JPH0215684A - Gas cooler of high speed axial flow type gas laser device - Google Patents

Gas cooler of high speed axial flow type gas laser device

Info

Publication number
JPH0215684A
JPH0215684A JP16495288A JP16495288A JPH0215684A JP H0215684 A JPH0215684 A JP H0215684A JP 16495288 A JP16495288 A JP 16495288A JP 16495288 A JP16495288 A JP 16495288A JP H0215684 A JPH0215684 A JP H0215684A
Authority
JP
Japan
Prior art keywords
cooler
gas
laser
case
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16495288A
Other languages
Japanese (ja)
Inventor
Takashi Oishi
大石 高志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16495288A priority Critical patent/JPH0215684A/en
Publication of JPH0215684A publication Critical patent/JPH0215684A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/041Arrangements for thermal management for gas lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To decrease the pulsation of laser rays caused by that of laser gas by a method wherein two or more pressure attenuating chambers are provided to an output side inside a case of a heat exchanger. CONSTITUTION:A positive displacement blower 6 provided with vanes 6a and 6b is provided onto a right side face of a cooler 7B of a first stage, where a piping 8 of laser gas 5 sent from a laser oscillator is connected to the upper part of the cooler 7B. And, a cooler 7A of a second stage is connected to a right side of the blower 6, and a piping 8B, which is connected to a discharge section of a gas laser device, is connected to the upper part of the cooler 7A. A hole 7A1, which is connected to the blower 6, is provided to the side wall of a cuboid case 11 opposite to the center of the case 11, and heat exchangers 12, provided with coolant pipings 16 extending from it, are housed in the case 11 in such a manner that they are positioned on a right and a left side of the hole 7A1 respectively. And, a partitioning plate 12, which partitions the inside of the case 11 longitudinally and has a gap 14 at its lower end, is provided outside the heat exchangers 12, pressure attenuating chambers 13 are provided to the right and left side of the case 11, and the lower ends of pipings 15 connected to the discharge section of the laser oscillator are connected with the upper wall of the chambers 13.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は高速軸流形ガスレーザ装置のレーザガスを冷却
するガス冷却器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a gas cooler for cooling laser gas of a high-speed axial flow gas laser device.

(従来の技術) 従来の高速軸流形ガスレーザ装置のガス循環系統図を示
す第3図において、放電管1の内部には、右端に共振器
ミラー9が、左端に同じく共振器ミラー10が取付けら
れ、この共振器ミラー9,10間には、右側から順に陰
極2A、陽極3A、3B。
(Prior Art) In FIG. 3, which shows a gas circulation system diagram of a conventional high-speed axial flow type gas laser device, inside the discharge tube 1, a resonator mirror 9 is installed at the right end, and a resonator mirror 10 is installed at the left end. Between the resonator mirrors 9 and 10, a cathode 2A and anodes 3A and 3B are arranged in order from the right side.

陰極2B、2G、陽極3C,3D、陰極2Dが取付られ
て4対の放電電極で4箇所の放電部4を形成し、放電管
1の内部に封入されたレーザガス5を励起してレーザ光
を発生させている。
The cathodes 2B, 2G, the anodes 3C, 3D, and the cathode 2D are attached to form four discharge parts 4 with four pairs of discharge electrodes, and excite the laser gas 5 sealed inside the discharge tube 1 to emit laser light. It is occurring.

また、放電管1の図示下方には、上端が放電管1の陽極
3A、3B間と30,3D間に接続された1対の配管8
Aの下端が入側に接続された冷却器7Bが配設され、こ
の冷却器7Bの出側は容積形送風機6の入側に接続され
、この容積形送風機の出側は冷却器7Aの入側に接続さ
れている。又、この冷却器7Aの出側には左右に配管8
Bの一端が接続され、この配管8Bの他側は1字状に分
岐して放電管1の陰極2Aの右側、陰極2Bの左側。
Further, below the discharge tube 1 in the drawing, there is a pair of pipes 8 whose upper ends are connected between the anodes 3A and 3B and between the anodes 30 and 3D of the discharge tube 1.
A cooler 7B is provided, the lower end of which is connected to the inlet side of the cooler 7B, the outlet side of this cooler 7B is connected to the inlet side of the positive displacement fan 6, and the outlet side of this positive displacement fan is connected to the input side of the cooler 7A. connected to the side. Also, on the outlet side of this cooler 7A, there are pipes 8 on the left and right.
One end of this pipe 8B is connected, and the other side of this pipe 8B is branched into a single character shape to the right of the cathode 2A of the discharge tube 1 and to the left of the cathode 2B.

