JPH0349276A - Gas cooling device of fast axial flow gas laser device - Google Patents

Gas cooling device of fast axial flow gas laser device

Info

Publication number
JPH0349276A
JPH0349276A JP18378289A JP18378289A JPH0349276A JP H0349276 A JPH0349276 A JP H0349276A JP 18378289 A JP18378289 A JP 18378289A JP 18378289 A JP18378289 A JP 18378289A JP H0349276 A JPH0349276 A JP H0349276A
Authority
JP
Japan
Prior art keywords
gas
cooler
cooling device
laser
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18378289A
Other languages
Japanese (ja)
Inventor
Takashi Oishi
大石 高志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18378289A priority Critical patent/JPH0349276A/en
Publication of JPH0349276A publication Critical patent/JPH0349276A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/041Arrangements for thermal management for gas lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To restrain pulsation of laser gas caused by compression of positive displacement fan and to reduce pulsation of laser output by providing a pressure damping chamber to an output side of a heat exchanger inside a box of a cooling device. CONSTITUTION:Laser gas 5 passes through a cooling device 11B of a first step from pipings 8A, 8B, passes through a cooling device 11A of a second step from a positive displacement fan 6 and is fed to a discharge section of a gas laser oscillator. A pressure damping space 13 is formed up and down a heat exchanger 12 inside the cooling device 11A of the second step. Thereby, the laser gas 5 which is pulsated from the fan 6 and fed inside the cooling device 11A is cooled by the heat exchanger 12 and depressurized, and pulsation is thereafter damped in the wide pressure damping space 13. Therefore, laser output which is projected from an oscillator does not pulsate either, thereby realizing precision processing. Additionally, if a pressure damping is provided also to a cooling device 11B, effect can be further improved.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、高速軸流形ガスレーザ装置のレーザガスを冷
却するガス冷却器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a gas cooler for cooling laser gas of a high-speed axial flow gas laser device.

(従来の技術) 従来の高速軸流形ガスレーサ装置のガス循環系統図を示
す第4図において、放電管1の内部には、右端に共振器
ミラー9Aが、左端に同じく共振器ミラー9Bが取付け
られ、これらの共振器ミラー9A、9B間には、右側か
ら順に陰極2A、陽極3A、3B、陰極2B、  2C
,陽極3C,3D。
(Prior Art) In FIG. 4, which shows a gas circulation system diagram of a conventional high-speed axial flow gas racer device, inside the discharge tube 1, a resonator mirror 9A is installed at the right end, and a resonator mirror 9B is installed at the left end. Between these resonator mirrors 9A and 9B, in order from the right side, there are cathodes 2A, anodes 3A, 3B, cathodes 2B, 2C.
, anode 3C, 3D.

陰極2Dが取付けられて、合計4対の放電電極で4箇所
の放電部4を形成し、放電管1の内部に封入されたレー
ザガス5を励起してレーザ光を発生させている。
A cathode 2D is attached, and a total of four pairs of discharge electrodes form four discharge portions 4, which excites the laser gas 5 sealed inside the discharge tube 1 to generate laser light.

又、放電管1の図示下方には、上端が放電管1の陽極3
A、3B間と陽極3C,3D間に接続された1対の配管
8Aの下端が入側に接続された冷却器7Bが配設され、
この冷却器7Bの出側は容積形送風機6の入側に接続さ
れ、この容積形送風機の出側は冷却器7Δの入側に接続
されている。
Further, below the discharge tube 1 in the figure, the upper end is the anode 3 of the discharge tube 1.
A cooler 7B is provided, in which the lower end of a pair of pipes 8A connected between A and 3B and between anodes 3C and 3D is connected to the inlet side,
The outlet side of this cooler 7B is connected to the inlet side of the positive displacement blower 6, and the outlet side of this positive displacement blower is connected to the inlet side of the cooler 7Δ.

