JPH0348826A - Production of mim type nonlinear switching element - Google Patents

Production of mim type nonlinear switching element

Info

Publication number
JPH0348826A
JPH0348826A JP1185337A JP18533789A JPH0348826A JP H0348826 A JPH0348826 A JP H0348826A JP 1185337 A JP1185337 A JP 1185337A JP 18533789 A JP18533789 A JP 18533789A JP H0348826 A JPH0348826 A JP H0348826A
Authority
JP
Japan
Prior art keywords
metal
nitrogen
switching element
atmosphere
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1185337A
Other languages
Japanese (ja)
Inventor
Koichi Hoshino
浩一 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP1185337A priority Critical patent/JPH0348826A/en
Publication of JPH0348826A publication Critical patent/JPH0348826A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the influence in the end parts of a metal and to avoid element fluctuations by subjecting the metal to a heat treatment in a nitrogen atmosphere or a plasma treatment in a compd. contg. nitrogen after patterning thereof at the time of forming the MIM type nonlinear switching element having a 3-layered structure consisting of the metal-insulator-metal of a liquid crystal element device. CONSTITUTION:The alpha-Ta metal 2 is formed at 100 to 500nm thickness by a reactive sputtering method in the gaseous Ar atmosphere added with 1 to 20% nitrogen on a glass substrate 1. Then, the metal 2 is patterned by a photoetching method. Plural sheets of such substrates 1 are then spaced from each other and are erected in a heating furnace, not shown, where the gaseous nitrogen is passed at >=1l/sec. The substrates are then subjected to the heat-treatment for 10 minutes to 3 hours at the temp. kept at 150 to 550 deg.C. Insulators 3 are otherwise deposited similarly over the entire exposed surface of the metals 2 by using tantalum oxide and these metals and insulators are embedded into transparent picture element electrodes 4 to be provided on the substrate 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液晶表示装置に設置されるスイッチング素子
の5ち、金属−絶縁体−金属の3層構造からなる素子(
Metal−Insulator−Metal。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to an element having a three-layer structure of metal-insulator-metal, which is one of the switching elements installed in a liquid crystal display device.
Metal-Insulator-Metal.

以下MIM素子と呼ぶ)の製造方法に関するものである
The present invention relates to a method of manufacturing a MIM element (hereinafter referred to as an MIM element).

〔従来の技術〕[Conventional technology]

MIM素子は、印加電圧が低い場合には高抵抗、印加電
圧が高い場合には低抵抗となる電気的特性を有し、ガラ
ス基板上にも容易に形成できるため、液晶表示装置のス
イッチング素子として利用することが提案されている。
MIM elements have electrical characteristics such as high resistance when the applied voltage is low and low resistance when the applied voltage is high, and can be easily formed on glass substrates, so they are used as switching elements in liquid crystal display devices. It is proposed to use.

従来例におけるこのMIM素子の製造方法を第6図(a
)、(b)を用いて説明する。
The method of manufacturing this MIM element in the conventional example is shown in Fig. 6(a).
) and (b).

まずガラス基板1上の全面に金属2としてタンタル(T
a )を形成する。その後全面に感光性樹脂を形成し、
マスクを用いて露光現像を行ないこの感光性樹脂をパタ
ーニングし、このパターニングした感光性樹脂をエツチ
ングマスクにして金属2をエツチングする、いわゆるフ
ォトエツチングにより金属2をパターニングする。
First, tantalum (T
a) form. After that, photosensitive resin is formed on the entire surface,
The photosensitive resin is patterned by exposure and development using a mask, and the metal 2 is patterned by so-called photo-etching, in which the patterned photosensitive resin is used as an etching mask to etch the metal 2.

次にこの金属2上に陽極酸化法や熱酸化法等を用いて絶
縁体6を形成する。
Next, an insulator 6 is formed on this metal 2 using an anodic oxidation method, a thermal oxidation method, or the like.

