JPH0348769A - Method and device for sample motion - Google Patents

Method and device for sample motion

Info

Publication number
JPH0348769A
JPH0348769A JP18437789A JP18437789A JPH0348769A JP H0348769 A JPH0348769 A JP H0348769A JP 18437789 A JP18437789 A JP 18437789A JP 18437789 A JP18437789 A JP 18437789A JP H0348769 A JPH0348769 A JP H0348769A
Authority
JP
Japan
Prior art keywords
transport line
sample
analyzer
bypass
analyzers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18437789A
Other languages
Japanese (ja)
Other versions
JPH0833400B2 (en
Inventor
Takeshi Sato
剛 佐藤
Fujiya Takahata
高畑 藤也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1184377A priority Critical patent/JPH0833400B2/en
Publication of JPH0348769A publication Critical patent/JPH0348769A/en
Publication of JPH0833400B2 publication Critical patent/JPH0833400B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To put samples in efficient operation by providing a by-pass conveyance line between plural kinds of analyzing devices arranged on a main conveyance line and distributing respective samples to the main conveyance line and by-pass conveyance line. CONSTITUTION:A sample which is processed by or skipped at a centrifugal separation and sample preprocessing part 105A is supplied to an automatic analyzing device 106A. Normally, the sample is put in operation on the main conveyance line 13A in the order of analyzing devices 9A - 9H, specially, when there is not a command from a controller 2. If, however, there is a command from the controller 2 and the device B is skipped over the forward direction, the sample is conveyed in the order of a by-pass conveyance line 15, a by-pass conveyance line 14, and a by-pass conveyance line 16. When there is a re- inspection command from the controller 2 and the sample exiting from the device 9B returns to the device 9B, the sample is conveyance in the order of a by-pass conveyance line 19, a by-pass conveyance line 18, and a by-pass convey ance line 20.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、検体の仕分け・搬送・分析・収納といった一
連の動作を自動的に行う臨床検査自動化システムにおい
て、検体運行の最適化を図った検体運行方法および装置
に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention aims to optimize sample transportation in a clinical test automation system that automatically performs a series of operations such as sorting, transporting, analyzing, and storing samples. Concerning sample operation method and device.

〔従来の技術〕[Conventional technology]

従来の臨床検査自動化システムでは、特開昭63−52
061号公報に記載されているように、検体情報読取装
置からの情報を元に仕分機によって、検体の種類に応じ
て各分析装置単位に検体を検体収納ラックに分類収納し
、その各検体収納ラックを各分析装置に自動搬送するよ
うになっている。
In the conventional clinical test automation system,
As described in Publication No. 061, based on the information from the sample information reader, the sorting machine sorts and stores the samples in the sample storage rack for each analyzer according to the type of sample, and each sample storage The racks are automatically transported to each analyzer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来技術では、分析装置からの検査
終了信号を待たなければ、次の検体収納ラックを投入で
きないことになっており、1つの検体を幾種類かの分析
装置で分析する場合、何度も検体投入口に検体を運び、
その都度仕分情報を変えなければならず、非常に手間が
かかる。また各分析装置からの検査終了から検体到着ま
での時間が無駄で、緊急に適さないという問題がある。
However, with the above-mentioned conventional technology, the next specimen storage rack cannot be loaded until the test completion signal from the analyzer is received. transport the sample to the sample input port,
Sorting information must be changed each time, which is very time-consuming. Another problem is that the time from the end of the test from each analyzer to the arrival of the specimen is wasted, making it unsuitable for emergencies.

本発明の目的は、複数種類の分析装置に対して検体を効
率良く運行させることができる検体運行方法および装置
を提供することである。
An object of the present invention is to provide a sample transport method and apparatus that can efficiently transport samples to multiple types of analyzers.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明の検体運行方法は、
主搬送ライン上に配設された複数種類の分析装置間にバ
イパス搬送ラインを設け、前記複数種類の分析装置に検
体を通して一連の分析項目を順次分析する際に、各分析
装置の分析待ちの検体数および緊急指定により優先的に
分析すべき各分析装置の検体数等と、各分析装置の処理
能力とを比較して、各検体の分析待ち時間が最小となる
よう前記主搬送ラインとバイパス搬送ラインに各検体を
振り分けることである。
In order to achieve the above object, the sample transport method of the present invention includes:
A bypass transport line is provided between multiple types of analyzers installed on the main transport line, and when samples are passed through the multiple types of analyzers and sequentially analyzed for a series of analysis items, the samples waiting to be analyzed by each analyzer are The main transport line and bypass transport line are compared to each analyzer's processing capacity to minimize the waiting time for analysis of each sample. This involves distributing each sample into lines.