更に、この冷却器7Aの出側には左右の配管8Bの一端
が接続され、これらの配管8Bの他側はU字状に分岐し
て、放電管1の陰極2Aの右側、陰極2Bの左側と陰極
2Cの右側、陰極2Dの左側にそれぞれ接続されていて
いる。
Furthermore, one end of left and right piping 8B is connected to the outlet side of this cooler 7A, and the other side of these piping 8B branches into a U-shape, and is connected to the right side of the cathode 2A of the discharge tube 1 and the left side of the cathode 2B. and are connected to the right side of the cathode 2C and the left side of the cathode 2D, respectively.

このように構成した高速軸流形ガスレーザ装置の冷却器
において、放電部4で加熱されたレーザガス5は、熱交
換器7Bを経て容積形送風機6で冷却器7Aに送り込ま
れ、更に冷やされて配管8Bを経て放電管1に送り込ま
れて、例えば炭酸ガスでは、ガス圧力が1001ur、
流速が150〜2Hm/sとなる。
In the cooler of the high-speed axial flow gas laser device configured in this manner, the laser gas 5 heated in the discharge section 4 is sent to the cooler 7A by the positive displacement fan 6 via the heat exchanger 7B, and is further cooled and then passed through the piping. For example, carbon dioxide gas is fed into the discharge tube 1 through 8B, and the gas pressure is 1001 ur.
The flow rate is 150 to 2 Hm/s.

(発明か解決しようとする課題) ところが、このように構成された高速軸流形ガスレーザ
装置のガス冷却器では、放電部4に送り込まれるレーザ
ガス5は、容積形送風機6の羽根6aの回転で圧縮され
、2枚の羽根6aの一回転で4回圧縮されて送り出され
るので、脈動して放電部4内のレーザガス5も脈動し、
その結果発振器から出射されるレーザ光5も脈動する。
(Problem to be solved by the invention) However, in the gas cooler of the high-speed axial flow gas laser device configured as described above, the laser gas 5 fed into the discharge section 4 is compressed by the rotation of the blades 6a of the positive displacement blower 6. The gas is compressed four times in one rotation of the two blades 6a and sent out, which causes the laser gas 5 in the discharge section 4 to also pulsate.
As a result, the laser beam 5 emitted from the oscillator also pulsates.

すると、このレーザ光5を例えば切断加工に使うと、切
断面に凹凸ができて軸流形レーザ加工機の特徴を損なう
。そのため、容量形送風機6をターボ形に変えて脈動を
減らすことも考えられるが、寿命と価格の両面で使えな
い。
Then, if this laser beam 5 is used for cutting, for example, unevenness will be formed on the cut surface, impairing the characteristics of the axial flow type laser processing machine. Therefore, it is possible to reduce the pulsation by changing the capacitive blower 6 to a turbo type blower, but this is not practical due to both longevity and cost.

そこで本発明の目的は、レーザガスの脈動によるレーザ
光の脈動を容易に減らすことのできる高速軸流形ガスレ
ーザ装置のガス冷却器を得ることである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a gas cooler for a high-speed axial flow gas laser device that can easily reduce the pulsation of laser light due to pulsation of laser gas.

[発明の構成] (課題を解決するための手段と作用) 本発明は、高速軸流形ガスレーザ装置の放電部に容積形
送風機とその出力側の冷却器でレーザガスを送る高速軸
流形ガスレーザ装置のガス冷却器において、冷却器の箱
体内の熱交換器の少なくとも出力側に圧力減衰室を設け
ることで、容積形送風機の圧縮で脈動するレーザガスの
脈動を減らして、レーザ光の脈動を減らした高速軸流形
ガスレーザ装置のガス冷却器である。
[Structure of the Invention] (Means and Effects for Solving the Problems) The present invention provides a high-speed axial-flow gas laser device in which laser gas is fed to the discharge section of the high-speed axial-flow gas laser device using a positive displacement blower and a cooler on the output side thereof. In the gas cooler, by providing a pressure damping chamber at least on the output side of the heat exchanger inside the cooler box, the pulsation of the laser gas that pulsates due to the compression of the positive displacement blower is reduced, and the pulsation of the laser light is reduced. This is a gas cooler for a high-speed axial flow gas laser device.

