JPH0349300B2 - - Google Patents

Info

Publication number
JPH0349300B2
JPH0349300B2 JP61218087A JP21808786A JPH0349300B2 JP H0349300 B2 JPH0349300 B2 JP H0349300B2 JP 61218087 A JP61218087 A JP 61218087A JP 21808786 A JP21808786 A JP 21808786A JP H0349300 B2 JPH0349300 B2 JP H0349300B2
Authority
JP
Japan
Prior art keywords
phenolic resin
fiber
curing
acid
reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61218087A
Other languages
Japanese (ja)
Other versions
JPS6375039A (en
Inventor
Takeshi Makyo
Takashi Hashiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Highpolymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Highpolymer Co Ltd filed Critical Showa Highpolymer Co Ltd
Priority to JP21808786A priority Critical patent/JPS6375039A/en
Publication of JPS6375039A publication Critical patent/JPS6375039A/en
Publication of JPH0349300B2 publication Critical patent/JPH0349300B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、作業性及び硬化性に優れた常温乃至
中温硬化型繊維強化フエノール樹脂成形物の製造
方法に関する。 [従来の技術] フエノール樹脂は、不飽和ポリエステル樹脂に
比べ耐燃性、耐熱性が優れているため、最近不飽
和ポリエステル樹脂に代えて繊維強化マトリツク
スに使用することが試みらている。 常温・中温硬化型繊維強化フエノール樹脂成形
物は通常液状レゾール型フエノール樹脂に酸性硬
化剤、必要に応じて充填剤、難燃剤、離型剤、着
色剤などを配合し繊維に含浸し、水分揮発分を含
有したまま硬化させることにより製造され、その
成形物は耐燃性、低発煙性、耐熱性、耐薬品性な
どの点で繊維強化不飽和ポリエステル樹脂成形物
に比べすぐれた特性を有する事から各種用途、例
えばダクト、天井、耐食パイプ、航空機部品、車
輌部品、シエルター等の各種用途に期待できる。 しかしながら、液状レゾール型フエノール樹脂
に酸性硬化剤として一般に知られている有機酸、
無機酸を使用すると作業性と硬化性のバランスが
悪く実用的でない。 例えば、一般の酸性硬化剤としては、硫酸、塩
酸、リン酸の如き無機強酸類、パラトルエンスル
ホン酸、キシレンスルホン酸、ベンゼンスルホン
酸、フエノールスルホン酸、スルホン化フエノー
ル樹脂などの有機強酸類などが良く知られてい
る。 しかしながら、硬化剤としてリン酸、硫酸など
の無機強酸を適当な可使時間(20〜60分)になる
ように液状レゾール型フエノール樹脂に配合して
も乳化、増粘が速いわりに繊維含浸後の硬化が遅
く、又硬化を速くするため無機酸量を増やすと乳
化、増粘が速くなり急激な発熱を伴ない可使時間
が短かく作業性、含浸性が悪くなる。又得られた
成形物の機械的強度が低い。 パラトルエンスルホン酸、フエノールスルホン
酸、スルホン化フエノール樹脂などの有機強酸を
硬化剤として適当な可使時間(20〜60分)になる
ように液状レゾール型フエノール樹脂に配合する
と初期増粘は無機強酸よりやや押さえられるもの
の、繊維含浸後の硬化が遅く、有機強酸量を増す
と増粘が速く急激な発熱を伴い可使時間が短かく
なりすぎて作業性、含浸性が悪く、得られた成形
物の機械的強度が低い等の欠点がある。 一方、有機酸と無機酸の併用、倒えばスルホン
化フエノール樹脂とリン酸の併用(特開昭57−
102929号公報参照)が試みられているが、適当な
硬化性を得る様な硬化剤量を液状レゾール樹脂に
配合するとリン酸使用のためか配合後短時間に乳
化が起こり、これに伴ない発熱、増粘し、まだ作
業性、含浸性、硬化色相、耐食性等に問題を残し
ている。また成形物の機械的強度も低い。 [発明が解決しようとする問題点] そこで本発明者らは上記の欠点とする機械的強
度、作業性、含浸性、硬化色相、耐食性等の改良
をするため鋭意研究をした結果、特定の硬化剤を
配合することにより乳化を遅らせ増粘が少なく適
当な可使時間が得られ、繊維含浸後常温・中温で
硬化する事ができ作業性、硬化性、硬化色相、耐
食性に優れ且つ機械的強度が高い繊維強化物が得
られる事を見出し、本発明を完成した。 [問題点を解決するための手段] 即ち、本発明は液状レゾール型フエノール樹脂
を酸性硬化剤の存在下で繊維に含浸、硬化させて
繊維強化フエノール樹脂成形物を製造する方法に
おいて、一般式 及び/又は [但し、Rは炭素数1〜9のアルキル基であり、
nは0または1〜3の整数である]で表わされる
アリルアシツドフオスフエートを酸性硬化剤とし
て用いることを特徴とする繊維強化フエノール樹
脂成形物の製造方法に在する。 [作 用] 本発明に於て使用する液状レゾール型フエノー
ル樹脂は、フエノール類1モルとアルデヒド類
0.3〜3.0モルをアルカリ性触媒の存在下で反応し
て得られる液状レゾール型フエノール樹脂初期縮
合物である。この初期縮合物は酸で部分中和され
ていてもよい。又脱水し水を適当な溶剤で置換し
てもよい。フエノール類としては、フエノールお
よびその同族体のクレゾール、キシレノール、ア
ルキルフエノール等があげられる。アルデヒド類
としてはホルムアルデヒド、アセトアルデヒドお
よびフルフラール等があげられる。 本発明の酸性硬化剤として使用されるアリルア
シツドフオスフエートは、前記一般式[]及
び/又は[]で表わされる化合物であり、フエ
ノール化合物と無水リン酸との反応によつて得ら
れ、倒えば使用可能なフエノール化合物として
は、フエノール、クレゾール、キシレノール、ブ
チルフエノール、ノニルフエノール等が代表例と
してあげられる。本発明においては、フエノール
3モルに無水リン酸1モルを42〜45℃で滴下し、
滴下終了後120℃に加熱し、同温度で2〜3時間
撹拌することによつて製造される一般式[]及
び[]の混合物が好適に使用される。この方法
で得られる生成物は、一般式[]及び[]を
それぞれ45〜50%含有する他に、一般式 [但し、R及びnは前記と同じ]で表わされる二
量体を少量(5%以下)含むが、それは本発明の
アリルアシツドフオスフエートの使用の妨げには
ならない。その他に微量(1%以下)の遊離のフ
エノールを含むが、同様に本発明のアリルアシツ
ドフオスフエートの効果を減殺するものではな
い。しかし遊離のフエノールが増加するとアリル
アシツドフオスフエート自身が結晶化し凝固して
しまい、そのまま使用すると硬化が遅くなるので
好ましくない。従つて、前記反応生成物中の一般
式[]及び[]で表わされる混合物の量は90
%好ましくは95%以上であることが望ましい。 本発明のアリルアシツドフオスフエードは液状
レゾール型フエノール樹脂100重量部に対して常
温から中温の各種プラスチツクの成形法に適した
作業性、可使時間と硬化時間が得られる様に1〜
50重量部好ましくは5〜30重量部の範囲で使用さ
れる。 ここに並べた各種のプラスチツクの成形方法と
は公知のハンドレーアツプ法、スプレーアツプ
法、プリフオームマツチドダイ法、コールドプレ
ス法、レジンインジエクシヨン法、真空パツク
法、フイラメントワイデイング法及びプルトルー
ジヨン法等があげられる。成形温度は、硬化剤
量、硬化サイクル、成形方法によつて相違はある
が、常温から90℃の範囲で任意に選択出来、必要
によつては60℃〜120℃で後硬化を行うこともで
きる。 本発明において使用する繊維補強剤としては、
ガラスチヨツプドストランドマツト、ガラスチヨ
ツプ、ガラスクロク、ガラスロービング、コンテ
イニユアスマツト、プリフオームマツト、サーフ
エースマツト等のガラス繊維、炭素繊維、ウイス
カー等の無機繊維、アラミド繊維のごとき有機繊
維があげられる。 硬化物中の繊維補強材の含有率は10〜70重量%
好ましくは20〜60重量%である。繊維補強材の含