その後基板上に全面に透明導電膜を形成しフォトエツチ
ングを用いてこの透明導電膜をバタ一二ングし【透明画
素電極4を形成し、MIM素子を製造している。(特開
昭57−196290号公報)〔発明が解決しようとす
る課題〕 MIM素子を液晶表示装置に設置するスイッチング素子
として利用しようとしたとき、例えば特開昭59−13
1974号公報によればO14mm角の寸法の画素を駆
動するには、5μm角の寸法のM I M素子が要求さ
れる。表示装置の高密度化にともない、画素の寸法もさ
らに微細化が要求され、M I M素子の寸法もさらに
微細化が要望されている。
Thereafter, a transparent conductive film is formed on the entire surface of the substrate, and this transparent conductive film is battered using photoetching to form a transparent pixel electrode 4, thereby manufacturing an MIM element. (Japanese Unexamined Patent Publication No. 57-196290) [Problem to be Solved by the Invention] When attempting to use an MIM element as a switching element installed in a liquid crystal display device, for example, Japanese Patent Application Laid-Open No. 59-13
According to the 1974 publication, in order to drive a pixel with a size of 014 mm square, an M I M element with a size of 5 μm square is required. As the density of display devices increases, the dimensions of pixels are required to be further miniaturized, and the dimensions of MIM elements are also required to be further miniaturized.

また前述の金属2としてタンタルを形成する際、アルゴ
ンガスに窒素ガスを小量添加した雰囲気中での反応性ス
パッタリングによって抵抗率の小さなα−Taを形成す
る方法が一般的に用いられているが、タンタル膜中への
窒素の取り込み量は、窒素ガスの添加量が一定でも成膜
速度が大きいと窒素の取り込み量は小さ(なり、成膜速
度が小さいと窒素の取り込み量は大きく、なることが本
発明者の実験によりわかった。
Furthermore, when forming tantalum as the aforementioned metal 2, a method is generally used in which α-Ta, which has a low resistivity, is formed by reactive sputtering in an atmosphere in which a small amount of nitrogen gas is added to argon gas. Even if the amount of nitrogen gas added is constant, the amount of nitrogen taken into the tantalum film will be small if the film formation rate is high, and the amount of nitrogen taken into the tantalum film will be large if the film formation rate is low. was found through experiments by the inventor.

さらに又、MIM素子の電流−電圧特性は窒素の取り込
み量に依存する事もわかった。
Furthermore, it was also found that the current-voltage characteristics of the MIM device depended on the amount of nitrogen incorporated.

また一方で、スパッタターゲットに対向する基板ホルダ
ーがスパッタターゲット上を連続的に移動しながらスパ
ッタリングするいわゆるインラインスパッタリングにお
いては、基板ホルダーがスパッタターゲットの近傍にあ
るときには成膜速度が大きく、スパッタターゲットから
遠くなるに従って成膜速度が小さくなるという現象が存
在する。
On the other hand, in so-called in-line sputtering, in which a substrate holder facing a sputter target performs sputtering while continuously moving over the sputter target, the deposition rate is high when the substrate holder is near the sputter target, and when the substrate holder is located far from the sputter target, There is a phenomenon in which the film formation rate decreases as the thickness increases.

このような理由から、第6図(b)に示すようにタンタ
ル膜の上層部12と下層部11においては、窒素が多量
に取り込まれていることが本発明者の分析によって判明
した。
For this reason, the inventor's analysis revealed that a large amount of nitrogen is incorporated into the upper layer 12 and lower layer 11 of the tantalum film, as shown in FIG. 6(b).

これらの現象のために前述のM I M素子の製造方法
においては以下に述べるような課題を有している。
Due to these phenomena, the above-mentioned MIM element manufacturing method has the following problems.

(イ)  MIM素子の寸法が5μm角よりも小さくな
ると、MIM素子の電流−電圧特性に及ぼす第6図(b
)の内部10に示した金属2の端部の影響が無視できな
くなる。
(a) When the dimensions of the MIM element become smaller than 5 μm square, the effect on the current-voltage characteristics of the MIM element in Figure 6 (b)
) can no longer be ignored.

(ロ)金属2の端部においては窒素が多量に取り込まれ
た層と窒素が小量取り込まれた層とが両方存在する。
(b) At the end of the metal 2, there are both a layer in which a large amount of nitrogen is incorporated and a layer in which a small amount of nitrogen is incorporated.

(ハ)金属2の端部の影響のため、MIM素子の電流−
電圧特性に大きなバラツキが発生する。
(c) Due to the influence of the edge of metal 2, the current of the MIM element -
Large variations occur in voltage characteristics.