また1本発明の検体運行方法は、主搬送ライン上に配設
された複数種類の分析装置間にバイパス搬送ラインを設
け、前記複数種類の分析装置に検体を通して一連の分析
項目を順次分析する際に、各分析装置の分析待ちの検体
数と各分析装置の処理能力とを比較し、分析待ちの検体
数が処理能力を越えた分析装置があれば、前記バイパス
搬送ラインを介して分析待ちの検体を他の分析装置に搬
送し、他の分析装置で先に分析を行ってから前記未通過
の分析装置に前記検体を戻すことである。
Further, in the sample transport method of the present invention, a bypass transport line is provided between a plurality of types of analyzers arranged on the main transport line, and when a series of analysis items are sequentially analyzed by passing the sample through the plurality of types of analyzers. The number of samples waiting for analysis of each analyzer is compared with the processing capacity of each analyzer, and if there is an analyzer for which the number of samples waiting for analysis exceeds the processing capacity, the number of samples waiting for analysis is transferred via the bypass transport line. The method is to transport the sample to another analyzer, perform analysis on the other analyzer first, and then return the sample to the analyzer through which it has not passed.

さらに、本発明の検体運行方法は、主搬送ライン上に配
設された複数種類の分析装置間にバイパス搬送ラインを
設け、前記複数種類の分析装置に検体を通して一連の分
析項目を順次分析する際に、各分析装置に対して緊急指
定の検体がある場合には、その検体を緊急指定に対応す
る分析装置まで前記バイパス搬送ラインを介して優先的
に搬送することである。
Further, in the sample transport method of the present invention, a bypass transport line is provided between a plurality of types of analyzers arranged on the main transport line, and when a series of analysis items are sequentially analyzed by passing the sample through the plurality of types of analyzers. Second, if there is a specimen designated as an emergency for each analyzer, that specimen is preferentially transported via the bypass transport line to the analyzer corresponding to the emergency designation.

また、本発明の検体運行方法は、主搬送ライン上に配設
された複数種類の分析装置間にバイパス搬送ラインを設
け、前記複数種類の分析装置に検体を通して一連の分析
項目を順次分析する際に、再検査の指示があった場合に
は、当該検体を前記バイパス搬送ラインを介して再度前
記分析装置に搬送することである。
Further, in the sample transport method of the present invention, a bypass transport line is provided between a plurality of types of analyzers arranged on the main transport line, and when a series of analysis items are sequentially analyzed by passing the sample through the plurality of types of analyzers. Second, if there is an instruction for reexamination, the sample is transported to the analyzer again via the bypass transport line.

また、本発明の検体運行方法は、主搬送ライン」二に配
設された複数種類の分析装置間に、正方向のバイパス搬
送ラインと逆方向のバイパス搬送ラインを設け、前記複
数種類の分析装置に検体を通して一連の分析項目を1@
次分析する際に、各分析装置の分析待ちの検体数および
緊急指定により優先的に分析すべき各分析装置の検体数
等と、各分析装置の処理能力とを比較して、各検体の分
析待ち時間が最小となるよう各検体を前記主搬送ライン
、正方向のバイパス搬送ラインおよび逆方向のバイパス
搬送ラインに各検体を振り分けることである。
Further, in the sample transport method of the present invention, a bypass transport line in the forward direction and a bypass transport line in the reverse direction are provided between the plurality of types of analyzers disposed on the main transport line, and the plurality of types of analyzers A series of analysis items are analyzed through the sample.
When performing the next analysis, compare the processing capacity of each analyzer with the number of samples waiting for analysis on each analyzer and the number of samples that should be analyzed preferentially due to emergency designation, and analyze each sample. Each specimen is distributed to the main transport line, the forward direction bypass transport line, and the reverse direction bypass transport line so that the waiting time is minimized.

また、本発明は、上述した複数の検体運行方法のうち、
いずれかの検体運行方法を臨床検査自動化システムに適
用したものである。
Furthermore, the present invention provides the following among the plurality of sample transportation methods described above:
This is an application of either of the sample handling methods to a clinical test automation system.