有率が10%未満になると成形品の強度が低下し、
難燃性も低下する。繊維補強材の含有率が70重量
%を越えると含浸性が悪く、表面状態も悪くな
る。 [実施例] 以下、実施例によつて本発明をさらに詳しく説
明する。 硬度はバーコール934工法で、PHはガラス電極
を用いて測定した。 実施例1〜2、比較例1〜4 第1表に示される配合処法により、繊維強化用
液状レゾール型フエノール樹脂(昭和高分子(株)製
FRL−100粘度300〜500cps)に各種酸性硬化剤
をそれぞれ25℃に調整し、ビーカー内で1分混合
し、温度25℃の雰囲気中での乳化時間及び硬化時
間を測定し得らえた値を第1表に示す。 FRP成形は第1表に示される配合処法により、
液状レゾール型フエノール樹脂に各種酸性硬化剤
を配合して、1分混合後、450g/m2ガラスチヨ
ツプドストランドマツト(3プライ)使用し、ハ
イドレイアツプ成形法により、マイラーフイルム
を敷いたガラス板上で厚さ3mm、ガラス含有量30
%の平板を成形した。 得られた繊維強化フエノール成形物の物性を同
表に示す。 [発明の効果] 第1表の結果から明らかな如く、本発明に係る
製造方法によれば、配合後の乳化が遅く、初期増
粘がないため作業性がよく、かつ速やかに硬化さ
せる事ができるのでその硬化物は淡色で耐食性が
よい。 出来た繊維強化成形物は耐食性、機械的強度が
良いことから金属、水等の使用される所に使用可
能である。
[Industrial Field of Application] The present invention relates to a method for producing a fiber-reinforced phenolic resin molded product that cures at room temperature to medium temperature and has excellent workability and curability. [Prior Art] Phenol resins have better flame resistance and heat resistance than unsaturated polyester resins, so attempts have recently been made to use them in fiber-reinforced matrices in place of unsaturated polyester resins. Room-temperature/medium-temperature curing fiber-reinforced phenolic resin moldings are usually made by blending liquid resol-type phenolic resin with an acidic curing agent, fillers, flame retardants, mold release agents, coloring agents, etc. as necessary, and impregnating the fibers with the mixture, and then evaporating the water. The molded product has superior properties compared to fiber-reinforced unsaturated polyester resin molded products in terms of flame resistance, low smoke emission, heat resistance, chemical resistance, etc. It can be expected to be used in various applications such as ducts, ceilings, corrosion-resistant pipes, aircraft parts, vehicle parts, and shelters. However, organic acids, which are generally known as acidic curing agents, are added to liquid resol type phenolic resins.
When inorganic acids are used, there is a poor balance between workability and curing properties, making them impractical. For example, common acidic curing agents include strong inorganic acids such as sulfuric acid, hydrochloric acid, and phosphoric acid, and strong organic acids such as paratoluenesulfonic acid, xylenesulfonic acid, benzenesulfonic acid, phenolsulfonic acid, and sulfonated phenolic resin. well known. However, even if a strong inorganic acid such as phosphoric acid or sulfuric acid is added as a hardening agent to a liquid resol type phenolic resin to give an appropriate pot life (20 to 60 minutes), emulsification and thickening are quick, but after fiber impregnation, Curing is slow, and if the amount of inorganic acid is increased to speed up curing, emulsification and thickening will be accelerated, accompanied by rapid heat generation, resulting in short pot life and poor workability and impregnating properties. Moreover, the mechanical strength of the obtained molded product is low. When a strong organic acid such as para-toluenesulfonic acid, phenolsulfonic acid, or sulfonated phenolic resin is added to a liquid resol type phenolic resin as a curing agent to give an appropriate pot life (20 to 60 minutes), the initial thickening is reduced by an inorganic strong acid. However, the curing after fiber impregnation is slow, and when the amount of strong organic acid is increased, the viscosity increases quickly and generates rapid heat generation, resulting in a shortened pot life, resulting in poor workability and impregnating properties. There are drawbacks such as low mechanical strength of the product. On the other hand, a combination of an organic acid and an inorganic acid, or even a combination of a sulfonated phenol resin and phosphoric acid (JP-A-57-1999)
