JPS5914491B2 - Molding method for reinforced plastics - Google Patents

Molding method for reinforced plastics

Info

Publication number
JPS5914491B2
JPS5914491B2 JP52132447A JP13244777A JPS5914491B2 JP S5914491 B2 JPS5914491 B2 JP S5914491B2 JP 52132447 A JP52132447 A JP 52132447A JP 13244777 A JP13244777 A JP 13244777A JP S5914491 B2 JPS5914491 B2 JP S5914491B2
Authority
JP
Japan
Prior art keywords
resin
molding
molded product
parts
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52132447A
Other languages
Japanese (ja)
Other versions
JPS5465773A (en
Inventor
俊夫 金井
善文 浜
信夫 山西
脩 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP52132447A priority Critical patent/JPS5914491B2/en
Publication of JPS5465773A publication Critical patent/JPS5465773A/en
Publication of JPS5914491B2 publication Critical patent/JPS5914491B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は難燃特性、機械的強度等により優れたフェノー
ル系樹脂成形物を容易且つ安価に提供できる成形法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a molding method that can easily and inexpensively provide a phenolic resin molded product with excellent flame retardant properties, mechanical strength, etc.

従来、フェノール樹脂を用いた強化プラスチックスは、
成形に供せられる成形材料の形態によつてコンパウンド
法と積層法の2方法に分けられている。
Conventionally, reinforced plastics using phenolic resin were
There are two methods: a compound method and a lamination method, depending on the form of the molding material used for molding.

これらの方法は材料製造から成形完了までに煩雑な工程
を経なければならず、また各方法とも成形品形状の自由
度、機械的強度に欠ける欠点; も有している。例えば
コンパウンド法の場合、成形材料の製造方法は2通りに
分けられるが、その1つはレゾール型樹脂のような液状
タイプの樹脂と必要によつて加えられる水又はアルコー
ル等の溶剤、滑剤、着色剤等とを木粉、パルプ、布など
10の基材とともにニーダー、ブレンダーなどで混合し
、これら配合物を含浸した基材は必らず乾燥工程を経て
溶剤を飛ばし、必要ならBステージ化を経てからコンパ
ウンドする。他の方法としてはノボラック型フェノール
樹脂の如き固体樹脂を硬化15剤、滑剤、着色剤、木粉
等の配合物とともにブレンダー、パンバリ−ミキサー等
で混合し、次いでこれをロール、コニーダー等を用いて
加熱混練して流れ特性を所望の状態に調整し、次いで冷
却し、粉砕機にかけて粒状又は粉末状のコンパウンドと
ク0 する。以上がコンパウンドの製造方法であるが、
その工程は乾燥、B−ステージ化、混練、粉砕工程等ひ
じように煩雑であり、又基材の選択に際してもコンパウ
ンドの均一性、基材の含浸性の向上、基材の破損からの
回避、流れ特性調整の容易性等25の理由から木粉、パ
ルプに限られ、しかも出来るだけ細かい形状のものを使
用する必要がある。得られたコンパウンドはトランスフ
ァー成形、射出成形によつて成形加工されるが、その際
の加工原理は、通常、1コンパウンドを加熱して流動性
を30与える゜゜可塑化’’、2可塑化された流動可能
なコンパウンドを金型の中に充填し、所定の形を与える
゛賦形’’、3所定の形を与えられた状態で更に加熱を
して硬化反応を進め、完結後に冷却して取り出a硬化’
’の3段階を経る。コンパウンドを35成形に供した場
合、成形温度は予熱から始まつて、金型温度を数段階変
化させることが必要であり、更に成形圧力も非常に高い
。更に良好な成形品を得るためにはガス抜き工程が不可
欠であり、このようにコンパウンドを用いた場合は加工
工程に於いても非常に工程数が多い。又、得られた成形
品も前記したコンパウンド製造上の問題、成形加工時の
流れの問題から使用する基材も微細な木材、パルプ等に
限定されるために機械的強度にも劣る欠点もある。、3
一方、積層法の場合、積層材料の製造法は一般には樹脂
を水又はアルコール等の溶剤に溶解したレゾール型フエ
ノール樹脂を使用し、この樹脂液に連続した紙、布、そ
の他の有機繊維、ガラス繊維等の基材を通過させること
によつて樹脂液を基材に含浸させ、次いでロール、しご
き棒等で樹脂量を調節してから必らず加熱により揮発分
を除去する工程(乾燥工程)を経てからプリプレグ状の
積層材料とする。
These methods require complicated steps from material production to completion of molding, and each method also has the drawbacks of lack of freedom in molded product shape and mechanical strength. For example, in the case of the compound method, there are two ways to manufacture the molding material. One is a liquid type resin such as resol type resin and a solvent such as water or alcohol added as necessary, a lubricant, and coloring. The mixture is mixed with 10 base materials such as wood flour, pulp, and cloth in a kneader or blender, and the base materials impregnated with these compounds must undergo a drying process to remove the solvent, and if necessary, B-stage. Then compound. Another method is to mix a solid resin such as a novolac type phenolic resin with a curing agent, a lubricant, a coloring agent, wood flour, etc. using a blender, panburi mixer, etc., and then mix this using a roll, co-kneader, etc. The mixture is heated and kneaded to adjust the flow characteristics to the desired state, then cooled and crushed into a granular or powdered compound using a pulverizer. The above is the method of manufacturing the compound,
The process is extremely complicated, such as drying, B-staging, kneading, and pulverization, and when selecting the base material, it is necessary to improve the uniformity of the compound, improve the impregnability of the base material, and avoid damage to the base material. For reasons such as the ease of adjusting flow characteristics, it is necessary to use only wood flour and pulp, and to use materials with as fine a shape as possible. The obtained compound is molded by transfer molding or injection molding, and the processing principles at this time are usually 1) heating the compound to give it fluidity of 30° plasticization, 2. Fill a mold with a flowable compound and give it a predetermined shape. 3. Once the predetermined shape is given, it is further heated to advance the curing reaction, and after completion, it is cooled and removed. Out a hardening'
It goes through three stages. When the compound is subjected to 35 molding, it is necessary to change the mold temperature by several steps starting from preheating, and the molding pressure is also very high. In order to obtain a better molded product, a degassing step is essential, and when a compound is used in this way, the number of processing steps is extremely large. In addition, the resulting molded product also has the disadvantage of poor mechanical strength because the base material used is limited to fine wood, pulp, etc. due to the problems in compound production and flow problems during molding processing. . ,3
On the other hand, in the case of the lamination method, the manufacturing method of laminated materials generally uses a resol type phenolic resin in which the resin is dissolved in a solvent such as water or alcohol, and this resin liquid is mixed with continuous paper, cloth, other organic fibers, glass, etc. The process of impregnating the base material with resin liquid by passing it through a base material such as fibers, then adjusting the amount of resin with a roll, ironing bar, etc., and then removing the volatile content by heating (drying process) After that, it is made into a prepreg-like laminated material.