さらに1本発明の検体運行装置は、主搬送ライン上に複
数種類の分析装置を連続的に配設し、前記主搬送ライン
に並行してバイパス搬送ラインを設けるとともに、前記
各分析装置の前後に前記主搬送ラインとバイパス搬送ラ
インとを連結するバイパス搬送ライン側路を設け、かつ
前記各分析装置の分析待ちの検体数および緊急指定によ
り優先的に分析すべき各分析装置の検体数等のデータを
取り込んで、この取り込んだデータと前記各分析装置の
処理能力とを比較して、各検体の分析待ち時間が最小と
なるよう前記主搬送ライン、バイパス搬送ラインおよび
バイパス搬送ライン側路の切替えを制御する制御装置を
設けたものである。
Furthermore, in the sample transportation device of the present invention, a plurality of types of analysis devices are successively arranged on a main transportation line, a bypass transportation line is provided in parallel to the main transportation line, and a bypass transportation line is provided before and after each of the analysis devices. A bypass transport line side path is provided to connect the main transport line and the bypass transport line, and data such as the number of specimens waiting for analysis in each of the analyzers and the number of specimens in each analyzer that should be analyzed preferentially due to emergency designation. This data is compared with the processing capacity of each of the analyzers, and the main transport line, bypass transport line, and bypass transport line side path are switched to minimize the analysis waiting time for each sample. A control device is provided to control the system.

〔作用〕[Effect]

上記構成によれば、ある分析装置での分析待ちの検体数
がその分析装置の処理能力を越えている場合には、その
分析装置手前の主搬送ライン上の分析待ち検体の一部を
バイパス搬送ライン側路とバイパス搬送ラインを介して
他の分析装置に搬送する。そして、他の分析装置で他の
分析を先に行ってから、当該検体を再びバイパス搬送ラ
イン側路とバイパス搬送ラインを介して前記未通過の分
析装置に搬送する。なお、検体をバイパス搬送ライン側
路とバイパス搬送ラインに導くための主搬送ラインの切
替えは制御装置により行われる。
According to the above configuration, if the number of samples waiting for analysis in a certain analyzer exceeds the processing capacity of that analyzer, some of the samples waiting for analysis on the main transport line in front of that analyzer are transported by bypass. Transport to other analyzers via line sideways and bypass transport lines. Then, after another analysis is performed in another analyzer first, the sample is again transported to the analyzer through which it has not passed through the bypass transport line side path and the bypass transport line. Note that switching of the main transport line for guiding the sample to the bypass transport line side path and the bypass transport line is performed by the control device.

また、緊急指定された検体がある場合、上記と同様に、
バイパス搬送ライン側路とバイパス搬送ラインを介して
当該検体を緊急指定に対応する分析装置まで優先的に搬
送する。
In addition, if there is a specimen designated as an emergency, as above,
The sample is preferentially transported via the bypass transport line side path and the bypass transport line to the analysis device corresponding to the emergency designation.

〔実施例〕 以下に本発明の一実施例を図面に従って説明する。〔Example〕 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の検体運行方法に適用される臨床検査自
動化システムのフローを示している。ステップ100に
おいて検体が発生してその依頼が行われ、後述する制御
装置に検体及び検査依頼情報が送られて、各検体に対す
るファイルが作成される0次にステップ101で検体の
収集整理が行われた後、ステップ102で検体が臨床検
査自動化システムへ導入される。ステップ103におい
て、識別信号読取り部によって読まれた各検体の情報と
、制御装置に記憶された検体情報とをマツチングさせて
、検査依頼情報を受は取る。そして。
FIG. 1 shows the flow of a clinical test automation system applied to the sample handling method of the present invention. In step 100, a sample is generated and a request is made, and the sample and test request information are sent to a control device, which will be described later, and a file for each sample is created.Next, in step 101, the sample is collected and organized. After that, the specimen is introduced into the clinical test automation system in step 102. In step 103, the information about each sample read by the identification signal reading section is matched with the sample information stored in the control device, and test request information is received. and.