102929), but when a liquid resol resin is blended with an amount of curing agent that would provide appropriate curing properties, emulsification occurs within a short time after blending, probably due to the use of phosphoric acid, and this causes heat generation. However, there are still problems with workability, impregnability, curing color, corrosion resistance, etc. The mechanical strength of the molded product is also low. [Problems to be Solved by the Invention] Therefore, the present inventors conducted intensive research to improve the above-mentioned drawbacks such as mechanical strength, workability, impregnability, curing hue, corrosion resistance, etc. By blending the agent, emulsification is delayed and viscosity increases, resulting in a suitable pot life. After fiber impregnation, it can be cured at room temperature or medium temperature, and has excellent workability, hardenability, cured color, and corrosion resistance, as well as mechanical strength. The present invention was completed based on the discovery that a fiber-reinforced material with a high [Means for Solving the Problems] That is, the present invention provides a method for producing a fiber-reinforced phenolic resin molded product by impregnating and curing a liquid resol type phenolic resin in the presence of an acidic curing agent. and/or [However, R is an alkyl group having 1 to 9 carbon atoms,
n is 0 or an integer from 1 to 3] is used as an acidic curing agent. [Function] The liquid resol type phenolic resin used in the present invention contains 1 mole of phenols and aldehydes.
It is a liquid resol type phenolic resin initial condensate obtained by reacting 0.3 to 3.0 mol in the presence of an alkaline catalyst. This initial condensate may be partially neutralized with an acid. Alternatively, the water may be replaced with a suitable solvent after dehydration. Examples of phenols include phenol and its homologues such as cresol, xylenol, and alkylphenols. Examples of aldehydes include formaldehyde, acetaldehyde, and furfural. The allyl acid phosphate used as the acidic curing agent of the present invention is a compound represented by the general formula [] and/or [], and is obtained by the reaction of a phenol compound and phosphoric anhydride, Typical examples of phenol compounds that can be used include phenol, cresol, xylenol, butylphenol, and nonylphenol. In the present invention, 1 mole of phosphoric anhydride is added dropwise to 3 moles of phenol at 42 to 45°C,
A mixture of general formulas [] and [], which is produced by heating to 120° C. and stirring at the same temperature for 2 to 3 hours after completion of the dropwise addition, is preferably used. The product obtained by this method contains 45 to 50% of the general formula [] and [], as well as the general formula Although it contains a small amount (5% or less) of a dimer represented by [where R and n are the same as above], this does not hinder the use of the allyl acid phosphate of the present invention. Although it also contains a trace amount (1% or less) of free phenol, it does not reduce the effect of the allyl acid phosphate of the present invention. However, if the amount of free phenol increases, the allyl acid phosphate itself will crystallize and solidify, and if used as is, curing will be delayed, which is not preferable. Therefore, the amount of the mixture represented by the general formulas [] and [] in the reaction product is 90
%, preferably 95% or more. The allyl acid phosphide of the present invention is made from 1 to 100% by weight to provide workability, pot life, and curing time suitable for various plastic molding methods at room to medium temperatures based on 100 parts by weight of liquid resol type phenolic resin.