成形加工はこの積層材料を所定の厚さとなるように適当
な枚数を重ね合わせて、50〜180分加熱加圧プレス
をして積層板を成形する。即ち、コンパウンド法と同様
に基材への樹脂の含浸、乾燥等の前工程が必要であり、
特に乾燥工程では溶剤の飛散が2次的な問題として発生
する。更に成形工程では材料のセツテイング、成形時間
等に問題があり、特に大きな複雑形状の積層成形品を得
るには種々の形に裁断後に予備成形してから加熱・加圧
成形する必要がある。更にこのような積層法によつて得
られた成形品は基材が切れ易い、ピンホールが生じる、
基材の含有率が高い等の欠点があり、製品価格も高くな
らざるを得なかつた。本発明者等はフエノール樹脂を用
いたプラスチック成形にみられる従来方法の欠点を改良
し、大型で複雑形状の成形品でも簡単に成形でき、しか
も機械的強度に優れた安価な強化プラスチツクスを得る
べく鋭意検討した結果、レゾール型フエノール系樹脂と
硬化剤及び必要に応じて充填剤、離型剤、着色剤等を添
加、攪拌して得られた含水率5〜50重量%(樹脂固型
分と水との合計重量を基にする)のシロツプ又はペース
トを、直接、無機系繊維補強材10〜70重量%(成形
物中)に含浸させ、次いで強制乾燥させることなく硬化
させてなる強化プラスチツクス成形法では予想外の効果
が得られることを見い出し、本発明を完成するに到つた
In the forming process, an appropriate number of sheets of the laminated material are stacked to have a predetermined thickness, and a laminated plate is formed by heating and pressing for 50 to 180 minutes. That is, similar to the compounding method, pre-processes such as impregnating the base material with resin and drying are necessary.
Particularly in the drying process, solvent scattering occurs as a secondary problem. Furthermore, there are problems in the setting of materials, molding time, etc. in the molding process, and in particular, in order to obtain laminated molded products with large and complex shapes, it is necessary to preform after cutting into various shapes and then heat and pressure molding. Furthermore, molded products obtained by such lamination methods are prone to breakage of the base material, pinholes, etc.
There are drawbacks such as a high content of the base material, and the product price has to be high. The present inventors have improved the drawbacks of conventional methods of plastic molding using phenolic resins, and obtained an inexpensive reinforced plastic that can be easily molded into large, complex-shaped molded products and has excellent mechanical strength. As a result of careful study, we found that the water content was 5 to 50% by weight (resin solid content) by adding and stirring a resol type phenolic resin, a curing agent, and if necessary, a filler, a mold release agent, a coloring agent, etc. Reinforced plastic made by directly impregnating 10 to 70% by weight of an inorganic fiber reinforcing material (in the molded product) with syrup or paste (based on the total weight of The inventors have discovered that unexpected effects can be obtained using the steel molding method, and have completed the present invention.

本発明方法によれば従来のフエノール樹脂の成ノ形法で
みられた強制的な乾燥工程は無く、且つ粉砕、予備加熱
、予備成形、ガス抜き等の成形工程をも飛躍的に単純化
した簡便な方法で成形可能であり、更に配合物に水を含
むことによつて含浸性、流動性の改良や硬化後の成形品
では予想外の低発煙性が発揮されること、硬化剤を併用
することによつて成形サイクルの短縮化が行なわれる、
長繊維補強材の使用が可能である等の利点が生じるもの
である。
According to the method of the present invention, there is no forced drying process seen in conventional phenolic resin molding methods, and the molding processes such as crushing, preheating, preforming, degassing, etc. are dramatically simplified. It can be molded by a simple method, and by adding water to the compound, it improves impregnability and fluidity, and the molded product after curing exhibits unexpectedly low smoke generation. By doing so, the molding cycle is shortened.
This provides advantages such as the possibility of using long fiber reinforcing materials.

本発明に於いて使用するレゾール型フエノール樹脂とは
、フエノール類としてフエノール、レゾルシノール、キ
シレノール、ハイドロキノン、ビスフエノールA1ブチ
ルフエノール、オクチルフエノール等の1種以上と、ホ
ルムアルデヒドの如きアルデヒド類をアルカリ性触媒の
存在下で通常の製造条件で反応せしめたものであり、普
通は水を含有した液状の樹脂である。
The resol type phenolic resin used in the present invention refers to one or more phenols such as phenol, resorcinol, xylenol, hydroquinone, bisphenol A1, butylphenol, octylphenol, etc., and aldehydes such as formaldehyde in the presence of an alkaline catalyst. The resin is reacted under normal manufacturing conditions, and is usually a liquid resin containing water.