ステップ104において検体の遠心分離及び検体前処理
が必要か否かが判断され、必要ならばステップ105で
遠心分離及び検体前処理が行われ、必要なければ直接ス
テップ106へ行く、ステップ106では、各検体の検
査依頼情報に従って検体の自動分析が行われ、ステップ
107において、その分析結果が印字される一方、制御
装置に作成された各検体のファイルに通信・記憶される
。またステップ108において、制御装置に格納された
再検理論プログラムによって各分析結果がチエツクされ
、再検を行う必要がある検体はステップ106へ戻って
再度分析される。再検を行う必要がない検体は、ステッ
プ109で検体収納部に収納・保存されて、一連の検査
が終了する。
In step 104, it is determined whether or not centrifugation of the specimen and specimen pretreatment are necessary. If necessary, centrifugation and specimen pretreatment are performed in step 105. If not, the process goes directly to step 106. In step 106, each Automatic analysis of the specimen is performed according to the specimen test request information, and in step 107, the analysis results are printed out and communicated and stored in the file for each specimen created in the control device. Further, in step 108, each analysis result is checked by the retest theory program stored in the control device, and samples that need to be retested are returned to step 106 and analyzed again. Specimens that do not need to be retested are stored and stored in the specimen storage unit in step 109, and the series of tests is completed.

上記の臨床検査自動化システムにおいて、本発明の検体
運行方法の特徴は、ステップ106での検体分析を効率
良く行うようにしたことである。
In the clinical test automation system described above, a feature of the sample handling method of the present invention is that the sample analysis in step 106 is efficiently performed.

すなわち1分析装置間の搬送順序を最適化するプログラ
ムを制御装置に組み込み、プログラムに従って検体を搬
送するようにしている。
That is, a program for optimizing the transport order between analyzers is built into the control device, and samples are transported according to the program.

第2図は、第1図のステップ106での機能を実現する
自動分析装置部の機能構成図である。自動分析装置部1
06Aの前後には、遠心分離及び検体前処理部105A
と検体収納部109Aが配置され、また自動分析装置部
106Aには制御装置2が接続されている。自動分析装
置部106Aの内部には分析装置9A〜9Hが配設され
1分析装置9A〜9Hは主搬送ライン13によって連続
的に接続されている。また主搬送ライン13に並行して
正方向のバイパス搬送ライン14と逆方向のバイパス搬
送ライン18が設けられている(遠心分離及び検体前処
理部105Aから検体収納部1、09 Aへの流れを正
方向、逆の流れを逆方向とする)。主搬送ライン13と
バイパス搬送ライン14との間には、主搬送ライン13
からバイパス搬送ライン14へ向かうバイパス搬送ライ
ン側路15と、バイパス搬送ライン14から主搬送ライ
ン13へ向かうバイパス搬送ライン側路16が設けられ
ている。また主搬送ライン13とバイパス搬送ライン1
8との間には、主搬送ライン13からバイパス搬送ライ
ン18へ向かうバイパス搬送ライン側路19と、バイパ
ス搬送ライン18から主搬送ライン13へ向かうバイパ
ス搬送ライン側路20が設けられている。図中、符号1
7はバイパス搬送ライン14同士の間に設けられたバイ
パス搬送ライン側路である。
FIG. 2 is a functional configuration diagram of an automatic analyzer section that implements the function in step 106 of FIG. 1. Automatic analyzer section 1
Before and after 06A, there is a centrifugation and sample pretreatment section 105A.
A sample storage section 109A is arranged therein, and a control device 2 is connected to the automatic analyzer section 106A. Analyzers 9A to 9H are arranged inside the automatic analyzer section 106A, and each of the analyzers 9A to 9H is continuously connected by a main transport line 13. In addition, a bypass conveyance line 14 in the forward direction and a bypass conveyance line 18 in the reverse direction are provided in parallel with the main conveyance line 13 (flow from the centrifugation and sample pretreatment section 105A to the sample storage sections 1 and 09A). Forward direction, reverse flow is considered to be the reverse direction). Between the main conveyance line 13 and the bypass conveyance line 14, the main conveyance line 13
A bypass conveyance line side path 15 leading from the bypass conveying line 14 to the bypass conveying line 14 and a bypass conveying line side path 16 leading from the bypass conveying line 14 to the main conveying line 13 are provided. In addition, the main conveyance line 13 and the bypass conveyance line 1
8, there are provided a bypass conveyance line side path 19 going from the main conveyance line 13 to the bypass conveyance line 18 and a bypass conveyance line side path 20 going from the bypass conveyance line 18 to the main conveyance line 13. In the figure, code 1
7 is a bypass conveyance line side path provided between the bypass conveyance lines 14.