陰極2Cの右側、陰極2Dの左側に接続されている。It is connected to the right side of the cathode 2C and to the left side of the cathode 2D.

このように閉成した高速軸流形ガスレーザ装置において
、放電部4で加熱されたレーザガス5は熱交換器7Bを
経て容積形送風機6で冷却器7Aに送り込まれ、更に冷
やされて配管8Bを経て放電管1に送り込まれる。
In the high speed axial flow gas laser device thus closed, the laser gas 5 heated in the discharge section 4 passes through the heat exchanger 7B, is sent to the cooler 7A by the positive displacement fan 6, is further cooled, and passes through the pipe 8B. It is sent into the discharge tube 1.

(発明が解決しようとする課題) すると、放電部4に送り込まれたレーザガスは、容積形
送風■の羽根6aの回転で圧縮され、2枚の羽根6aが
一回転すると1回圧縮されて送り出されるので、脈動し
て放電部4内のレーザガス5も脈動し、その結果発振器
から出射されるレーザ光も脈動する。すると、このレー
ザ光を例えば切断加工に使うと、切断面に凹凸ができて
軸流形レーリ゛光の特長がなくなる。そのため、容量形
送圧1機6をターボ形に変えて脈動を減らすことも考え
られるが、寿命と11の両面で使えない。
(Problem to be Solved by the Invention) Then, the laser gas sent into the discharge section 4 is compressed by the rotation of the blades 6a of the positive displacement air blower (■), and when the two blades 6a rotate once, it is compressed once and sent out. Therefore, the laser gas 5 in the discharge section 4 also pulsates, and as a result, the laser light emitted from the oscillator also pulsates. If this laser beam is used, for example, for cutting, the cut surface will become uneven and lose the characteristics of the axial-flow type laser beam. Therefore, it is conceivable to reduce the pulsation by changing the capacity type pressure feeder 6 to a turbo type, but this cannot be used due to both the lifespan and 11.

そこで本発明の目的は、レー量アガスの脈動によるレー
ザ光の脈動を容易に減らすことのできる高速軸流形ガス
レーザ装置のガス冷却器を1qることである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a gas cooler for a high-speed axial flow gas laser device that can easily reduce the pulsation of laser light due to the pulsation of the laser beam amount.

[発明の構成] (課題を解決するための手段と作用) 本発明は、高速軸流形ガスレーザ装置の放電部にレーザ
ガスを送る容積形送風殿の少なくとも出力側に接続され
た冷却器の出力側に仕切り板を介して圧力減衰室を設け
て、容積形送風機の圧縮で脈動するレーザガスの脈動を
減らして出力レーザ光の脈動を減らした高速軸流形ガス
レーザ装置のガス冷7.ll器でおる。
[Structure of the Invention] (Means and Effects for Solving the Problems) The present invention is directed to the output side of a cooler connected to at least the output side of a positive displacement ventilator which sends laser gas to a discharge section of a high-speed axial flow gas laser device. 7. Gas cooling of a high-speed axial flow gas laser device in which a pressure damping chamber is provided through a partition plate to reduce the pulsation of the laser gas that pulsates due to the compression of the positive displacement blower, thereby reducing the pulsation of the output laser light. I'll put it in a container.

(実施例) 以下、本発明のガスレーザ装置のガス冷却器の一実施例
を図面を参照して説明する。
(Example) Hereinafter, one example of the gas cooler of the gas laser device of the present invention will be described with reference to the drawings.

第1図は本発明のガスレーザ装置のガス冷却器の正面図
、第2図は第1図のA−A断面図である。
FIG. 1 is a front view of a gas cooler of a gas laser device of the present invention, and FIG. 2 is a sectional view taken along the line AA in FIG. 1.

第1図において、図示しないレーザ発(取器から送られ
てくるレーザガス5の配管8が上部に接続された一段目
の冷却器7Bの右側面には、内部に2枚の羽根6a、5
bのある容積形送f!A機6が接続されている。そして
、この容積形送風機6の右側には、2段目の冷却器7A
が接続され、この冷IJ器7Aの上部には、図示しない
ガスレーザ装置の放電部に接続される配管8Bが接続さ
れている。
In FIG. 1, on the right side of the first stage cooler 7B, to which the piping 8 for the laser gas 5 sent from the laser generator (not shown) is connected, there are two internal blades 6a and 5.
Positive displacement f with b! Machine A 6 is connected. On the right side of this positive displacement blower 6, there is a second stage cooler 7A.
A pipe 8B that is connected to a discharge section of a gas laser device (not shown) is connected to the upper part of the cold IJ device 7A.

