得た。
Thereafter, the same operation as in Example 1 was performed to obtain powder of an inorganic ion exchanger.

実施例3 実施例1と同じ硝酸ビスマス水溶液600gに15%水
酸化ナトリウム水溶液680gを定量ポンプを用いて3
0分かけて添加した。
Example 3 680 g of a 15% sodium hydroxide aqueous solution was added to 600 g of the same bismuth nitrate aqueous solution as in Example 1 using a metering pump.
Added over 0 minutes.

30分攪拌後、実施例1と同じシランカップリング剤1
.5gと純水100gからなる水溶液を生成スラリーに
添加し、60分間攪拌し、反応を十分行った。
After stirring for 30 minutes, the same silane coupling agent 1 as in Example 1 was added.
.. An aqueous solution consisting of 5 g and 100 g of pure water was added to the resulting slurry and stirred for 60 minutes to allow sufficient reaction.

以下、実施例1と同様の操作を行い、無機イオン交換体
の粉体を得た。
Thereafter, the same operation as in Example 1 was performed to obtain powder of an inorganic ion exchanger.

実施例4 実施例1と同じ硝酸ビスマス水溶液600gに15%水
酸化ナトリウム水溶液680gを定量ポンプを用いて3
0分かけて添加した。
Example 4 680 g of a 15% sodium hydroxide aqueous solution was added to 600 g of the same bismuth nitrate aqueous solution as in Example 1 using a metering pump.
Added over 0 minutes.

30分攪拌後、実施例1と同じシランカップリング剤0
.75 gと純水100gからなる水溶液を生成スラリ
ーに添加し、60分間攪拌し、反応を十分行った。
After stirring for 30 minutes, the same silane coupling agent 0 as in Example 1 was added.
.. An aqueous solution consisting of 75 g and 100 g of pure water was added to the resulting slurry and stirred for 60 minutes to ensure sufficient reaction.

以下、実施例1と同様の操作を行い、無機イオン交換体
の粉体を得た。
Thereafter, the same operation as in Example 1 was performed to obtain powder of an inorganic ion exchanger.

実施例5 実施例1と同じ硝酸ビスマス水溶液600gに15%水
酸化ナトリウム水溶液680gを定量ポンプを用いて3
0分かけて添加し、その後30分攪拌した。その後2%
水酸化ナトリウム水溶液600gを定量ポンプを用いて
30分間かけて添加した。
Example 5 680 g of a 15% sodium hydroxide aqueous solution was added to 600 g of the same bismuth nitrate aqueous solution as in Example 1 using a metering pump.
The mixture was added over 0 minutes and then stirred for 30 minutes. 2% thereafter
600 g of aqueous sodium hydroxide solution was added over 30 minutes using a metering pump.

得られたスラリーを一部採り、反応生成物の組成分析を
行ったところ、B110b (OH) 4.2(NO+
) 8.−・o、5Hzoであった。
A portion of the obtained slurry was taken and the composition of the reaction product was analyzed, and it was found that B110b (OH) 4.2 (NO+
) 8. -・o, 5Hz.

実施例1と同じシランカップリング剤1.5gと純水1
00gからなる水溶液を生成スラリーに添加し、60分
間攪拌し、反応を十分行った。
1.5 g of the same silane coupling agent as in Example 1 and 1 portion of pure water
An aqueous solution consisting of 00 g was added to the resulting slurry and stirred for 60 minutes to ensure sufficient reaction.

引続き4%水酸化ナトリウム水溶液1500g、4%水
酸化ナトリウム水溶液1500gを定量ポンプを用い、
1時間かけて添加した。
Subsequently, using a metering pump, 1500 g of 4% sodium hydroxide aqueous solution and 1500 g of 4% sodium hydroxide aqueous solution were added.
Added over 1 hour.

30分間攪拌後、実施例1と同じ操作を行い、無機イオ
ン交換体の粉体を得た。
After stirring for 30 minutes, the same operation as in Example 1 was performed to obtain an inorganic ion exchanger powder.

実施例6 実施例1と同じ硝酸ビスマス水溶液600gに15%水
酸化ナトリウム水溶液680gを定量ポンプを用いて3
0分かけて添加し、その後30分攪拌した。その後2%
水酸化ナトリウム水溶液600gを定量ポンプを用いて
30分間かけて添加した。
Example 6 680 g of a 15% sodium hydroxide aqueous solution was added to 600 g of the same bismuth nitrate aqueous solution as in Example 1 using a metering pump.
The mixture was added over 0 minutes and then stirred for 30 minutes. 2% thereafter
600 g of aqueous sodium hydroxide solution was added over 30 minutes using a metering pump.