このようなレゾール型フエノール系樹脂の原料組成は比
較的広範囲であるが硬化剤に酸を生体として用いる場合
にはアルデヒド類/フエノール類のモル比(F/P)は
0.5〜3.0好ましくは0.8〜2.5の範囲である
The raw material composition of such resol type phenolic resins has a relatively wide range, but when an acid is used as a curing agent, the molar ratio of aldehydes/phenols (F/P) is 0.5 to 3.0. Preferably it is in the range of 0.8 to 2.5.

F/Pが0.5より小さくなると硬化性が悪く、硬化不
良、フクレなどの発生の他、架橋密度が低下する為に機
械的強度も低下し、更に遊離のフエノールが多くなるた
めに難燃特性の低下や成形時の臭気問題も発生する。一
方、F/Pが3.0より大きくなると遊離のホルムアル
デヒドが多くなるために難燃特性の低下、成形時の臭気
問題が起るし、樹脂の安定性も悪くなる。F/Pが1.
5付近に於いて機械的強度、難燃特性が最も高い。又、
原料のフエノールの一部又は全部をレゾルシノール等の
高反応性原料で置換して変件したフエノール系樹脂で、
硬化剤にアルデヒド類を主体として用いるようなタイプ
の場合にはF/Pは0.4〜0.8の範囲となる。
When F/P is less than 0.5, curability is poor, resulting in poor curing and blistering, as well as a decrease in mechanical strength due to a decrease in crosslinking density, and an increase in free phenol, resulting in poor flame retardancy. Deterioration of properties and odor problems during molding also occur. On the other hand, if F/P is greater than 3.0, the amount of free formaldehyde will increase, resulting in decreased flame retardant properties, odor problems during molding, and poor resin stability. F/P is 1.
Mechanical strength and flame retardant properties are highest near 5. or,
A phenolic resin modified by replacing part or all of the raw material phenol with a highly reactive raw material such as resorcinol.
In the case of a type in which aldehydes are mainly used as a curing agent, F/P is in the range of 0.4 to 0.8.

レゾルシノールの如き変成原料を加えた場合には硬化性
、機械的強度、難燃特件が向上する。本発明に於いて用
いるレゾール型フエノール系樹脂のPHは樹脂の安定件
に支障のないかぎり3〜12の範囲がよく、この範囲で
成形作業が容易となる。
When a modified raw material such as resorcinol is added, curability, mechanical strength, and flame retardant properties are improved. The pH of the resol type phenolic resin used in the present invention is preferably in the range of 3 to 12 as long as the stability of the resin is not affected, and molding operations are facilitated within this range.

硬化剤は、レゾール型フエノール系樹脂に通常用いられ
ているものであつて、1ベンゼンスルホン酸、パラトル
エンスルホン酸、キシレンスルホン酸、フエノールスル
ホン酸、硫酸、リン酸等の有機又は無機酸類の単独又は
併用、2ホルムアルデヒド、パラホルムアルデヒド、フ
ルフラール等のアルデヒド類が挙げられる。
The curing agent is one commonly used for resol-type phenolic resins, and is a single organic or inorganic acid such as benzenesulfonic acid, para-toluenesulfonic acid, xylene sulfonic acid, phenolsulfonic acid, sulfuric acid, or phosphoric acid. Alternatively, aldehydes such as diformaldehyde, paraformaldehyde, and furfural may be used in combination.

硬化剤としてアルデヒド類を用いるときは前記した酸類
又は水酸化ナトリウム、水酸化カリウム等のアルカリ類
を併用してもよい。硬化剤の添加量は樹脂固形分100
重量部に対し、0.5〜20重量部、好ましくは1〜1
5重量部である。硬化剤の種類や量は、フエノール樹脂
の原料組成、反応条件、PHなどにより適宜に選択でき
るが通例その使用量が0.5重量部より少ないと硬化時
間が長くて成形性も悪くなり、又20重量部を超えると
配合物のポツトライフが短かくなつて急激に粘度が上昇
し配合物が補強材の末端まで行き渡らない(含浸不良)
原因或いはセツトした補強材を配合物が押し流してしま
う(ウオツシング)原因ともなる。本発明に於いてはレ
ゾール型フエノール系樹脂、硬化剤のほか、必要によつ
ては水和アルミナ、クレー、タルク等の充填剤、金属石
けん、ホスフエート類、ワツクス類等の離型剤、無機顔
料、有機顔料等の着色剤も随時配合することができる。
When aldehydes are used as curing agents, the above-mentioned acids or alkalis such as sodium hydroxide and potassium hydroxide may be used in combination. The amount of curing agent added is resin solid content 100
0.5 to 20 parts by weight, preferably 1 to 1 parts by weight
5 parts by weight. The type and amount of the curing agent can be appropriately selected depending on the raw material composition of the phenolic resin, reaction conditions, pH, etc., but if the amount used is less than 0.5 parts by weight, the curing time will be long and the moldability will be poor. If it exceeds 20 parts by weight, the pot life of the compound will be shortened and the viscosity will increase rapidly, making it impossible for the compound to reach the ends of the reinforcing material (poor impregnation).
It may also cause the compound to wash away the reinforcing material that has been set (washing). In the present invention, in addition to a resol type phenolic resin and a curing agent, if necessary, fillers such as hydrated alumina, clay, and talc, mold release agents such as metal soaps, phosphates, and waxes, and inorganic pigments are used. , coloring agents such as organic pigments may also be added as needed.

