JPH0349360B2 - - Google Patents
Info
- Publication number
- JPH0349360B2 JPH0349360B2 JP59211434A JP21143484A JPH0349360B2 JP H0349360 B2 JPH0349360 B2 JP H0349360B2 JP 59211434 A JP59211434 A JP 59211434A JP 21143484 A JP21143484 A JP 21143484A JP H0349360 B2 JPH0349360 B2 JP H0349360B2
- Authority
- JP
- Japan
- Prior art keywords
- concentration
- pollution
- control
- wind speed
- tunnel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 claims description 20
- 238000009423 ventilation Methods 0.000 claims description 18
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 7
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 6
- 230000035699 permeability Effects 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 description 11
- 238000002834 transmittance Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 3
- 239000004071 soot Substances 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
Landscapes
- Ventilation (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は縦流式道路トンネル内の汚染濃度を許
容値に制御する道路トンネルの換気制御方法に関
するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a road tunnel ventilation control method for controlling the pollution concentration in a longitudinal road tunnel to an acceptable value.
一般に、道路トンネルでは自動車の排気ガスに
よる一酸化炭素や煤煙などの汚染濃度を許容値以
内に保持するために換気が行われる。
Generally, road tunnels are ventilated to keep the concentration of pollution such as carbon monoxide and soot from automobile exhaust gases within acceptable limits.
換気には送風機が用いられ、その動力量も大き
いので省電力を考慮した換気制御が必要であり、
また運転台数を制御する場合には、機器の寿命お
よび保守のために台数制御の頻度をできるだけ少
くすることが望ましい。 A blower is used for ventilation, and its power output is large, so it is necessary to control ventilation with energy savings in mind.
Furthermore, when controlling the number of devices in operation, it is desirable to reduce the frequency of controlling the number of devices as much as possible in order to maintain the life of the device and maintain it.
道路トンネルの換気方式は主として縦流式、横
流式、半横流式の3つに分類できる。 Ventilation systems for road tunnels can be mainly classified into three types: vertical flow, cross flow, and semi-cross flow.
縦流式は交通流に平行に換気風を流す方式、横
流式は交通流と直角に換気風を流す方式、半横流
式は新鮮な換気風を交通流と直角に流し、汚染さ
れた空気を交通流と平行に流す方式である。 The longitudinal flow type is a method in which ventilation air flows parallel to the traffic flow, the cross flow type is a method in which ventilation air is flowed at right angles to the traffic flow, and the semi-cross flow type is a method in which fresh ventilation air is flowed at right angles to the traffic flow to remove contaminated air. This method runs parallel to the traffic flow.
縦流式は設備費が安価であるが、汚染濃度が交
通流と平行な方向に積分されるので、他の方式に
比べて制御方法が複雑になる。 The longitudinal flow type has low equipment costs, but because the pollution concentration is integrated in a direction parallel to the traffic flow, the control method is more complex than other types.
一般に道路トンネルにおいては、トンネル内の
汚染濃度を検出し、濃度が高くなれば風量を上
げ、濃度が低くなれば風量を下げる方法が用いら
れている。 Generally, in road tunnels, a method is used in which the concentration of pollution inside the tunnel is detected, and if the concentration is high, the air volume is increased, and if the concentration is low, the air volume is decreased.
しかしながらこの方法では、一時的な交通量の
変動によつて換気機器の始動停止の頻度が増大
し、制御パラメータの調整状態によりハンチング
現象を生ずるという問題がある。 However, this method has the problem that the frequency of starting and stopping of ventilation equipment increases due to temporary fluctuations in traffic volume, and a hunting phenomenon occurs depending on the adjustment state of control parameters.
また濃度基準を保持するための動力が予測でき
ないので省エネルギの点で問題がある。 Furthermore, since the power required to maintain the concentration standard cannot be predicted, there is a problem in terms of energy conservation.
なお交通量を計測して制御する方法もあるが、
計測機器が高価であり、経済的に問題がある。 There are also methods to measure and control traffic volume.
The measuring equipment is expensive and there is an economical problem.
特に縦流式の場合は、濃度が場所と時間の関数
で移動し、ある場所における濃度が風速の変化に
対して非線形で且つ大きい無駄時間と遅れ時間を
もつて変化するので、これに対する対策が必要で
ある。 In particular, in the case of a longitudinal flow type, the concentration moves as a function of location and time, and the concentration at a certain location changes non-linearly with changes in wind speed and with large dead time and delay time, so there are no countermeasures for this. is necessary.