更に4%水酸化ナトリウム水溶液1500gを定量ポン
プを用いて1時間かけて添加した。
Furthermore, 1500 g of 4% aqueous sodium hydroxide solution was added over 1 hour using a metering pump.

30分間攪拌後、得られたスラリーを一部採り、反応生
成物の組成分析を行ったところ、B160h (OH)
b、o・0.9HzOであった。
After stirring for 30 minutes, a portion of the obtained slurry was taken and the composition of the reaction product was analyzed, and it was found that B160h (OH)
b, o・0.9HzO.

実施例1と同じシランカップリング剤1.5gと純水1
00gからなる水溶液を生成スラリーに添加し、60分
間攪拌し、反応を十分行った。
1.5 g of the same silane coupling agent as in Example 1 and 1 portion of pure water
An aqueous solution consisting of 00 g was added to the resulting slurry and stirred for 60 minutes to ensure sufficient reaction.

以下実施例1と同様の操作を行い、無機イオン交換体の
粉体を得た。
Thereafter, the same operation as in Example 1 was performed to obtain a powder of an inorganic ion exchanger.

比較例1 実施例1と同じ硝酸ビスマス水溶液600gに15%水
酸化ナトリウム水溶液680gを定量ポンプを用いて3
0分かけて添加し、その後30分攪拌した。その後2%
水酸化ナトリウム水溶液600gを定量ポンプを用いて
30分間かけて添加した。
Comparative Example 1 680 g of a 15% sodium hydroxide aqueous solution was added to 600 g of the same bismuth nitrate aqueous solution as in Example 1 using a metering pump.
The mixture was added over 0 minutes and then stirred for 30 minutes. 2% thereafter
600 g of aqueous sodium hydroxide solution was added over 30 minutes using a metering pump.

更に4%水酸化ナトリウム水溶液1500gを定量ポン
プを用いて1時間かけて添加した。
Furthermore, 1500 g of 4% aqueous sodium hydroxide solution was added over 1 hour using a metering pump.

以下実施例1と同様の操作を行い、無機イオン交換体の
粉体を得た。
Thereafter, the same operation as in Example 1 was performed to obtain a powder of an inorganic ion exchanger.

比較例2 比較例1で得られた無機イオン交換体の粉体50gを純
水200m1に添加し、10分間攪拌し分散させた。
Comparative Example 2 50 g of the inorganic ion exchanger powder obtained in Comparative Example 1 was added to 200 ml of pure water and stirred for 10 minutes to disperse it.

該分散液の攪拌下に、実施例1と同じシランカップリン
グ剤1.5gと純水100gからなる水溶液を10分間
かけて添加した。
While stirring the dispersion, an aqueous solution consisting of 1.5 g of the same silane coupling agent as in Example 1 and 100 g of pure water was added over 10 minutes.

更に30分間攪拌した後、実施例1と同様にスラリーを
濾過、洗浄、乾燥させ、無機イオン交換体の粉体を得た
After stirring for an additional 30 minutes, the slurry was filtered, washed, and dried in the same manner as in Example 1 to obtain an inorganic ion exchanger powder.

比較例3 比較例1で得られた無機イオン交換体の粉体50gを卓
上粉砕機に入れ、実施例1と同じシランカップリング剤
の1.5%水溶液を添加し、10分間混合後、乾燥させ
、無機イオン交換体の粉体を得た。
Comparative Example 3 50 g of the inorganic ion exchanger powder obtained in Comparative Example 1 was placed in a tabletop pulverizer, a 1.5% aqueous solution of the same silane coupling agent as in Example 1 was added, mixed for 10 minutes, and then dried. A powder of an inorganic ion exchanger was obtained.