次に、第1図の2段目の冷却器7AのA−A断面を示す
第2図において、長方体の箱体11の中央部の向う側(
即ち紙面下側)の側壁には、容積形送風機6に連通する
穴7A1が設けられ、この穴7A+ の左右のケース1
1内には、上下に冷媒用配管16が突き出た熱交換器1
2がそれぞれ収納されている。そして、この熱交換器1
2の外側には、箱体11内を縦に仕切り下端に間隙14
を設けた仕切り板12がそれぞれ設けられ、箱体11の
左右端には圧力減衰室13が設けられ、左右の土壁には
図示しないレーザ発]取器の放電部に接続された配管1
5の下端が接続されている。
Next, in FIG. 2 showing the A-A cross section of the second-stage cooler 7A in FIG.
In other words, a hole 7A1 communicating with the positive displacement fan 6 is provided in the side wall (lower side of the paper), and the case 1 on the left and right of this hole 7A+ is provided.
1 includes a heat exchanger 1 with refrigerant pipes 16 protruding upward and downward.
2 are stored in each. And this heat exchanger 1
On the outside of 2, there is a gap 14 that vertically partitions the inside of the box 11 and at the lower end.
A pressure damping chamber 13 is provided at the left and right ends of the box body 11, and a piping 1 connected to the discharge part of the laser emitting device (not shown) is provided on the left and right soil walls.
The lower end of 5 is connected.

このような構成のガスレーザ装置のガス冷却器7Aにお
いては、容積形送風機6から脈動して箱体11内に送ら
れてきたレーザガス5は、容積形送風は6で圧縮されて
脈動しかつ暖められるが、熱交換器12で冷やされて減
圧した後、間隙14aを経て広い流路の圧力減衰室13
に送られて脈動が減衰し、図示しないガスレーザ発振器
の放電部に送られる。
In the gas cooler 7A of the gas laser apparatus having such a configuration, the laser gas 5 pulsating and sent into the box body 11 from the positive displacement blower 6 is compressed by the positive displacement blower 6 and is pulsated and warmed. After being cooled and depressurized by the heat exchanger 12, it passes through the gap 14a and enters the pressure damping chamber 13 with a wide flow path.
The pulsations are attenuated and the laser beam is sent to a discharge section of a gas laser oscillator (not shown).

したがって、図示しない発振器から出射されたレーザ光
も脈動せず、例えば切断された加工面の凹凸がなく、軸
流形レーザ光本来の精密な加工ができるレーザ光となる
Therefore, the laser light emitted from the oscillator (not shown) does not pulsate, and has no irregularities on the cut surface, making it possible to perform precise processing as is inherent to axial flow laser light.

なお、脈動の減衰を効果的にするための圧力減衰室13
の流路断面積は次の(1)、 (2)式で求める。
Note that a pressure damping chamber 13 is provided to effectively damp pulsation.
The cross-sectional area of the flow path is determined using the following equations (1) and (2).

FXL=50〜90      ・・・(1)m=81
/32 >’I O・・・(2)ここで、Fは脈動周波
数(Hz)、1は圧力減衰室13の長さ(m)、S+ 
は配管15の断面積(17L2) 、 32は圧力減衰
室13の断面積(m2)である。
FXL=50~90...(1)m=81
/32 >'I O...(2) Here, F is the pulsation frequency (Hz), 1 is the length of the pressure damping chamber 13 (m), and S+
is the cross-sectional area of the pipe 15 (17L2), and 32 is the cross-sectional area of the pressure damping chamber 13 (m2).

なあ、上記実施例では送風はの出力側の冷却器7Aだけ
に圧力減衰室13を設けた例で説明したが、送風機の入
力側の冷却器7Bにも設けてもよく、この場合はガスが
より冷えるだ【プでなく、送風機の吸込みによる脈動も
減らすことができる利点がある。
In the above embodiment, the pressure damping chamber 13 is provided only in the cooler 7A on the output side of the blower, but it may also be provided in the cooler 7B on the input side of the blower, in which case the gas It has the advantage of not getting colder and reducing pulsation caused by the suction of the blower.