本発明の配合物に含まれる水は、本来レゾール型フエノ
ール樹脂に含まれている水のほか、硬化剤と共に加えら
れる水などをも含み、その割合(含水率)は配合物中の
樹脂固型分と水との合計重量を基にして5〜50重量%
、好適には15〜35重量%である。含水率が50重量
%を超える場合には成形時の硬化が遅れるし、又樹脂固
型分も少ないために繊維補強材と一体化された良好な成
形品が得られず、表面光沢、機械的強度も低下する。
The water contained in the formulation of the present invention includes not only the water originally contained in the resol type phenolic resin but also water added together with the curing agent, and the proportion (water content) is determined by the amount of water added to the solid resin in the formulation. 5-50% by weight based on the total weight of water and water
, preferably 15 to 35% by weight. If the moisture content exceeds 50% by weight, curing during molding will be delayed, and since the resin solid content will be low, it will not be possible to obtain a good molded product that is integrated with the fiber reinforcement, and the surface gloss and mechanical properties will deteriorate. Strength also decreases.

又、含水率が5重量%より少ないと樹脂配合物を作る際
の攪拌作業が困難であるばかりか、配合物の繊維補強材
への含浸性或いはその後の脱泡性が悪く、作業件の低下
、成形品の強度低下を引き起す。特にプリフオームマツ
チドダイ成形法の如き加熱・加圧成形に於いては金型に
セツトされた補強材への含浸不良或いはウオツシングの
原因となる。又、難燃特性に関しては、残存する水の含
有量が少ないと、難燃性、耐発煙性が低下する。本発明
に於いては配合物に含まれる溶剤は前記した水のほかメ
タノール等のアルコール類も水の量の1/5以下程度で
あれば使用可能であるが、硬化特件の低下、難燃特性の
低下、成形プラスチツクスのフクレ等の問題が生じ易い
ため好ましくは水のみを使用するとよい。
Furthermore, if the water content is less than 5% by weight, not only will it be difficult to stir the resin compound, but the impregnation of the compound into the fiber reinforcing material or the subsequent defoaming properties will be poor, resulting in a reduction in work efficiency. , causing a decrease in the strength of the molded product. Particularly in heat/pressure molding such as preform matched die molding, this may cause poor impregnation or washing of the reinforcing material set in the mold. Regarding flame retardant properties, when the residual water content is small, flame retardancy and smoke resistance decrease. In the present invention, in addition to the above-mentioned water, alcohols such as methanol can also be used as solvents contained in the formulation as long as they are about 1/5 or less of the amount of water. Since problems such as deterioration of properties and blistering of molded plastics are likely to occur, it is preferable to use only water.

本発明方法に於いて使用する無機系繊維補強材としては
、チョップトストランドマット、ガラスチヨツプ、ガラ
スクロス、ガラスローピング、コンテニアスマツト、プ
リフオームマツト、サーフエースマツト等のガラス繊維
、炭素繊維、アスベスト、ウイスカ一等の無機繊維等を
適宜に使用することができる。
Inorganic fiber reinforcing materials used in the method of the present invention include glass fibers such as chopped strand mat, glass chop, glass cloth, glass roping, continuous mat, preform mat, surf ace mat, carbon fiber, asbestos, Inorganic fibers such as whiskers can be used as appropriate.

ガラス繊維の場合、その組成は無アルカリガラス、含ア
ルカリガラス、化学用ガラスのいずれでもよい。又、ガ
ラス繊維は公知の処理、例えばシラン処理を行なつたも
のが使用でき、樹脂との含浸性、硬化性、接着性にすぐ
れており、強度も向上する。成形物中の無機系繊維補強
材の含有率は10〜70重量%、好ましくは25〜50
重量%である。
In the case of glass fiber, its composition may be any of alkali-free glass, alkali-containing glass, and chemical glass. Furthermore, glass fibers that have been subjected to a known treatment, such as silane treatment, can be used, and have excellent impregnating properties, curing properties, and adhesion properties with resins, and also improve strength. The content of the inorganic fiber reinforcing material in the molded product is 10 to 70% by weight, preferably 25 to 50% by weight.
Weight%.

無機系繊維補強材の含有率が10重量%以下では十分な
強度が得られずに難燃件も低下する。70重量%以上で
は樹脂の含浸が困難である。
If the content of the inorganic fiber reinforcing material is less than 10% by weight, sufficient strength will not be obtained and the flame retardancy will also decrease. If it exceeds 70% by weight, it is difficult to impregnate the resin.

本発明に於ける強化プラスチツク成形法は水を含有した
配合物を無機系繊維補強材に含浸させ、強制乾燥させる
ことなく硬化せしめるのであり、その際の硬化温度は樹
脂の組成、硬化剤、成形方法によつて異なるが常温〜1
80℃である。
In the reinforced plastic molding method of the present invention, an inorganic fiber reinforcing material is impregnated with a water-containing compound and cured without forced drying. Depending on the method, room temperature ~1
The temperature is 80°C.