本発明は、縦流式道路トンネルの汚染濃度を、
場所と時間に対する関数関係を考慮したアルゴリ
ズムを用いて制御し、これによつてトンネル内の
汚染濃度を許容値内に保持しながら、機器の始動
停止頻度の低減と省エネルギをはかつた道路トン
ネルの換気制御方法を提供することを目的として
いる。
The present invention aims to reduce the pollution concentration of longitudinal road tunnels by
A road tunnel that is controlled using an algorithm that considers functional relationships with location and time, thereby reducing the frequency of equipment starts and stops and saving energy while keeping the pollution concentration within the tunnel within tolerance. The purpose is to provide a ventilation control method.
本発明は、縦流式道路トンネル内の透過率、一
酸化炭素濃度、風速などを含む汚染濃度情報を入
力し、汚染濃度が許容値以下になるようにトンネ
ル内風速を制御する道路トンネルの換気制御方法
において、汚染濃度情報とトンネルのプロセスシ
ユミレーシヨンから目標汚染濃度に対する風速目
標値を算出する風速目標値演算と、算出した風速
目標値に対応して換気用送風機を制御する風速制
御演算を備え、これによつて汚染濃度を演算する
遅い系と、風速を制御する速い系とを分離し、換
気制御の安定性の向上と換気動力の節減をはかつ
たものである。
The present invention provides road tunnel ventilation that inputs pollution concentration information including permeability, carbon monoxide concentration, wind speed, etc. in a longitudinal road tunnel and controls the wind speed in the tunnel so that the pollution concentration is below a permissible value. The control method includes a wind speed target value calculation that calculates a wind speed target value for a target pollution concentration from pollution concentration information and tunnel process simulation, and a wind speed control calculation that controls a ventilation blower in accordance with the calculated wind speed target value. This separates the slow system that calculates contaminant concentration from the fast system that controls wind speed, thereby improving the stability of ventilation control and reducing ventilation power.
本発明の一実施例を第1図に示す。 An embodiment of the present invention is shown in FIG.
第1図において、1が縦流式道路トンネルであ
り、車両2が対面交通する。 In FIG. 1, numeral 1 is a longitudinal road tunnel, and vehicles 2 are in two-way traffic.
トンネル内には複数のジエツトフアン4が設け
られ、換気風はトンネル内を縦断して矢印3の方
向に流れる。 A plurality of jet fans 4 are provided in the tunnel, and ventilation air flows vertically through the tunnel in the direction of arrow 3.
トンネル内には複数の透過率計5、一酸化炭素
濃度計6、および風速計7が配置され、入出力制
御装置9および演算制御装置8を介してジエツト
フアン4の運転を制御し、これによつてトンネル
内風速を変化させて汚染濃度を許容値以下に制御
する。 A plurality of transmittance meters 5, carbon monoxide concentration meters 6, and anemometers 7 are arranged inside the tunnel, and the operation of the jet fan 4 is controlled via an input/output control device 9 and an arithmetic control device 8. The contamination concentration is controlled below the permissible value by changing the wind speed inside the tunnel.
以下、第2図のフローチヤートを参照して上記
演算制御装置8の演算動作を説明する。 Hereinafter, the arithmetic operation of the arithmetic and control unit 8 will be explained with reference to the flowchart shown in FIG.
演算動作は風速目標値Vr*を算出する風速目標
値演算と風速目標値Vr*に応じてジエツトフアン
へ速度指令を出力する風速制御演算とに大別され
る。 The calculation operation is broadly divided into a wind speed target value calculation for calculating the wind speed target value Vr * , and a wind speed control calculation for outputting a speed command to the jet fan according to the wind speed target value Vr * .
風速目標値演算では、先ずステツプ(1)で濃度分
布の推定を行う。 In calculating the wind speed target value, first, in step (1), the concentration distribution is estimated.
すなわちプロセス値として、上記各計測器で測
定した各場所の透過率VI1〜VIl、一酸化炭素濃度
CO1〜COnおよび風速Vr1〜Vroを入力し、時々
刻々と入力される汚染濃度に関する情報の履歴か
ら現在のトンネル内の基準分布を求める。 In other words, the process values are the transmittance VI 1 to VI l and carbon monoxide concentration at each location measured with each of the above measuring instruments.
By inputting CO 1 to CO n and wind speeds V r1 to V ro , the current standard distribution in the tunnel is determined from the history of information regarding pollution concentration that is input from time to time.
基準分布は定常特性近似を利用して下記(1)式を
用いて算出される。 The reference distribution is calculated using the following equation (1) using stationary characteristic approximation.