なお、自動分析装置部106Aと制御装置2が本発明の
検体運行装置に相当する。
Note that the automatic analyzer unit 106A and the control device 2 correspond to the sample handling device of the present invention.

上記の構成によれば、遠心分離及び検体前処理部105
Aで処理されたか、あるいは遠心分離及び検体前処理部
105Aをスキップした検体は、自動分析装置!106
Aに導入される。通常、特に制御装置2から指令が無い
限り、主搬送ライン13上を分析装置9A→9B・・・
・・・→9Hという順序で検体が運行する。しかし、制
御装置2から指令があって分析装置9Bを正方向にスキ
ップする場合は、バイパス搬送ライン側路15、バイパ
ス搬送ライン14、バイパス搬送ライン側路16と検体
が搬送される。また制御装置2から再検指令があって分
析装置9Bを出てから再び分析袋M9Bに戻る場合は、
バイパス搬送ライン側路19、バイパス搬送ライン18
、バイパス搬送ライン側路20と検体が搬送される。
According to the above configuration, the centrifugation and sample pretreatment section 105
Samples that have been processed in step A or that have skipped the centrifugation and sample pretreatment section 105A are processed by the automatic analyzer! 106
introduced into A. Normally, unless there is a specific command from the control device 2, the analyzers 9A→9B...
The specimens travel in the order of ...→9H. However, when there is a command from the control device 2 to skip the analyzer 9B in the forward direction, the specimen is transported through the bypass transport line side path 15, the bypass transport line 14, and the bypass transport line side path 16. In addition, if there is a re-examination command from the control device 2 and it returns to the analysis bag M9B after leaving the analyzer 9B,
Bypass conveyance line side path 19, bypass conveyance line 18
, the bypass transport line side path 20 and the specimen is transported.

第3図は、第2図中の破線で囲んだ部分を拡大した機能
構成図である。以下、第3図を用いて検体のバイパス運
行の一例を詳細に説明する。
FIG. 3 is an enlarged functional configuration diagram of the portion surrounded by the broken line in FIG. 2. Hereinafter, an example of bypass operation of a specimen will be explained in detail using FIG. 3.

まず、正方向のバイパス運行では、分析装置9A→分析
装置9Cを例にとると、分析装置9Aで分析された検体
は、制御装置2の指令により、検体運行チエッカ−21
aで識別されて、搬送ラインの流れが切替わり主搬送ラ
イン13からバイパス搬送ライン側路15に入る。その
検体は、バイパス搬送ライン側路15上で検体運行チエ
ッカ−21、bで識別されて搬送ラインの流れが切替わ
り。
First, in the bypass operation in the forward direction, taking the analyzer 9A → analyzer 9C as an example, the sample analyzed by the analyzer 9A is transferred to the sample operation checker 21 according to the command from the control device 2.
Identified by a, the flow of the conveying line is switched from the main conveying line 13 to the bypass conveying line side channel 15. The sample is identified by the sample movement checker 21, b on the bypass transport line side path 15, and the flow of the transport line is switched.

バイパス搬送ライン14に入る。バイパス搬送ライン1
4上の検体は、検体運行チエッカ−21cで識別されて
搬送ラインの流れが切替わり、バイパス搬送ライン側路
16に入る。次に、その検体は、検体運行チエッカ−2
1,bで識別されて搬送ラインの流れが切替わり、主搬
送ライン13に入り、分析装置9Cに搬送される。この
ようにして、検体は分析装置fJ9Bをスキップするこ
とができる。
It enters the bypass conveyance line 14. Bypass conveyance line 1
The sample on the top 4 is identified by the sample movement checker 21c, the flow of the transfer line is switched, and the sample enters the bypass transfer line side path 16. Next, the sample is transferred to the sample movement checker 2.
1 and b, the flow of the transport line is switched, enters the main transport line 13, and is transported to the analyzer 9C. In this way, the specimen can skip the analyzer fJ9B.