(実施例) 以下、本発明のガスレーザ装置のガス冷却器の一実施例
を図面を参照して説明する。
(Example) Hereinafter, one example of the gas cooler of the gas laser device of the present invention will be described with reference to the drawings.

第1図は本発明のガスレーザ装置のガス冷却器の正面図
、第2図は第1図の部分縦断面図である。
FIG. 1 is a front view of a gas cooler of a gas laser apparatus according to the present invention, and FIG. 2 is a partial vertical sectional view of FIG. 1.

第1図において、図示しないレーザ発振器から送られて
くるレーザガス5の配管8A、8Bが上部に接続された
一段目の冷却器11Bの下端には、内部に2枚の羽根6
a、6bのある容積形送風機6が配管14Bを介して接
続されている。一方、この容積形送風機6の右側には、
2段目の冷却器+1Aの下端が配管+4Aで接続され、
この冷却器11Aの上部には、図示しないガスレーザ装
置の放電部に接続される配管8C,8Dが接続されてい
る。
In FIG. 1, two blades 6 are installed inside the lower end of the first stage cooler 11B, to which piping 8A, 8B for laser gas 5 sent from a laser oscillator (not shown) is connected.
A positive displacement blower 6, designated by a and 6b, is connected via a pipe 14B. On the other hand, on the right side of this positive displacement blower 6,
The lower end of the second stage cooler +1A is connected with piping +4A,
The upper part of this cooler 11A is connected to pipes 8C and 8D that are connected to a discharge section of a gas laser device (not shown).

次に、第1図の2段目の冷却器+1Aの縦断面を示す第
2図において、円筒状の冷却器11Aの中央には、パイ
プとフィンで構成され、冷却器11Aの外箱の左右に上
下に冷媒用配管16が横に突き出た熱交換器12が収納
され、この熱交換器12の上下には圧力減衰空間I3が
形成されている。そして、冷却器11Δの下端には、配
管14Aが接続され、−段目の冷却器11Bも同様な構
造になっている。
Next, in FIG. 2 showing a vertical cross section of the second-stage cooler +1A in FIG. A heat exchanger 12 with refrigerant pipes 16 projecting laterally from above and below is housed in the heat exchanger 12, and pressure damping spaces I3 are formed above and below this heat exchanger 12. A pipe 14A is connected to the lower end of the cooler 11Δ, and the minus stage cooler 11B has a similar structure.

このような構成のガスレーザ装置のガス冷却器11Aに
おいては、容積形送風機6から脈動して冷却器+1A内
に送られてきたレーザガス5は、容積形送風機6で圧縮
されて脈動しかつ暖められるが、熱交換器12で冷やさ
れて減圧した後、広い圧力減衰空間13に送られて脈動
が減衰し、図示しないガスレーザ発振器の放電部に送ら
れる。
In the gas cooler 11A of the gas laser device having such a configuration, the laser gas 5 pulsating from the positive displacement blower 6 and sent into the cooler +1A is compressed by the positive displacement blower 6, pulsating, and being warmed. After being cooled and depressurized in a heat exchanger 12, it is sent to a wide pressure attenuation space 13 where pulsation is attenuated, and then sent to a discharge section of a gas laser oscillator (not shown).

したがって、図示しない発振器から出射されたレーザ光
も脈動せず、例えば切断された加工面の凹凸がなく、軸
流形レーザ発振器を使った本来の精密な加工ができるガ
スレーザ装置となる。
Therefore, the laser light emitted from the oscillator (not shown) does not pulsate, and there is no unevenness on the cut surface, resulting in a gas laser device that can perform precise processing as expected using an axial laser oscillator.