(x,t)=o+P(t)/ArVr・X ……(1)
ここに
(x,t);坑口から距離X(m)の地点におけ
る時刻tの基準濃度〔P.U.〕
o;坑口から流入する新鮮空気の濃度〔P.U〕
定数
P^(t);時刻tにおける発生汚染量推定値〔m3/
msec〕
Ar;トンネル断面積〔m2〕定数
r;風速検出値Vr1〜Vroの平均値〔m/sec〕
なお、制御指標としては、煤煙濃度と一酸化炭
素濃度があり、煤煙濃度Cτは下記(2)式で演算さ
れる。 (x, t) = o + P (t) / ArVr・X ... (1) Here (x, t); Reference concentration at time t at a point of distance Concentration of fresh air [PU]
Constant P^(t): Estimated amount of pollution generated at time t [m 3 /
msec] Ar: Tunnel cross-sectional area [m 2 ] Constant r: Average value of detected wind speed values V r1 to V ro [m/sec] Control indicators include soot concentration and carbon monoxide concentration, and soot concentration Cτ is calculated using equation (2) below.
Cτ=−1/100log10(τ) ……(2)
ここにτ;100m透過率(P.U.)
上記2つの指標にはそれぞれ許容上限があるの
で、各濃度を許容上限値で除算した比の大きい方
を制御指標C(x,t)として選択する。 Cτ=-1/100log 10 (τ) ...(2) Here, τ; 100m transmittance (PU) Each of the above two indicators has an allowable upper limit, so the ratio of each concentration divided by the allowable upper limit is the larger value. is selected as the control index C(x, t).
次に基準濃度分布と時々刻々に入力されるプロ
セス値のうち制御指標として選択された濃度C
(x,t)との差の二乗和が最小となるようにP^
(t)を推定し、得られたP^(t)を設定した(1)式
における(x,t)とする。 Next, the concentration C selected as a control index from among the reference concentration distribution and the process values that are input every moment.
P^ so that the sum of squares of the difference from (x, t) is minimized
(t) is estimated and the obtained P^(t) is set as (x, t) in equation (1).
次にステツプ(2)でプロセスシミユレーシヨンを
行う。 Next, in step (2), process simulation is performed.
すなわち、汚染濃度分布の移動を移流方程式で
近似し、ステツプ(1)で得られた定常点から風速の
変化に対する制御すべき地点x*における濃度の
変化の応答を求める。 That is, the movement of the contaminant concentration distribution is approximated by an advection equation, and the response of the concentration change at the point x * to be controlled to the change in wind speed from the steady point obtained in step (1) is determined.
移流方程式は下記(3)式で示される。 The advection equation is shown by equation (3) below.
Ar√C(x,t)/√t=−√C(x,
t)/√x・Ar・Vr(t)+P^(x,t)……(3)
従つて基準濃度分布C^(x,t)を初期状態と
し、風速をr(t)→r(t)+△r(t)と
変化されたときのC(x*,t)の応答を演算す
る。 Ar√C(x, t)/√t=-√C(x,
t)/√x・Ar・Vr(t)+P^(x, t)...(3) Therefore, the standard concentration distribution C^(x, t) is set as the initial state, and the wind speed is set as r(t)→r( The response of C(x * , t) when changed to t)+Δr(t) is calculated.
次に、ステツプ(3)でプロセス近似特性演算を行
う。 Next, in step (3), a process approximation characteristic calculation is performed.
すなわち、得られた応答を無駄時間+一次遅れ
で近似し、下記(4)式におけるK、T、Lを求め
る。 That is, the obtained response is approximated by dead time + first-order delay, and K, T, and L in the following equation (4) are obtained.
K・e-LS/1+T・S ……(4) その方法としては例えば次のように演算する。 K·e -LS /1+T·S ...(4) For example, the following calculation method is used.
すなわち先ず整定時間T∞を設定した許容範囲
から求め、次に最終応答の63%までの達成時間
T60を求め、T∞、T60と初期時刻T=0から無
駄時間を求める。 In other words, first find the settling time T∞ from the set tolerance range, then find the time to achieve 63% of the final response.
Find T 60 and find the dead time from T∞, T 60 and initial time T=0.
次にステツプ(4)で風速目標値Vr*を設定する。 Next, in step (4), the wind speed target value Vr * is set.