逆方向のバイパス運行では、分析装置9B→分析装置9
Bの再検を例にとると、分析装置9Bで分析された検体
は、制御装置2からの再検指令により、検体運行チエッ
カ−21eで識別されて搬送ラインの流れが切替わり、
主搬送ライン13からバイパス搬送ライン側路19に入
る。その検体は、検体運行チエッカ−21fで識別され
て搬送ラインの流れが切替わり、バイパス搬送ライン側
路19から逆方向のバイパス搬送ライン18に入る。バ
イパス搬送ライン18上の検体は、検体運行チエッカ−
21gで識別されて搬送ラインの流れが切替わり、バイ
パス搬送ライン18からバイパス搬送ライン側路20に
入る。次に、その検体は、検体運行チエッカ−21hで
識別されて搬送ラインの流れが切替わり、主搬送ライン
13に入リ、分析装置9Bに搬送される。このようにし
て、検体を分析装置9Bから分析装置9Bに戻すことが
できる。
In the reverse direction bypass operation, analyzer 9B → analyzer 9
Taking retest B as an example, the sample analyzed by the analyzer 9B is identified by the sample movement checker 21e in response to a retest command from the control device 2, and the flow of the transport line is switched.
The main conveyance line 13 enters the bypass conveyance line side path 19 . The sample is identified by the sample movement checker 21f, the flow of the transfer line is switched, and the sample enters the bypass transfer line 18 in the opposite direction from the bypass transfer line side path 19. The specimen on the bypass transport line 18 is checked by a specimen movement checker.
21g, the flow of the conveyance line is switched and enters the bypass conveyance line side path 20 from the bypass conveyance line 18. Next, the sample is identified by the sample movement checker 21h, the flow of the transport line is switched, and the sample enters the main transport line 13 and is transported to the analyzer 9B. In this way, the sample can be returned from the analyzer 9B to the analyzer 9B.

以上述べたことを、自動分析装置106Aに含まれる全
ての分析装置間に適用することにより、制御装置の指令
に従い、再検情報も含めた情報(緊急指定・分析順序・
各分析装置の分析待ちの検体数・各分析装置の処理能力
)により、分析待ち時間を最小にするように自動的に効
率の高い検体搬送及び検査が行われる。
By applying the above-mentioned information to all analyzers included in the automatic analyzer 106A, information including reexamination information (emergency designation, analysis order,
Depending on the number of samples waiting to be analyzed by each analyzer and the processing capacity of each analyzer, highly efficient sample transportation and testing are automatically performed to minimize the analysis waiting time.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、検体の持つ情報
及び分析装置の状態に応じて、検体の運行路が自動的に
選択されるので、各々の検体が独立した運行を行うこと
ができ、不要な装置への運行や分析装置を変える都度検
査システムへセットし直したりする必要がなくなり、処
理能力の小さい装置や分析依頼の多い装置での分析待ち
時間を最小にすることができる。その結果、必要な分析
装置へ短時間で運行することが必要な緊急検査にも対応
でき、高効率な臨床検査自動化システムに達成できる。
As explained above, according to the present invention, the travel route of the specimen is automatically selected according to the information possessed by the specimen and the state of the analyzer, so that each specimen can travel independently. This eliminates the need to run to unnecessary equipment or reinstall the testing system each time an analyzer is changed, thereby minimizing analysis waiting time for equipment with low processing capacity or equipment that receives many analysis requests. As a result, it is possible to respond to emergency tests that require quick access to the necessary analytical equipment, and to achieve a highly efficient clinical test automation system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の検体運行方法が適用される臨床検査自
動化システムの流れ図、第2図は本発明の検体運行装置
の機能構成図、第3図は第2図に一部を詳細に示した機
能構成図である。 13・・・主搬送ライン、
Figure 1 is a flowchart of a clinical test automation system to which the specimen handling method of the present invention is applied, Figure 2 is a functional configuration diagram of the specimen handling device of the present invention, and Figure 3 is partially shown in detail in Figure 2. FIG. 13... Main conveyance line,

Claims (1)