また、成形法としては、例えばパントレーアップ法、ス
プレーアツプ法、プリフオームマツチドダイ法、コール
ドブレス法、レジンインジエクシヨン法、真空(加圧)
バツク法、引抜き法、BMC法、SMC法、フイラメン
トワインデイング法等の成形法が使用できる。以下、幾
つかの成形法について説明すると、例えばパントレーア
ップ法、スプレーアツプ法の場合では、型上で補強材に
配合物を含浸させ、脱泡後そのまま常温硬化させてもよ
いが、一般的には十分な架橋を行なわせしめるために後
硬化(Aftercuring)を50〜120℃で行
なうとよい。これらの一般積層法では積層表面にフイル
ム等を密着させて硬化させると水分の蒸発を防止し、面
もきれいに仕上り、更に良好な難燃件品となる。また、
プリフオームマツチドダイ法の如き加熱・加圧成形法で
は、成形金型温度50〜180℃で成形が行なわれるが
これらの成形法ではプレス成形時に雄雌型が狭X,澗隔
(クリアランス)で適当な摺動部(トラベル)を有して
合わさり、樹脂のゲル化は数十秒と早いが、特にクリア
ランス部の樹脂の硬化は成形品部分より早く起り、型内
(成形品部分)の材料は閉じ込められた状態で硬化する
ために型内の材料中の揮発分は殆んど飛ばない。即ち、
含有された水の殆んどは成形品中に残存し、良好な難燃
性成形品が得られる。本発明方法で得られた成形品は、
機械的強度、難燃性の要求される分野、例えばダクト、
スクラバー、内装壁材等に使用される。以下、例を挙げ
て本発明を説明するが、例中、部及び%は重量部、重量
%を表わす。
Examples of molding methods include pan lay-up method, spray-up method, preform mated die method, cold breath method, resin injection method, vacuum (pressure)
Molding methods such as the buck method, pultrusion method, BMC method, SMC method, and filament winding method can be used. Below, some molding methods will be explained. For example, in the case of the pan lay-up method and the spray-up method, the reinforcing material may be impregnated with the compound on the mold, and after defoaming, it may be cured at room temperature. After-curing is preferably carried out at 50 to 120° C. to ensure sufficient crosslinking. In these general lamination methods, when a film or the like is brought into close contact with the laminated surface and cured, moisture evaporation is prevented, the surface is finished neatly, and the product has better flame retardant properties. Also,
In heat/pressure molding methods such as the preform mated die method, molding is performed at a mold temperature of 50 to 180°C, but in these molding methods, the male and female molds have a narrow X and clearance during press molding. They fit together with appropriate sliding parts (travel), and the resin gels quickly in several tens of seconds. However, the resin in the clearance area hardens faster than the molded part, and the material inside the mold (molded part) Because it hardens in a confined state, the volatile matter in the material inside the mold hardly evaporates. That is,
Most of the contained water remains in the molded product, resulting in a molded product with good flame retardancy. The molded article obtained by the method of the present invention is
Fields that require mechanical strength and flame retardancy, such as ducts,
Used for scrubbers, interior wall materials, etc. The present invention will be explained below with reference to examples, in which parts and % represent parts by weight and % by weight.

実施例1と比較例1〜2は本発明による成形法と従来の
成形法の工程(時間)、成形性の比較のためのものであ
る。
Example 1 and Comparative Examples 1 and 2 are for comparison of the process (time) and moldability between the molding method according to the present invention and the conventional molding method.

実施例 1 レゾール型フエノール樹脂([プライオーフエンTD2
3O7」大日本インキ化学社製)の含水率を30%に調
整したもの100部、フエノールスルホン酸7部、クレ
ー30部及びステアリン酸亜鉛1部を使用し、箱状物〔
金型:30CTfL(ヨコ)×20?(タテ)×20?
(フカサ)〕をマツチドダイ成形(MMD成形)によつ
て成形したところ、原料計量から成形完了までの所要時
間は25分であつた。
Example 1 Resol type phenolic resin ([Plyoven TD2
3O7 (manufactured by Dainippon Ink Chemical Co., Ltd.) adjusted to a moisture content of 30%, 7 parts of phenolsulfonic acid, 30 parts of clay, and 1 part of zinc stearate were used to prepare a box-shaped product [
Mold: 30CTfL (horizontal) x 20? (Vertical) x 20?
(Fukasa)] was molded by mated die molding (MMD molding), and the time required from measuring the raw materials to completing molding was 25 minutes.

また、得られたガラス繊維含有率30%成形物は含浸不
良、ピンホール、フクレの無い、表面平滑件、光沢に優
れたものであり、曲げ強度17.5kg/Md、酸素指
数(JISK−7201)62であつた。
In addition, the obtained molded product with a glass fiber content of 30% was free from poor impregnation, pinholes, and blisters, had a smooth surface, and was excellent in gloss, had a bending strength of 17.5 kg/Md, and an oxygen index (JISK-7201). ) It was 62.

比較例 1 実施例1で使用したレゾール型フエノール樹脂から水を
脱水し、これにメタノールを加えて、30%メタノール
含有レゾール型フエノール樹脂を調整した。
Comparative Example 1 Water was dehydrated from the resol type phenolic resin used in Example 1, and methanol was added thereto to prepare a resol type phenolic resin containing 30% methanol.

実施例1と同様な金型を用い、従来公知の「積層法」に
よつて製造した成形材料を用いて成形したところ、所要
時間は152分かかつた。
When molding was performed using a mold similar to that in Example 1 using a molding material manufactured by a conventionally known "layering method", the required time was 152 minutes.

プレス時間は120分より短かいと硬化が十分でなかつ
た。
When the pressing time was shorter than 120 minutes, curing was not sufficient.

得られた成形物のガラス繊維含有率は60%であり、ま
たヒソホールや、表面に凸凹があり、コーナー部では繊
維切れを起した不良品であつた。比較例 2 従来から公知の「コンパウンド法」による場合と比較す
るため、ノボラツク型フエノール樹脂(「バーカム13
64」大日本インキ化学工業(株)製)67部、6mm
のガラスチヨツプ30部、酸化マグネシウム1部、ステ
アリン酸マグネシウム2部及びヘキサメチレンテトラミ
ン10部を使用し、実施例1と同様の箱状物を成形した
ところ、所要時間は137分であつた。
The glass fiber content of the obtained molded product was 60%, and it was a defective product with hissoholes, unevenness on the surface, and fiber breakage at the corners. Comparative Example 2 In order to compare with the case using the conventionally known "compound method", a novolak type phenolic resin ("Barcam 13") was used.
64'' manufactured by Dainippon Ink & Chemicals Co., Ltd.) 67 parts, 6 mm
A box-like product similar to that in Example 1 was molded using 30 parts of glass chops, 1 part of magnesium oxide, 2 parts of magnesium stearate, and 10 parts of hexamethylenetetramine, and the required time was 137 minutes.