以上、実施例1〜6及び比較例1〜3で得られた無機イ
オン交換体の粉体各1.0gを0.IN塩酸水溶液50
m1に添加し、25°Cで15時間攪拌後、濾過し、上
澄み液中の塩化物イオン濃度を測定し、各々の塩化物イ
オン交換能を調べた(テスト1)D 又、実施例1〜6及び比較例1〜3で得られた無機イオ
ン交換体の粉体について、分散性、流動性及び付着性の
評価をホソカワミクロン■製のパウダーテスターにより
行った(テスト2)Dなお、安息角は、標準篩を振動さ
せ、サンプルをロートを通じ、注入法により測定し、血
清角は、安息角を作っている粉体に一定の衝撃を与えて
、これの血清の程度を測定したもので、圧縮度はゆるみ
見掛比重と固め見掛比重を測りこの2つの数値の比から
求めたものである(具体的な測定方法は、「粉体物性測
定法」早用宗へ部著朝倉書店の96〜97及び112頁
の記載に従った。)D テスト1及び2の結果を表1に記す。
As described above, 1.0 g of each of the inorganic ion exchanger powders obtained in Examples 1 to 6 and Comparative Examples 1 to 3 was added to 0.0 g. IN aqueous hydrochloric acid solution 50
ml, stirred at 25°C for 15 hours, filtered, measured the chloride ion concentration in the supernatant, and examined the chloride ion exchange ability of each (Test 1). The dispersibility, fluidity, and adhesion of the inorganic ion exchanger powders obtained in Comparative Examples 1 to 6 and Comparative Examples 1 to 3 were evaluated using a powder tester manufactured by Hosokawa Micron (Test 2). , the standard sieve is vibrated, the sample is passed through the funnel, and the serum angle is measured by the injection method. The degree is determined by measuring the loose apparent specific gravity and the hardened apparent specific gravity, and then calculating the ratio of these two values. - The results of Tests 1 and 2 are shown in Table 1.

実施例3〜6及び比較例1で得られた無機イオン交換体
を、それぞれ液状エポキシ樹脂(油化シェル側型、エピ
コート828)に50重量%添加し、3本ロールで3サ
イクル混練りした。
Each of the inorganic ion exchangers obtained in Examples 3 to 6 and Comparative Example 1 was added in an amount of 50% by weight to a liquid epoxy resin (Yuka shell side type, Epicoat 828), and kneaded for 3 cycles using 3 rolls.

得られたサンプルを2.5g採り、E型粘度計で、次の
測定条件で粘度を測定した。
2.5 g of the obtained sample was taken, and its viscosity was measured using an E-type viscometer under the following measurement conditions.

温度:25°C 回転数:10rpm、5rpm、lrpm各回転数で回
転し、10分後の粘度を測定した。結果を表2に記す。
Temperature: 25° C. Rotation speed: 10 rpm, 5 rpm, l rpm, and the viscosity was measured after 10 minutes. The results are shown in Table 2.

更に、該無機イオン交換体の固体材料との親和性を測定
した。
Furthermore, the affinity of the inorganic ion exchanger with solid materials was measured.

(ハ)発明の効果 本発明によれば、濾過・水洗工程でもブロック化し難く
、その後の乾燥及び乾燥が極めて容易に無機イオン交換
体生成物を製造することができる。
(c) Effects of the Invention According to the present invention, it is possible to produce an inorganic ion exchanger product that is difficult to form blocks even in the filtration and washing steps and is extremely easy to dry afterwards.

更に本発明で得られた無機イオン交換体のイオン交換容
量は従来と変わらず、エポキシ樹脂等の固体材料に添加
した場合の親和性及び分散性に優れたものである。
Furthermore, the ion exchange capacity of the inorganic ion exchanger obtained in the present invention is the same as that of conventional inorganic ion exchangers, and it has excellent affinity and dispersibility when added to solid materials such as epoxy resins.

本発明で得られる無機イオン交換体は、IC封止材、コ
ンデンサの封止材、電解コンデンサの封口材(ゴムや樹
脂)、基板、ペースト類等に好適に用いられる。
The inorganic ion exchanger obtained by the present invention is suitably used for IC sealing materials, capacitor sealing materials, electrolytic capacitor sealing materials (rubber or resin), substrates, pastes, and the like.