[発明の効果] 以上、本発明のガスレーザ装置のガス冷却器によれば、
高速軸流形がスレーザ装置の放電部にし−ザガスを送る
容積形送風機の少なくとも出力側の冷却器の出側に仕切
り板を介して圧力減衰子を設けて、容積形送風機で脈動
するレーザガスを冷やし、減衰したので、別にVi器を
設置することなく、容易にレーザ出力の脈動を減らし、
軸流形レーザ光の特長を発揮することのできるガスレー
ザ装置のガス冷却器を1qることができる。
[Effects of the Invention] As described above, according to the gas cooler of the gas laser device of the present invention,
The high-speed axial flow type is used as the discharge part of the laser device.A pressure attenuator is provided via a partition plate at least on the output side of the cooler of the positive displacement blower that sends the laser gas, and the positive displacement blower cools the pulsating laser gas. , so you can easily reduce the pulsation of the laser output without installing a separate Vi device.
A gas cooler for a gas laser device that can take advantage of the features of an axial laser beam can be installed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の高速軸流形ガスレーザ装置のカス冷却
器の一実施例を示す正面図、第2図は本発明の要部を示
す第1図のA−A断面図、第3図は従来のガス循環系統
図を示す図である。 1・・・放電管 6・・・8積形送III機 7A、7B・・・熱交換器 13・・・圧力減衰子 (8733)代理人
FIG. 1 is a front view showing an embodiment of a scum cooler of a high-speed axial gas laser device of the present invention, FIG. 2 is a cross-sectional view taken along line A-A in FIG. 1 showing essential parts of the present invention, and FIG. is a diagram showing a conventional gas circulation system diagram. 1...Discharge tube 6...8 Volume feeder III 7A, 7B...Heat exchanger 13...Pressure attenuator (8733) agent

Claims (1)

【特許請求の範囲】 高速軸流形のガスレーザ放電管内のレーザガスを配管で
接続された容積形送風機でその出力側に接続された冷却
器を介して循環させるガスレーザ装置において、 前記熱交換器の箱体内の出力側に複数の圧力減衰室を設
けたことを特徴とする高速軸流形ガスレーザ装置の冷却
器。
[Scope of Claims] A gas laser device in which laser gas in a high-speed axial flow type gas laser discharge tube is circulated through a cooler connected to the output side of a positive displacement blower connected by piping, comprising: a box for the heat exchanger; A cooler for a high-speed axial flow gas laser device, characterized by having a plurality of pressure damping chambers provided on the output side inside the body.
JP16495288A 1988-07-04 1988-07-04 Gas cooler of high speed axial flow type gas laser device Pending JPH0215684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16495288A JPH0215684A (en) 1988-07-04 1988-07-04 Gas cooler of high speed axial flow type gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16495288A JPH0215684A (en) 1988-07-04 1988-07-04 Gas cooler of high speed axial flow type gas laser device

Publications (1)

Publication Number Publication Date
JPH0215684A true JPH0215684A (en) 1990-01-19

Family

ID=15802982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16495288A Pending JPH0215684A (en) 1988-07-04 1988-07-04 Gas cooler of high speed axial flow type gas laser device

Country Status (1)

Country Link
JP (1) JPH0215684A (en)

Similar Documents

Publication Publication Date Title
US4891820A (en) Fast axial flow laser circulating system
US4571730A (en) Cross flow type laser devices
US4736598A (en) Outdoor unit of air conditioner
JP7190390B2 (en) Package type oil-cooled screw compressor
JPH0215684A (en) Gas cooler of high speed axial flow type gas laser device
JPH0273678A (en) Gas cooler of high-speed axial flow type gas laser device
KR20180064416A (en) Thermoacoustic energy conversion system
EP1120558B1 (en) Low noise package storing type engine working machine
JPH0349276A (en) Gas cooling device of fast axial flow gas laser device
JP2503755B2 (en) refrigerator
JPS6282215A (en) Exhaust muffler for engine-driven heat pump
CN112313464A (en) Refrigerant container part and refrigeration circuit comprising such a refrigerant container part
KR100789809B1 (en) Ceiling-installed air conditioner
US20210318023A1 (en) Noise suppression apparatus for an air handling unit
JPS60178992A (en) Rotary compressor
KR100320202B1 (en) Sound absorption material for compressor
JPH0327254Y2 (en)
JPH0751803Y2 (en) Laser oscillator
JPH04133483A (en) Gas laser oscillation device
JPH10197133A (en) Refrigerator
JPS5834310Y2 (en) Cooling device for packaged compressor
JPH0311249A (en) Outdoor unit of outdoor set type refrigerator
JPH1136885A (en) Soundproof structure of working machine
US20200072480A1 (en) Embedded type air conditioner outdoor unit and an air conditioner
JP3986746B2 (en) Gas laser oscillator