得られた成形物は成形時にガス抜きをしないとフクレが
発生した。
The resulting molded product developed blisters unless gas was vented during molding.

また成形物の強度はガラス繊維の配向によつてバラツキ
があり、曲げ強度で4〜11kg/Mdと実施例1と比
較して低い数値であつた。
Further, the strength of the molded product varied depending on the orientation of the glass fibers, and the bending strength was 4 to 11 kg/Md, which was a lower value compared to Example 1.

比較例 3 実施例1に於てガラス繊維量を8%となるようにして成
形物を得た。
Comparative Example 3 A molded product was obtained in Example 1 except that the amount of glass fiber was 8%.

得られた成形物は曲げ強度3.5k9/Mdと低くて脆
く、部分的にフクレを生じ、酸素指数(難燃性、JIS
−K−7201)が42であつた。実施例 2 レゾール型フエノール樹脂[プライオーフエンJ−30
3」(大日本インキ化学工業(株)製)を水分含有率が
25%になるように脱水して調整した。
The obtained molded product had a low bending strength of 3.5k9/Md, was brittle, partially blistered, and had an oxygen index (flame retardance, JIS
-K-7201) was 42. Example 2 Resol type phenolic resin [Plyoven J-30
3'' (manufactured by Dainippon Ink & Chemicals Co., Ltd.) was dehydrated and adjusted to have a moisture content of 25%.

調整した水分含有率25%の樹脂(樹脂固形分75%)
100部に対して65%フエノールスルホン酸水溶液7
部を添加、撹拌し粘度5ポイズの配合物を得た。実施例
1で用いた箱状金型にコンテニアスマツト(4507/
m”)3枚を重ねてセツトし、上記配合物8207を流
して圧力30k9/C77i、温度125℃、10分間
の成形条件でプレスした。
Adjusted resin with moisture content of 25% (resin solid content 75%)
65% aqueous phenolsulfonic acid solution per 100 parts 7
1 part was added and stirred to obtain a blend with a viscosity of 5 poise. Continuous mat (4507/
Three sheets (m") were stacked and set, and the above-mentioned compound 8207 was poured over them and pressed under molding conditions of a pressure of 30k9/C77i and a temperature of 125°C for 10 minutes.

得られた厚さ3mTnの成形物の状態は含浸不良、フク
レ、繊維浮き、ピンホールが無く、表面平滑件、光沢が
良好なものだつた。又、150℃10分の成形によつて
も強度、難燃性ほぼ同様な結果がえられた。
The resulting molded product with a thickness of 3 mTn was free from poor impregnation, blisters, floating fibers, and pinholes, and had a smooth surface and good gloss. Furthermore, almost the same strength and flame retardance results were obtained by molding at 150°C for 10 minutes.

実施例 3 レゾール型フエノール樹脂[プライオーフエンTD−2
307」(大日本インキ化学工業(株)製)を水分含有
率が30%になるように水を加えて調整し、次なる配合
で30ポイズの配合物を得た。
Example 3 Resol type phenolic resin [Plyoven TD-2
307'' (manufactured by Dainippon Ink & Chemicals Co., Ltd.) was adjusted by adding water so that the moisture content was 30%, and the following formulation yielded a 30 poise formulation.

ガラス繊維は1インチのガラスチヨツプ3507を用い
てプリフオームしたものを用い、実施例2と同様に成形
した。
The glass fiber was preformed using a 1-inch glass chop 3507, and molded in the same manner as in Example 2.

得られた箱状成形物は含浸不良、フクレ、繊維浮き、ピ
ンホールがない、表面平滑性、表面光沢の良好なものだ
つた。実施例 4 実施例3の配合で硬化剤のみ硫酸(50%水溶液)5部
に換えて成形したが、得られた成形物は実施例2の外観
、強度、難燃性等と差が無かつた。
The box-shaped molded product obtained was free of poor impregnation, blisters, floating fibers, and pinholes, and had good surface smoothness and surface gloss. Example 4 Molding was carried out using the formulation of Example 3 with only the curing agent replaced with 5 parts of sulfuric acid (50% aqueous solution), but the molded product obtained had no difference in appearance, strength, flame retardance, etc. from Example 2. Ta.

実施例 5レゾルシノール変性レゾール樹脂「プライオ
ーフエンTD−2241」(大日本インキ化学工業(株
)製)を脱水して水分含有率が20%になるように調整
した。
Example 5 A resorcinol-modified resole resin "Priorfen TD-2241" (manufactured by Dainippon Ink and Chemicals Co., Ltd.) was dehydrated to adjust its water content to 20%.