すなわち上記(4)式で得られた近似特性を考慮し
て、あらかじめ設定された目標濃度と検出された
濃度現在値との偏差の比例、積分量に基づいて安
定な濃度制御が行える風速目標値Vr*を算出して
下位カスケードループの風速制御演算に設定し、
所定の遅延をおいて上記の演算処理を繰返す。 In other words, in consideration of the approximate characteristics obtained from equation (4) above, a wind speed target value that allows stable concentration control is determined based on the proportional and integral amount of the deviation between the preset target concentration and the detected current concentration value. Calculate Vr * and set it to the wind speed control calculation of the lower cascade loop,
The above calculation process is repeated after a predetermined delay.
風速制御演算は上記風速目標値Vr*があたえら
れると、風速検出値Vr1〜Vroの平均値との偏差
に比例積分させた速度制御指令u1〜uj〔P.U.〕を
出力し、それぞれのジエツトフアン4−1〜4−
jの速度を制御する。 In the wind speed control calculation, when the above-mentioned wind speed target value Vr * is given, the speed control commands u 1 to uj [PU] which are proportionally integrated to the deviation from the average value of the detected wind speed values V r1 to V ro are output, and each Jet fan 4-1~4-
Control the speed of j.
この場合、安定な制御となるように例えばジー
グラニコラスの方法によつて制御ゲインを調整す
ることができる。 In this case, the control gain can be adjusted by, for example, the Siegler-Nicholas method to achieve stable control.
なお上記実施例は、ジエツトフアンの速度制御
によつて風速を制御しているが、運転台数制御、
極数変換制御を用いることも可能であり、また他
種の送風機を用いる場合にも本発明の適用が可能
である。 Note that in the above embodiment, the wind speed is controlled by controlling the speed of the jet fans, but it is also possible to control the number of operating fans,
It is also possible to use pole number conversion control, and the present invention can also be applied when using other types of blowers.
以上説明したように本発明によれば、応答速度
の遅い濃度制御系と応答速度の速い風速制御系と
を分離し、濃度制御系で汚染濃度情報とトンネル
のシミユレーシヨンとから風速目標値を算出し、
これに対応して風速制御系で送風機を制御してい
るので、濃度制御が安定になると共に送風機の起
動停止の頻度が低下して動力費の節減が可能とな
る。
As explained above, according to the present invention, the concentration control system with a slow response speed and the wind speed control system with a fast response speed are separated, and the concentration control system calculates a target wind speed value from pollution concentration information and tunnel simulation. ,
Correspondingly, since the blower is controlled by the wind speed control system, concentration control becomes stable, and the frequency of starting and stopping the blower is reduced, making it possible to reduce power costs.
第1図は本発明の一実施例を示す系統図、第2
図は本発明における演算制御動作を示すフローチ
ヤートである。
1……縦流式道路トンネル、2……車両、3…
…風方向、4……ジエツトフアン、5……透過率
計、6……一酸化炭素濃度計、7……風速計、8
……演算制御装置、9……入出力制御装置。
Figure 1 is a system diagram showing one embodiment of the present invention, Figure 2 is a system diagram showing an embodiment of the present invention.
The figure is a flowchart showing the calculation control operation in the present invention. 1... Longitudinal road tunnel, 2... Vehicle, 3...
...Wind direction, 4...Jet fan, 5...Transmittance meter, 6...Carbon monoxide concentration meter, 7...Anemometer, 8
...Arithmetic control device, 9...Input/output control device.