又、送風機6の入力側にも冷却器11Bを設けることで
、レーザガス5がより冷えるだけでなく、送風機6の吸
込みによる脈動も減るので、冷却器+1Aの効果が更に
上がることになる。
Further, by providing the cooler 11B on the input side of the blower 6, not only the laser gas 5 is further cooled, but also the pulsation caused by the suction of the blower 6 is reduced, so that the effect of the cooler +1A is further improved.

なお、脈動の減衰を効果的にするための圧力減衰室13
の流路断面積は次の(1) 、  (2j式で求める。
Note that a pressure damping chamber 13 is provided to effectively damp pulsation.
The cross-sectional area of the flow path is determined by the following equation (1) and (2j).

F x L = 50〜90     −(1)m”s
2 / S+ >Io    −−−(2)ここで、F
は脈動周波数(Hl)、Lは圧力減衰室13の長さ(m
)、S+は配管15の断面積(m2)、S2は圧力減衰
室13の断面積(m2)である。
F x L = 50 ~ 90 - (1) m”s
2/S+ >Io ---(2) Here, F
is the pulsation frequency (Hl), and L is the length of the pressure damping chamber 13 (m
), S+ is the cross-sectional area (m2) of the pipe 15, and S2 is the cross-sectional area (m2) of the pressure damping chamber 13.

第3図は、本発明のガスレーザ装置のガス冷却器の他の
実施例を示し、配管+4Aを冷却器+1Aの右側面から
接続したときを示す。この場合にはルーツ形ブロア6と
配管するときに、エルホが要らないので、配管作業が容
易となる利点がある。
FIG. 3 shows another embodiment of the gas cooler of the gas laser device of the present invention, and shows the case where the pipe +4A is connected from the right side of the cooler +1A. In this case, an elbow is not required when piping the roots-type blower 6, so there is an advantage that the piping work becomes easy.

[発明の効果] 以上、本発明の高速軸流形ガスレーザ装置のガス冷却器
によれば、高速軸流形ガスレーザ装置の放電部にレーザ
ガスを容積形送風機とその出力側の冷却器で送る高速軸
流形ガスレーザ装置のガス冷却器において、冷却器の箱
体内の熱交換器の少なくとも出力側に圧力減衰空間を設
けてレーザガスを減衰したので、別に機器を設置するこ
となく、容易にレーザ出力の脈動を減らし、軸流形レー
ザ光の特徴を発揮することのできるガスレーザ装置のガ
ス冷却器を得ることができる。
[Effects of the Invention] As described above, according to the gas cooler for a high-speed axial gas laser device of the present invention, the high-speed axial gas cooler sends laser gas to the discharge section of the high-speed axial gas laser device using a positive displacement blower and a cooler on its output side. In the gas cooler of the flow-type gas laser device, a pressure attenuation space is provided at least on the output side of the heat exchanger inside the cooler box to attenuate the laser gas, so pulsations in laser output can be easily suppressed without installing additional equipment. It is possible to obtain a gas cooler for a gas laser device that can reduce the amount of energy and exhibit the characteristics of an axial laser beam.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の高速軸流形ガスレーザ装置のガス冷却
器の一実施例を示す正面図、第2図は本発明の高速軸流
形ガスレーザ装置の冷却器の要部を示す縦断面図、第3
図は本発明の高速軸流形ガスレーザ装置のガス冷却器の
他の実施例を示す図、第4図は従来のガスレーザ装置の
ガス循環系統図を示す図である。 6・・・容積形送風機 11A、IIB・・・熱交換器 13・・・圧力減衰室 (8733)代理人 弁理士 猪 股 祥 晃(ほか 
1名)
FIG. 1 is a front view showing an embodiment of the gas cooler of the high-speed axial flow gas laser device of the present invention, and FIG. 2 is a longitudinal cross-sectional view showing the main parts of the cooler of the high-speed axial flow gas laser device of the present invention. , 3rd
This figure shows another embodiment of the gas cooler of the high-speed axial flow type gas laser device of the present invention, and FIG. 4 is a diagram showing a gas circulation system diagram of the conventional gas laser device. 6... Positive displacement air blower 11A, IIB... Heat exchanger 13... Pressure damping chamber (8733) Agent: Patent attorney Yoshiaki Inomata (and others)
1 person)