調整した水分20%樹脂(樹脂固形分80%)100部
に対して41%ホルムアルデヒド水溶液20部を添加攪
拌し、粘度15ポイズの配合物を得た。次に平板状金型
(30?(ヨコ)×30?(タテ)×3mm(アツサ)
)にチョップトストランドマット(4507/Trl)
3枚を重ねてセツトし、上記配合物300yを流して圧
力30kg/Cdl温度125℃、15分間成形した。
得られた厚さ3m77!の成形物の状態は含浸不良、フ
クレ、ピンホール等の無い光沢良好なものであつた。実
施例 6 フルフリルアルコール変性レゾール樹脂「フアンドレツ
ツHD−2095](大日本インキ化学工業(株)製)
に水を加えて水分含有率35%になるように調整し、次
なる配合で25ポイズの配合物を得た。
20 parts of a 41% formaldehyde aqueous solution was added to 100 parts of the prepared resin with a moisture content of 20% (resin solid content: 80%) and stirred to obtain a blend having a viscosity of 15 poise. Next, a flat mold (30? (horizontal) x 30? (vertical) x 3 mm (thickness)
) chopped strand mat (4507/Trl)
Three sheets were stacked and set, and 300 y of the above-mentioned mixture was poured into the mold at a pressure of 30 kg/Cdl temperature of 125° C. for 15 minutes.
The resulting thickness was 3m77! The condition of the molded product was good gloss with no poor impregnation, blisters, pinholes, etc. Example 6 Furfuryl alcohol-modified resol resin “Fandretsu HD-2095” (manufactured by Dainippon Ink and Chemicals Co., Ltd.)
Water was added to adjust the moisture content to 35%, and the next formulation yielded a 25 poise formulation.

次に実施例2と同様に成形した。Next, it was molded in the same manner as in Example 2.

得られた箱状成形物は含浸不良、フクレ、繊維浮き、ピ
ンホール等が無い表面平滑性、光沢の良好なものだつた
。実施例 7〜10実施例3で用いた「プライオーフエ
ンTD23O7」の水分含有率を減圧あるいは水を加え
て水分調整した樹脂を数種類つくつた。
The box-shaped molded product obtained had good surface smoothness and gloss, with no impregnation defects, blisters, floating fibers, pinholes, etc. Examples 7 to 10 Several types of resins were prepared by adjusting the water content of "Pryoven TD23O7" used in Example 3 by reducing the pressure or adding water.

これらの樹脂100部に対し、65%フエノールスルホ
ン酸水溶液6部を添加攪拌し、実施例2と同様の成形条
件でプレスした。比較例 4 実施例3で用いたレゾール型フエノール樹脂をフラスコ
に仕込み、高真空下で減圧脱水し、水分含有率を3.0
%に調節した。
To 100 parts of these resins, 6 parts of a 65% phenolsulfonic acid aqueous solution was added and stirred, and pressed under the same molding conditions as in Example 2. Comparative Example 4 The resol type phenolic resin used in Example 3 was charged into a flask and dehydrated under high vacuum to reduce the water content to 3.0.
%.

調整された樹脂は傾けてもほとんど流動性のない粘度の
高い樹脂であつた。該樹脂に常温(25゜C)で硬化剤
を混入する事は困難であつた。そこで40℃に樹脂を加
温し65%フエノールスルホン酸水溶液を樹脂100部
に対し4部添加し、強制攪拌し得られた※×配合物を実
施例2と同様の成形条件でプレスしたが、含浸不良を起
し満足な成形品が得られなかつた。比較例 5 実施例3で用いた樹脂に水を加えて、水分含有率55%
に成る様調整した。
The prepared resin was a highly viscous resin with almost no fluidity even when tilted. It was difficult to mix a curing agent into the resin at room temperature (25°C). Therefore, the resin was heated to 40°C, 4 parts of a 65% phenolsulfonic acid aqueous solution was added to 100 parts of the resin, and the mixture obtained by forced stirring was pressed under the same molding conditions as in Example 2. Poor impregnation occurred and a satisfactory molded product could not be obtained. Comparative Example 5 Water was added to the resin used in Example 3 to obtain a water content of 55%.
I adjusted it so that it becomes .

該樹脂100部に対し、65%フエノールスルホン酸水
溶液7部を添加、攪拌し得られた配合物を実施例2と同
様の成形条件でプレスした。得られた成形物は硬化が不
完全で表面はガラス繊維の浮きがひどく、フクレ及び巣
があり、表面光沢は全く無かつた。この成形に於いて3
倍量の硬化剤を用いても同様な結果であつた。以上の結
果を表−1にまとめる。
To 100 parts of the resin, 7 parts of a 65% phenolsulfonic acid aqueous solution was added and stirred, and the resulting mixture was pressed under the same molding conditions as in Example 2. The resulting molded product was incompletely cured, the glass fibers were severely lifted on the surface, there were blisters and cavities, and the surface had no gloss at all. In this molding, 3
Similar results were obtained even when twice the amount of curing agent was used. The above results are summarized in Table-1.

実施例 11 レゾルシノール変件フエノール樹脂[プラィオーフエン
6000」(大日本インキ化学工業(株)製)の水分含
有率を45%に調整し、粘度4.5ポイズの樹脂を得た
Example 11 The water content of a resorcinol modified phenolic resin "Pryophene 6000" (manufactured by Dainippon Ink and Chemicals Co., Ltd.) was adjusted to 45% to obtain a resin with a viscosity of 4.5 poise.

該樹脂100部に対しフルフラール/パラホルムアルデ
ヒド−1/1(モル)溶液を硬化剤として20部添加攪
拌した。得られた配合物はバスタブ状FRP型(100
CT!l(ヨコ)×70(1771(タテ)×80(V
7!(フカサ))にチョップトストランドマット(45
07/M2)4枚を用いてパントレーアップ法で積層し
た。1日放置した後、積層物を80′Cで1時間、後熱
処理し、その後脱型した。
To 100 parts of the resin, 20 parts of a 1/1 (mol) solution of furfural/paraformaldehyde was added as a hardening agent and stirred. The obtained compound was made into a bathtub-like FRP type (100
CT! l (horizontal) x 70 (1771 (vertical) x 80 (V
7! (Fukasa)) Chopped Strand Mat (45
07/M2) were stacked using the pan lay-up method. After standing for one day, the laminate was post heat treated at 80'C for 1 hour and then demolded.