Claims (1)
濃度などの汚染濃度に関する情報、および風向風
速を検出し、これらの情報に基づいてトンネルの
換気機器を制御する道路トンネルの換気制御方法
において、時々刻々に入力される汚染濃度に関す
る情報の履歴から定常特性近似を利用して現在の
トンネル内の基準濃度分布を求め、この基準濃度
分布と上記汚染濃度に関する情報とから算出さ
れ、かつ制御指標として選択された濃度との差の
二重和が最小となるように発生汚染量を推定する
ステツプと、上記発生汚染量推定値を用いて決定
した汚染濃度分布を初期状態とし、現在の風速を
変化させたときの制御すべき地点における濃度の
変化の応答を、上記汚染濃度分布の移流を近似す
る移流方程式を用いて演算するステツプと、上記
得られた応答を無駄時間と一次遅れとの和として
近似するステツプと、上記得られた近似特性を考
慮して、目標濃度と検出された濃度現在値との偏
差に対する制御量に基づいて安定な濃度制御とな
るように制御ゲインを調整し、風速目標値を求
め、これを下位カスケードループである換気機器
制御ループに出力するステツプ、を備えたことを
特徴とする道路トンネルの換気制御方法。1. In a road tunnel ventilation control method that detects information regarding the permeability in a longitudinal road tunnel, pollution concentration such as carbon monoxide concentration, and wind direction and wind speed, and controls tunnel ventilation equipment based on these information, The current reference concentration distribution in the tunnel is obtained from the history of information on pollution concentration that is input from time to time using stationary characteristic approximation, and is calculated from this reference concentration distribution and the above information on pollution concentration, and is used as a control index. A step of estimating the amount of pollution generated so that the double sum of the difference from the selected concentration is minimized, and setting the pollution concentration distribution determined using the estimated value of the amount of pollution generated as the initial state, and changing the current wind speed. a step of calculating the response of the change in concentration at the point to be controlled when the pollution concentration distribution is controlled using an advection equation that approximates the advection of the pollution concentration distribution, and calculating the response obtained above as the sum of the dead time and the first-order delay. Considering the approximation step and the approximation characteristics obtained above, the control gain is adjusted to achieve stable concentration control based on the control amount for the deviation between the target concentration and the detected current concentration value, and the wind speed target is A ventilation control method for a road tunnel, comprising a step of determining a value and outputting the value to a ventilation equipment control loop that is a lower cascade loop.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21143484A JPS6192300A (en) | 1984-10-11 | 1984-10-11 | Ventilation control of road tunnel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21143484A JPS6192300A (en) | 1984-10-11 | 1984-10-11 | Ventilation control of road tunnel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6192300A JPS6192300A (en) | 1986-05-10 |
JPH0349360B2 true JPH0349360B2 (en) | 1991-07-29 |
Family
ID=16605884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21143484A Granted JPS6192300A (en) | 1984-10-11 | 1984-10-11 | Ventilation control of road tunnel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6192300A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57116900A (en) * | 1981-01-06 | 1982-07-21 | Tokyo Shibaura Electric Co | Operation of ventilator for vertical stream type road tunnel |
JPS5812100A (en) * | 1981-07-13 | 1983-01-24 | 航空宇宙技関研究所長 | Optical delay pulse type digital transducer |
JPS58121000A (en) * | 1982-01-14 | 1983-07-19 | 株式会社東芝 | Method of controlling ventilation of centralized exhaust type road tunnel |
-
1984
- 1984-10-11 JP JP21143484A patent/JPS6192300A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57116900A (en) * | 1981-01-06 | 1982-07-21 | Tokyo Shibaura Electric Co | Operation of ventilator for vertical stream type road tunnel |
JPS5812100A (en) * | 1981-07-13 | 1983-01-24 | 航空宇宙技関研究所長 | Optical delay pulse type digital transducer |
JPS58121000A (en) * | 1982-01-14 | 1983-07-19 | 株式会社東芝 | Method of controlling ventilation of centralized exhaust type road tunnel |
Also Published As
Publication number | Publication date |
---|---|
JPS6192300A (en) | 1986-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107288675B (en) | Tunnel intelligent aeration control method | |
Karakaş | The control of highway tunnel ventilation using fuzzy logic | |
JP3778539B2 (en) | Tunnel vehicle drive control method and apparatus | |
JPH0349360B2 (en) | ||
CN215057522U (en) | Tunnel ventilation partition cascade control system | |
JPH01151700A (en) | Ventilation controller for road tunnel | |
JPH07127393A (en) | Automatic ventilation control device | |
JPH0613840B2 (en) | Ventilation control method for central exhaust type automobile tunnel | |
JP2714210B2 (en) | Method and apparatus for controlling wind speed in tunnel | |
JPH04309700A (en) | Ventilation controller of tunnel | |
JP2000027600A (en) | Ventilation system for road tunnel | |
JP2600532B2 (en) | Tunnel ventilation control device | |
JP2967680B2 (en) | Ventilation automatic control device | |
JPH09145109A (en) | Ventilation automatic control device of road tunnel | |
JPH0222199B2 (en) | ||
JPS58121000A (en) | Method of controlling ventilation of centralized exhaust type road tunnel | |
JPS63233200A (en) | Ventilation controller for tunnel | |
JP2541147B2 (en) | Tunnel ventilation control method | |
JPH03244800A (en) | Ventilation control device for road tunnel | |
JPS61186700A (en) | Tunnel ventilation control system | |
JP3254801B2 (en) | Automatic ventilation control device | |
JPH01203600A (en) | Controller for ventilation of tunnel group | |
JPH01247700A (en) | Ventilation control device for road tunnel | |
CN115977714A (en) | Tunnel environment regulation and control device and method | |
JP2000104500A (en) | Method for ventilating tunnel |