The amount used is 50 parts by weight, preferably 5 to 30 parts by weight. The various plastic molding methods listed here are the known hand lay-up method, spray-up method, preform mated die method, cold press method, resin injection method, vacuum pack method, filament widening method, and pultrusion method. Examples include the Yon method. Although the molding temperature varies depending on the amount of curing agent, curing cycle, and molding method, it can be selected arbitrarily from room temperature to 90°C, and if necessary, post-curing can be performed at 60°C to 120°C. can. The fiber reinforcing agent used in the present invention includes:
Examples include glass fibers such as glass chopped strand pine, glass strand pine, glass cloak, glass roving, container smut, preform pine, surf ace pine, inorganic fibers such as carbon fiber and whiskers, and organic fibers such as aramid fibers. . The content of fiber reinforcement in the cured product is 10 to 70% by weight
Preferably it is 20 to 60% by weight. If the content of fiber reinforcement is less than 10%, the strength of the molded product will decrease,
Flame retardancy also decreases. If the content of the fiber reinforcing material exceeds 70% by weight, impregnating properties will be poor and the surface condition will also be poor. [Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples. Hardness was measured using the Barcol 934 method, and PH was measured using a glass electrode. Examples 1 to 2, Comparative Examples 1 to 4 A liquid resol-type phenolic resin for fiber reinforcement (manufactured by Showa Kobunshi Co., Ltd.) was prepared by the compounding method shown in Table 1.
FRL-100 (viscosity 300 to 500 cps) and various acidic curing agents were adjusted to 25°C, mixed for 1 minute in a beaker, and the emulsification time and curing time were measured in an atmosphere at a temperature of 25°C. Shown in Table 1. FRP molding is performed using the compounding method shown in Table 1.
Various acidic curing agents were mixed with liquid resol type phenolic resin, and after mixing for 1 minute, a mylar film was laid using 450 g/m 2 glass chopped strand mat (3 ply) using the hydray up molding method. 3mm thick on glass plate, glass content 30
% flat plate was molded. The physical properties of the obtained fiber-reinforced phenol molded product are shown in the same table. [Effects of the Invention] As is clear from the results in Table 1, according to the production method of the present invention, emulsification after blending is slow and there is no initial viscosity increase, so workability is good and quick curing is possible. The cured product is light in color and has good corrosion resistance. The resulting fiber-reinforced molded product has good corrosion resistance and mechanical strength, so it can be used where metals, water, etc. are used.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 液状レゾール型フエノール樹脂を酸性硬化剤
の存在下で、繊維に含浸、硬化させて繊維強化フ
エノール樹脂成形物を製造する方法において、 一般式 及び/又は [但し、Rは炭素数1〜9のアルキル基であり、
nは0または1〜3の整数である]で表わされる
アリルアシツドフオスフエートを酸性硬化剤とし
て用いることを特徴とする繊維強化フエノール樹
脂成形物の製造方法。
[Claims] 1. A method for producing a fiber-reinforced phenolic resin molded product by impregnating and curing fibers with a liquid resol type phenolic resin in the presence of an acidic curing agent, comprising: and/or [However, R is an alkyl group having 1 to 9 carbon atoms,
1. A method for producing a fiber-reinforced phenolic resin molded article, characterized in that allyl acid phosphate represented by n is 0 or an integer from 1 to 3 is used as an acidic curing agent.
JP21808786A 1986-09-18 1986-09-18 Production of fiber-reinforced phenolic resin molded article Granted JPS6375039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21808786A JPS6375039A (en) 1986-09-18 1986-09-18 Production of fiber-reinforced phenolic resin molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21808786A JPS6375039A (en) 1986-09-18 1986-09-18 Production of fiber-reinforced phenolic resin molded article