に)金属2の端部の影響のため、MIM素子の電流−電
圧特性の安定性、再現性が著しく低下する。
B) Due to the influence of the edge of the metal 2, the stability and reproducibility of the current-voltage characteristics of the MIM element are significantly reduced.

本発明の目的は、金属の端部における窒素の導入量が多
量な層と小量な層とが存在することに起因する、金属の
端部による電流−電圧特性へ影響をなくし、安定して再
現性良くバラツキのない電流−電圧特性の得られるMI
M素子の製造方法を提供するものである。
An object of the present invention is to eliminate the influence of the edge of the metal on the current-voltage characteristics caused by the existence of layers with a large amount of nitrogen introduced and layers with a small amount of nitrogen introduced at the edge of the metal, and to stabilize the current-voltage characteristics. MI that provides highly reproducible and consistent current-voltage characteristics
A method for manufacturing an M element is provided.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は金属のパターニン
グ後に窒素雰囲気中におげろ熱処理、あるいは窒素を含
む化合物を用いたプラズマ処理のうちの少なくとも一方
の処理を行なう。
In order to achieve the above object, the present invention performs at least one of a heat treatment in a nitrogen atmosphere or a plasma treatment using a compound containing nitrogen after patterning a metal.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて詳述する。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第1図は本発明の一実施例におけるMIM素子の製造方
法を工程順に示す断面図であり、また第2図は本発明に
よるMIM素子の平面図である。
FIG. 1 is a cross-sectional view showing a method for manufacturing an MIM device according to an embodiment of the present invention in the order of steps, and FIG. 2 is a plan view of the MIM device according to the present invention.

以下、第1図および第2図を参照して説明する。This will be explained below with reference to FIGS. 1 and 2.

まず第1図(a)に示すように、ガラス基板1上に窒素
を1%〜20%添加したアルゴンガス雰囲気中における
反応性スパッタリング法を用いて金属2としてタンタル
(α−Ta)を10Qnm〜500nmの厚さで形成す
る。次に第1図(b)に示すよ5に、フォトエツチング
を用いてタンタルのエツチングを行なって金属2をパタ
ーニングする。
First, as shown in FIG. 1(a), tantalum (α-Ta) was deposited as the metal 2 in a thickness of 10 Qnm to 10 Qnm on a glass substrate 1 using a reactive sputtering method in an argon gas atmosphere containing 1% to 20% nitrogen. It is formed to have a thickness of 500 nm. Next, as shown in FIG. 1(b), the metal 2 is patterned by etching tantalum using photoetching.

その後、第3図に示すような加熱炉62内にガラス基板
61を設置し、窒素をガス導入口66からIJ/sec
、以上流し、排気口64から排気しながら、加熱用電熱
線65により温度1506C〜550℃に加熱しながら
、10分〜3時間の熱処理を行なう。あるいは第4図(
a)に示すように、窒素(N! )、アンモニア(NH
3)、笑気ガス(NtO)等の窒素を含む化合物の内、
少なくとも1種類のガスをガス導入口36より導入し、
排気口64から排気する真空槽42内で絶縁シール47
により電気的に周囲と隔絶され、高周波電源49に接続
された電極46上にガラス基板31を設置し、圧力10
Pa〜100Pa、高周波電力密度0.1 W/i 〜
5 W/crl、処理時間1分〜30分のプラズマ処理
を行なり。また第4図(b)に示すように、電気的に接
地された電極45上に基板61を設置してプラズマ処理
を行なっても良い。
Thereafter, the glass substrate 61 is placed in a heating furnace 62 as shown in FIG.
, and heat treatment is carried out for 10 minutes to 3 hours while heating the sample to a temperature of 1506C to 550C with the heating wire 65 while exhausting air from the exhaust port 64. Or Figure 4 (
As shown in a), nitrogen (N!), ammonia (NH
3) Among compounds containing nitrogen such as laughing gas (NtO),
Introducing at least one type of gas from the gas introduction port 36,
An insulating seal 47 is installed inside the vacuum chamber 42 which is exhausted from the exhaust port 64.
A glass substrate 31 is placed on an electrode 46 which is electrically isolated from the surroundings by a pressure 10 and connected to a high frequency power source 49.
Pa ~ 100 Pa, high frequency power density 0.1 W/i ~
Perform plasma treatment at 5 W/crl for 1 to 30 minutes. Alternatively, as shown in FIG. 4(b), the plasma treatment may be performed by placing a substrate 61 on an electrically grounded electrode 45.