得られた成形物は外観良好で、曲げ強度16.5kg/
Md、引張強度16kg/Md、酸素指数61.2であ
つた。実施例 12 実施例2で用いた樹脂を水分含有率30%になるように
調整し、粘度3ポイズの樹脂を得た。
The obtained molded product had a good appearance and a bending strength of 16.5 kg/
Md, tensile strength was 16 kg/Md, and oxygen index was 61.2. Example 12 The resin used in Example 2 was adjusted to have a moisture content of 30% to obtain a resin with a viscosity of 3 poise.

該樹脂100部に対し、65%フエノールスルホン酸水
溶液7部を添加、攪拌した。得られた配合物を実施例1
1とほぼ同様の条件で成形した。得られた成形物は外観
良好で、曲げ強度18k9/M7i、引張強度12.5
kg/Md、酸素指数59であつた。実施例 13ガラ
ス板上にチョップトストランドマット(450y/M゜
)をおき、ハンドローラーで実施例11で調整した配合
物を含浸させ、脱泡後、表面にポリエステルフイルムを
かぶせてそのまま硬化させた。
To 100 parts of the resin, 7 parts of a 65% aqueous phenolsulfonic acid solution was added and stirred. The resulting formulation was used in Example 1.
It was molded under almost the same conditions as No. 1. The obtained molded product had a good appearance, a bending strength of 18k9/M7i, and a tensile strength of 12.5.
kg/Md, and the oxygen index was 59. Example 13 A chopped strand mat (450y/M°) was placed on a glass plate, impregnated with the formulation prepared in Example 11 using a hand roller, and after defoaming, the surface was covered with a polyester film and cured as it was. .

Claims (1)

【特許請求の範囲】[Claims] 1 レゾール型フェノール系樹脂と硬化剤及び必要によ
つて充填剤、離型剤、着色剤などの配合剤から成り、且
つ含水率が5〜50重量%(樹脂固型分と水との合計重
量を基にする)である配合物を、無機系繊維補強材10
〜70重量%(成形物中)に含浸させ、次いで強制乾燥
させることなく硬化させることを特徴とする強化プラス
チックスの成形法。
1 Consists of a resol-type phenolic resin, a curing agent, and optionally fillers, mold release agents, colorants, etc., and has a water content of 5 to 50% by weight (total weight of resin solids and water). Based on the inorganic fiber reinforcement 10
A method for molding reinforced plastics, characterized by impregnating the molded product with a concentration of up to 70% by weight and then curing without forced drying.
JP52132447A 1977-11-07 1977-11-07 Molding method for reinforced plastics Expired JPS5914491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52132447A JPS5914491B2 (en) 1977-11-07 1977-11-07 Molding method for reinforced plastics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52132447A JPS5914491B2 (en) 1977-11-07 1977-11-07 Molding method for reinforced plastics

Publications (2)

Publication Number Publication Date
JPS5465773A JPS5465773A (en) 1979-05-26
JPS5914491B2 true JPS5914491B2 (en) 1984-04-04

Family

ID=15081566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52132447A Expired JPS5914491B2 (en) 1977-11-07 1977-11-07 Molding method for reinforced plastics

Country Status (1)

Country Link
JP (1) JPS5914491B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6368297U (en) * 1986-10-21 1988-05-09
JPS63159995U (en) * 1987-04-08 1988-10-19

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2548586B1 (en) * 1983-07-08 1986-02-07 Saint Gobain Isover METHOD AND DEVICE FOR THE HEAT TREATMENT OF INSULATING MATERIALS
JPS61261030A (en) * 1985-05-15 1986-11-19 Nitto Boseki Co Ltd Continuous manufacture of glass-fiber reinforced resin-molded board
JP2529168B2 (en) * 1987-07-31 1996-08-28 名古屋油化株式会社 Structural material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6368297U (en) * 1986-10-21 1988-05-09
JPS63159995U (en) * 1987-04-08 1988-10-19

Also Published As

Publication number Publication date
JPS5465773A (en) 1979-05-26

Similar Documents

Publication Publication Date Title
US4912178A (en) New phenolic resin compositions
JPS5914491B2 (en) Molding method for reinforced plastics
US5034497A (en) Thermosetting compositions and molding method
US4105623A (en) Method of making molding compounds and materials made thereby
Heath Aldehyde polymers: phenolics and aminoplastics
JPS6139901B2 (en)
US4880893A (en) Novel thermosetting compositions and molding method
JPS5935926B2 (en) resin composition
JPS6235418B2 (en)
CN101065445B (en) Thermosetting resin composition, thermosetting-resin molding material, and cured object obtained therefrom
JPH08258205A (en) Fiber reinforced resin unit panel
JPH0262578B2 (en)
JPS61136527A (en) Production of fiber-reinforced phenolic resin molding
JPH051157A (en) Curable prepreg and its cured molded article
RU2608892C1 (en) Polyester binder and article based thereon
JPS6346099B2 (en)
JPH0270746A (en) Resin composition made by using phenolic resin as base material
JP4396297B2 (en) Thermosetting resin composition, thermosetting resin molding material, and cured products thereof
JPS6115887B2 (en)
US4906505A (en) Skin-shaped product of aminoplast resin mixture and fibrous material
JPH03174465A (en) Phenolic resin molding material and molded product thereof
JPH0349300B2 (en)
JPH07276408A (en) Manufacture of phenolic resin molding
JPS6235417B2 (en)
JPH04126759A (en) Phenolic resin molding material