Claims (2)

【特許請求の範囲】[Claims] (1)高速軸流形ガスレーザ装置の放電管内のレーザガ
スを、前記放電管に配管で接続された容積形送風器とそ
の出力側の冷却器で循環させる高速軸流形ガスレーザ装
置のガス冷却器において、前記ガス冷却器の箱体内の出
力側に圧力減衰空間を設けたことを特徴とする高速軸流
形ガスレーザ装置のガス冷却器。
(1) In a gas cooler for a high-speed axial-flow gas laser device, in which the laser gas in the discharge tube of the high-speed axial-flow gas laser device is circulated through a positive displacement blower connected to the discharge tube via piping and a cooler on its output side. A gas cooler for a high-speed axial flow gas laser device, characterized in that a pressure damping space is provided on the output side of the box of the gas cooler.
(2)圧力減衰空間をガス冷却器の箱体内の入側と出側
に設けたことを特徴とする請求項1記載の高速軸流形ガ
スレーザ装置のガス冷却器。
(2) A gas cooler for a high-speed axial flow gas laser device according to claim 1, wherein pressure damping spaces are provided on the inlet and outlet sides of the box body of the gas cooler.
JP18378289A 1989-07-18 1989-07-18 Gas cooling device of fast axial flow gas laser device Pending JPH0349276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18378289A JPH0349276A (en) 1989-07-18 1989-07-18 Gas cooling device of fast axial flow gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18378289A JPH0349276A (en) 1989-07-18 1989-07-18 Gas cooling device of fast axial flow gas laser device

Publications (1)

Publication Number Publication Date
JPH0349276A true JPH0349276A (en) 1991-03-04

Family

ID=16141846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18378289A Pending JPH0349276A (en) 1989-07-18 1989-07-18 Gas cooling device of fast axial flow gas laser device

Country Status (1)

Country Link
JP (1) JPH0349276A (en)

Similar Documents

Publication Publication Date Title
JP2649116B2 (en) Noise suppression device for indoor unit in separate type air conditioner package for indoor use
CN217135235U (en) Motor stator and compressor with same
DK0897475T3 (en) Suction arrangement for a hermetic displacement compressor
JPH0349276A (en) Gas cooling device of fast axial flow gas laser device
EP1898484B1 (en) Apparatus for supplying air to fuel cell
JPH0273678A (en) Gas cooler of high-speed axial flow type gas laser device
BR9601663A (en) Suction arrangement in hermetic reciprocating compressor
JPS63285987A (en) Laser oscillator and method of sealing of laser gas in said oscillator
CN108213701B (en) Processing device
WO2020054009A1 (en) Package type fluid machine
JPH0215684A (en) Gas cooler of high speed axial flow type gas laser device
JP3427571B2 (en) High-speed axial-flow gas laser oscillator
US9590379B2 (en) Gas laser oscillation device
JP5360338B1 (en) Gas laser oscillator and laser gas replacement method
JPH0751803Y2 (en) Laser oscillator
JPH04132891A (en) Oil-cooled screw compressor
JPS60233383A (en) Rotary compressor
TW202035875A (en) Exhaust attachment and pump apparatus thereof
CN220601648U (en) Air ducting of air condensing units for laboratory
CN219639139U (en) Muffler for ventilator
JPS63285988A (en) Laser oscillator
JPH1056222A (en) Gas laser oscillator
JP5407505B2 (en) Fuel cell system
KR100320202B1 (en) Sound absorption material for compressor
KR200261937Y1 (en) Separate air conditioner outdoor unit