尚、第5図に示すよ5に、真空槽42内にガラス基板6
1を設置し、ガス導入口46より前述のガスを導入し排
気口44から排気し、電極46に高周波電源49より高
周波電力を印加する、いわゆるバレル型の装置を用いて
も効果は同様である。
Incidentally, as shown in FIG. 5, a glass substrate 6 is placed inside the vacuum chamber 42.
1, the aforementioned gas is introduced from the gas inlet 46, exhausted from the exhaust port 44, and high frequency power is applied from the high frequency power source 49 to the electrode 46.The same effect can be obtained by using a so-called barrel type device. .

その後第1図(c)に示すように絶縁体6を得るために
、金属2であるタンタルを0.5g/l〜50g/lの
クエン酸溶液中における陽極酸化法を行な)。
Thereafter, in order to obtain the insulator 6 as shown in FIG. 1(c), tantalum as the metal 2 was anodized in a citric acid solution of 0.5 g/l to 50 g/l).

あるいはこの陽極酸化法の代わりに、温度200℃〜4
50°Cの酸素雰囲気中で熱処理するいわゆる熱酸化法
を行な5゜陽僅酸化あるいは熱酸化にて形成する絶縁体
6としての酸化タンタルは5nm〜1100nの厚さで
形成する。または、スパッタリング法や蒸着法や化学気
相成長法等を用いて酸化タンタル、酸化硅素、窒化硅素
等を5nm〜1100n全面に形成する。
Alternatively, instead of this anodizing method, a temperature of 200°C to 4°C can be used.
Tantalum oxide as the insulator 6 is formed by a so-called thermal oxidation method in which heat treatment is performed in an oxygen atmosphere at 50 DEG C. to a thickness of 5 nm to 1100 nm. Alternatively, tantalum oxide, silicon oxide, silicon nitride, or the like is formed over the entire surface to a thickness of 5 nm to 1100 nm using a sputtering method, a vapor deposition method, a chemical vapor deposition method, or the like.

その後第1図(d)に示すように、透明画素電極4を形
成するために、透明導電膜として例えばI T O(I
n2O5* sno、 )を50nm 〜500nmス
パッタリング法や蒸着法等を用いて形成し、フォトエツ
チングによりITOのパターニングを行なって当該MI
M素子を得る。
Thereafter, as shown in FIG. 1(d), in order to form a transparent pixel electrode 4, a transparent conductive film such as ITO (I
n2O5*sno, ) is formed to a thickness of 50 nm to 500 nm using a sputtering method or a vapor deposition method, and the ITO is patterned by photoetching to form the MI.
Obtain M element.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明によれば金属の端
部による影響をなくし、安定して再現性よくバラツキの
ないMIM素子の製造が可能となる。本発明を液晶表示
装置の製造等に応用すれば、その効果は絶大である。
As is clear from the above description, according to the present invention, it is possible to eliminate the influence of metal edges and to manufacture MIM elements stably, with good reproducibility, and without variation. If the present invention is applied to the manufacture of liquid crystal display devices, the effects will be tremendous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の一実施例におけるMI
M素子の製造方法を工程順に示す断面図、第2図は本発
明の一実施例におけるM I M素子の平面図、第3図
は本発明の実施例における窒素雰囲気中で熱処理を施す
様子を示す模式図、第4図(a)、(b)及び第5図は
いずれも本発明の実施例におけるプラズマ処理を施す様
子を示す模式図、第6図(a)第1図 視図、第6図(b)は従来例における製造方法によるM
IM素子の断面図である。 1・・・・・・ガラス基板、 2・・・・・・金属、 6・・・・・・絶縁体、 4・・・・・・透明画素電極。 第2図 第3図
FIGS. 1(a) to 1(d) show MI in one embodiment of the present invention.
2 is a cross-sectional view showing the manufacturing method of the M element in the order of steps, FIG. 2 is a plan view of the M I M element in an embodiment of the present invention, and FIG. 3 is a diagram showing heat treatment in a nitrogen atmosphere in an embodiment of the present invention. 4(a), (b) and 5 are all schematic diagrams showing how plasma treatment is performed in an embodiment of the present invention, and FIG. 6(a) is a perspective view of the first drawing, and FIG. Figure 6(b) shows M by the conventional manufacturing method.
FIG. 3 is a cross-sectional view of an IM element. 1...Glass substrate, 2...Metal, 6...Insulator, 4...Transparent pixel electrode. Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] ガラス基板上の全面に金属を形成し第1番目のフォトエ
ッチングにより該金属をパターニングする工程と、窒素
雰囲気中において加熱処理か、あるいは窒素を含む化合
物雰囲気中におけるプラズマ処理のうち少なくとも一方
の処理を施す工程と、前記金属の表面に絶縁体を形成す
る工程と、全面に透明導電膜を形成し第2番目のフォト
エッチングにより該透明導電膜を透明画素電極の形状に
パターニングする工程とを有することを特徴とするMI
M型非線形スイッチング素子の製造方法。
A process of forming metal on the entire surface of the glass substrate and patterning the metal by first photoetching, and at least one of heat treatment in a nitrogen atmosphere or plasma treatment in a nitrogen-containing compound atmosphere. a step of forming an insulator on the surface of the metal; and a step of forming a transparent conductive film on the entire surface and patterning the transparent conductive film in the shape of a transparent pixel electrode by a second photo-etching. MI featuring
A method for manufacturing an M-type nonlinear switching element.
JP1185337A 1989-07-18 1989-07-18 Production of mim type nonlinear switching element Pending JPH0348826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1185337A JPH0348826A (en) 1989-07-18 1989-07-18 Production of mim type nonlinear switching element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1185337A JPH0348826A (en) 1989-07-18 1989-07-18 Production of mim type nonlinear switching element