Publications (2)

Publication Number Publication Date
JPS6375039A JPS6375039A (en) 1988-04-05
JPH0349300B2 true JPH0349300B2 (en) 1991-07-29

Family

ID=16714434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21808786A Granted JPS6375039A (en) 1986-09-18 1986-09-18 Production of fiber-reinforced phenolic resin molded article

Country Status (1)

Country Link
JP (1) JPS6375039A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083029B2 (en) * 1989-07-27 1996-01-17 旭有機材工業株式会社 Phenolic resin molding material
US7087703B2 (en) * 2004-07-26 2006-08-08 Georgia-Pacific Resins, Inc. Phenolic resin compositions containing etherified hardeners
JP2015048395A (en) * 2013-08-30 2015-03-16 群栄化学工業株式会社 Thermosetting resin composition and resol type phenol resin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2272668A (en) * 1939-02-10 1942-02-10 Reichhold Chemicals Inc Partial phosphoric esters and process for preparing same
US2330286A (en) * 1939-02-10 1943-09-28 Reichhold Chemicals Inc Process for accelerating the hardening of hardenable resins and new composition of matter
JPS61136527A (en) * 1984-12-07 1986-06-24 Showa Highpolymer Co Ltd Production of fiber-reinforced phenolic resin molding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2272668A (en) * 1939-02-10 1942-02-10 Reichhold Chemicals Inc Partial phosphoric esters and process for preparing same
US2330286A (en) * 1939-02-10 1943-09-28 Reichhold Chemicals Inc Process for accelerating the hardening of hardenable resins and new composition of matter
JPS61136527A (en) * 1984-12-07 1986-06-24 Showa Highpolymer Co Ltd Production of fiber-reinforced phenolic resin molding

Also Published As

Publication number Publication date
JPS6375039A (en) 1988-04-05

Similar Documents

Publication Publication Date Title
KR101204396B1 (en) Phenolic resin compositions containing etherified hardeners
EP0152445A1 (en) Moulding composition.
US4578448A (en) High-ortho phenol-formaldehyde resoles containing hemiformal groups
FI82066B (en) NYA FENOLHARTSBLANDNINGAR.
US4555544A (en) Hardening phenol-formaldehyde resols in the presence of aniline
US5004789A (en) Resin compositions based on phenolic resins
US4843142A (en) Catalytic process for producing cross-linked resin from phenolic compound and bis-oxazoline
JPH0262578B2 (en)
JPH0349300B2 (en)
US5141992A (en) Phenolic resin composition with excellent impact strength
EP1100674B1 (en) Resin transfer moulding
JP2000502738A (en) Reactive diluent for acid-curable phenolic resin compositions
JPS6139901B2 (en)
JPS61136527A (en) Production of fiber-reinforced phenolic resin molding
JP2023505608A (en) Method for the preparation of molded composites from bulk molding compounds
JP3754166B2 (en) Method for producing fiber-reinforced phenolic resin molded product
JP3147182B2 (en) Curable prepreg and molded product obtained by curing the same
JPS5935926B2 (en) resin composition
JP2004269812A (en) Phenol resin composition for fiber-reinforced composite material and fiber-reinforced composite material
JPS6346099B2 (en)
JPS5914491B2 (en) Molding method for reinforced plastics
JP3529944B2 (en) Manufacturing method and curing agent for fiber-reinforced phenolic resin molded products
KR930005398B1 (en) New resin composition based on phenolic resins
JP2002012736A (en) Ordinary temperature curable phenol resin composition
JPH0270746A (en) Resin composition made by using phenolic resin as base material