Claims (1)

【特許請求の範囲】 1、金属の水溶性塩を水及び/又はアルカリ性物質で加
水分解する無機イオン交換体の製造方法において、反応
系にカップリング剤水溶液を添加することを特徴とする
下式で表される無機イオン交換体の製造方法。 (M^A^+)(O^2^−)_D(OH^−)_E(
X^B^−)_FここでM^A^+は価数A+(Aは2
〜5の整数)の金属イオン、X^B^−は価数B−(B
は正数)の陰イオンを示す。 又、D及びFは0又は正の数を、Eは正の数を表す。
[Claims] 1. A method for producing an inorganic ion exchanger in which a water-soluble salt of a metal is hydrolyzed with water and/or an alkaline substance, characterized by adding an aqueous coupling agent solution to the reaction system, according to the following formula: A method for producing an inorganic ion exchanger represented by (M^A^+) (O^2^-)_D(OH^-)_E(
X^B^-)_FHere, M^A^+ is the valence A+ (A is 2
~5 integer) metal ion, X^B^- has a valence of B- (B
is a positive number). Further, D and F represent 0 or a positive number, and E represents a positive number.
JP13577889A 1989-05-31 1989-05-31 Preparation of inorganic ion exchange body Pending JPH034940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13577889A JPH034940A (en) 1989-05-31 1989-05-31 Preparation of inorganic ion exchange body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13577889A JPH034940A (en) 1989-05-31 1989-05-31 Preparation of inorganic ion exchange body

Publications (1)

Publication Number Publication Date
JPH034940A true JPH034940A (en) 1991-01-10

Family

ID=15159638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13577889A Pending JPH034940A (en) 1989-05-31 1989-05-31 Preparation of inorganic ion exchange body

Country Status (1)

Country Link
JP (1) JPH034940A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191075A1 (en) * 2012-06-21 2013-12-27 東亞合成株式会社 Amorphous inorganic anion exchanger, resin composition for sealing electronic component, and method for producing amorphous bismuth compound
US9611522B2 (en) 2009-05-06 2017-04-04 United Technologies Corporation Spray deposition of L12 aluminum alloys

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9611522B2 (en) 2009-05-06 2017-04-04 United Technologies Corporation Spray deposition of L12 aluminum alloys
WO2013191075A1 (en) * 2012-06-21 2013-12-27 東亞合成株式会社 Amorphous inorganic anion exchanger, resin composition for sealing electronic component, and method for producing amorphous bismuth compound
JPWO2013191075A1 (en) * 2012-06-21 2016-05-26 東亞合成株式会社 Amorphous inorganic anion exchanger, resin composition for encapsulating electronic components, and method for producing amorphous bismuth compound

Similar Documents

Publication Publication Date Title
CN1330577C (en) Hollow fine powder, flaky fine titanium oxide powder prepared by pulverising said hollow fine powder and process for preparing both
JP2803134B2 (en) Elongated silica sol and method for producing the same
US5226930A (en) Method for preventing agglomeration of colloidal silica and silicon wafer polishing composition using the same
JP5035545B2 (en) Method for producing alkaline zirconia sol
JP2003535674A (en) Colloidal dispersion of cerium compound or compound of cerium and at least one other element selected from rare earths and transition metals, containing amine acid
KR20100014355A (en) Process for producing silica sol of long and thin shape
JP2013173077A (en) Method for manufacturing cation sorbing agent
JPS5930722B2 (en) Method for producing powdery porous chitosan
JPH034940A (en) Preparation of inorganic ion exchange body
JPS60240769A (en) Production of inorganic material having hydrophobic surface
US6866711B2 (en) Composite pigment composition containing silica
Safronikhin et al. Preparation and colloidal behaviour of surface-modified EuF3
JP4939021B2 (en) Coated magnesium hydroxide, method for producing the same, and resin composition for electronic component material containing the same
JPS59122554A (en) Preparation of surface-treating barium sulfate
JPS61227918A (en) Production of antimony pentoxide sol
JPS62105918A (en) Manufacture of seeding mixture for synthexizing faujasite
JP3302702B2 (en) Method for producing modified colloidal silica having a positive charge
DE60310230T2 (en) CHLOROSILANE BLENDS FOR THE TREATMENT OF QUARTZ FUELS
JPS62241827A (en) Production of ferromagnetic fine powder for magnetic recording
JPS6360112A (en) Bismuth compound and inorganic ion exchanger containing same as effective component
JPH04154648A (en) Chlorine ion scavenger
JP2000256102A (en) Antimicrobial agent and its production
JP2855331B2 (en) Stabilized red phosphorus and method for producing the same
JPH09124493A (en) Antacid and its production
JPH11322307A (en) Modified inorganic oxide sol and its production