Publications (1)

Publication Number Publication Date
JPH0348826A true JPH0348826A (en) 1991-03-01

Family

ID=16169036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1185337A Pending JPH0348826A (en) 1989-07-18 1989-07-18 Production of mim type nonlinear switching element

Country Status (1)

Country Link
JP (1) JPH0348826A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5654207A (en) * 1903-02-03 1997-08-05 Sharp Kabushiki Kaisha Method of making two-terminal nonlinear device and liquid crystal apparatus including the same
US5834827A (en) * 1994-06-15 1998-11-10 Seiko Epson Corporation Thin film semiconductor device, fabrication method thereof, electronic device and its fabrication method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5654207A (en) * 1903-02-03 1997-08-05 Sharp Kabushiki Kaisha Method of making two-terminal nonlinear device and liquid crystal apparatus including the same
US5834827A (en) * 1994-06-15 1998-11-10 Seiko Epson Corporation Thin film semiconductor device, fabrication method thereof, electronic device and its fabrication method

Similar Documents

Publication Publication Date Title
JP3954667B2 (en) Method for manufacturing ferroelectric capacitor
JP2000269515A (en) Manufacture for low temperature thin film transistor and transistor device
JPH03214717A (en) Electrode for electric ceramic oxide apparatus
US10431611B2 (en) Method for manufacturing thin film transistor, method for manufacturing array substrate, array substrate and display device
KR100815021B1 (en) Method of manufacturing substrate having transparent conductive film, substrate having transparent conductive film manufactured using the method, and touch panel using the substrate
JPH0364450A (en) Formation of transparent conductive film
JPH0348826A (en) Production of mim type nonlinear switching element
JPH0351823A (en) Production of mim type nonlinear switching element
JPS63164A (en) Thin-film transistor
JP2002352627A (en) Indium tin oxide thin film and its manufacturing method, liquid crystal display element
JPH07311393A (en) Liquid crystal display device using nonlinear driving element
JPH0348824A (en) Production of mim type nonlinear switching element
JPH06151460A (en) Manufacture of inverted stagger type tft
JPH0254577A (en) Manufacture of thin film transistor
JPH10150153A (en) Resistor element
JP2797361B2 (en) Semiconductor device
JPH06196700A (en) Electronic device
JPH04223334A (en) Insulating thin film
JPH0351821A (en) Production of mim type nonlinear switching element
JP3319267B2 (en) Method for manufacturing thin film transistor
JPS6348528A (en) Production of matrix type liquid crystal display device
JPH08262497A (en) Liquid crystal display device and its production
JPS63114211A (en) Manufacture of semiconductor device
JPS63193581A (en) Resistance control element
JPS6027159A (en) Manufacture of thin film non-linear resistance element