【特許請求の範囲】 1、主搬送ライン上に配設された複数種類の分析装置間
にバイパス搬送ラインを設け、前記複数種類の分析装置
に検体を通して一連の分析項目を順次分析する際に、各
分析装置の分析待ちの検体数および緊急指定により優先
的に分析すべき各分析装置の検体数等と、各分析装置の
処理能力とを比較して、各検体の分析待ち時間が最小と
なるよう前記主搬送ラインとバイパス搬送ラインに各検
体を振り分ける検体運行方法。 2、主搬送ライン上に配設された複数種類の分析装置間
にバイパス搬送ラインを設け、前記複数種類の分析装置
に検体を通して一連の分析項目を順次分析する際に、各
分析装置の分析待ちの検体数と各分析装置の処理能力と
を比較し、分析待ちの検体数が処理能力を越えた分析装
置があれば、前記バイパス搬送ラインを介して分析待ち
の検体を他の分析装置に搬送し、他の分析装置で先に分
析を行ってから前記未通過の分析装置に前記検体を戻す
検体運行方法。 3、主搬送ライン上に配設された複数種類の分析装置間
にバイパス搬送ラインを設け、前記複数種類の分析装置
に検体を通して一連の分析項目を順次分析する際に、各
分析装置に対して緊急指定の検体がある場合には、その
検体を緊急指定に対応する分析装置まで前記バイパス搬
送ラインを介して優先的に搬送する検体運行方法。 4、主搬送ライン上に配設された複数種類の分析装置間
にバイパス搬送ラインを設け、前記複数種類の分析装置
に検体を通して一速の分析項目を順次分析する際に、再
検査の指示があった場合には、当該検体を前記バイパス
搬送ラインを介して再度前記分析装置に搬送する検体運
行方法。 5、主搬送ライン上に配設された複数種類の分析装置間
に、正方向のバイパス搬送ラインと逆方向のバイパス搬
送ラインとを設け、前記複数種類の分析装置に検体を通
して一連の分析項目を順次分析する際に、各分析装置の
分析待ちの検体数および緊急指定により優先的に分析す
べき各分析装置の検体数等と、各分析装置の処理能力と
を比較して、各検体の分析待ち時間が最小となるよう各
検体を前記主搬送ライン、正方向のバイパス搬送ライン
および逆方向のバイパス搬送ラインに各検体を振り分け
る検体運行方法。 6、請求項1〜5記載のいずれかの検体運行方法を適用
した臨床検査自動化システム。 7、主搬送ライン上に複数種類の分析装置を連続的に配
設し、前記主搬送ラインに並行してバイパス搬送ライン
を設けるとともに、前記各分析装置の前後に前記主搬送
ラインとバイパス搬送ラインとを連結するバイパス搬送
ライン側路を設け、かつ前記各分析装置の分析待ちの検
体数および緊急指定により優先的に分析すべき各分析装
置の検体数等のデータを取り込んで、この取り込んだデ
ータと前記各分析装置の処理能力とを比較して、各検体
の分析待ち時間が最小となるよう前記主搬送ライン、バ
イパス搬送ラインおよびバイパス搬送ライン側路の切替
えを制御する制御装置を設けた検体運行装置。
[Claims] 1. When a bypass transport line is provided between multiple types of analyzers arranged on the main transport line, and a series of analysis items are sequentially analyzed by passing a sample through the multiple types of analyzers, The waiting time for analysis of each sample is minimized by comparing the processing capacity of each analyzer with the number of samples waiting to be analyzed by each analyzer and the number of samples to be analyzed preferentially by each analyzer due to emergency designation. A sample transport method in which each sample is distributed to the main transport line and the bypass transport line. 2. A bypass transport line is provided between multiple types of analyzers arranged on the main transport line, and when a series of analysis items are sequentially analyzed by passing a sample through the multiple types of analyzers, a bypass transport line is provided between the multiple types of analyzers arranged on the main transport line, and when a series of analysis items are sequentially analyzed by passing the sample through the multiple types of analyzers, the analysis wait time of each analyzer is Compare the number of samples for analysis with the processing capacity of each analyzer, and if there is an analyzer for which the number of samples waiting to be analyzed exceeds its processing capacity, the samples waiting for analysis will be transported to another analyzer via the bypass transport line. A sample transport method in which the sample is first analyzed by another analyzer and then returned to the analyzer through which it has not passed. 3. A bypass transport line is provided between multiple types of analyzers arranged on the main transport line, and when a series of analysis items are sequentially analyzed by passing a sample through the multiple types of analyzers, a bypass transport line is provided for each analyzer. If there is a specimen designated as an emergency, the specimen transportation method is to preferentially transport the specimen to an analysis device corresponding to the emergency designation via the bypass transport line. 4. A bypass transport line is provided between multiple types of analyzers arranged on the main transport line, and when a sample is passed through the multiple types of analyzers to sequentially analyze the first analysis items, instructions for retesting are provided. If there is a sample, the sample is transported to the analyzer again via the bypass transport line. 5. A bypass transport line in the forward direction and a bypass transport line in the reverse direction are provided between the plurality of types of analyzers arranged on the main transport line, and a series of analysis items are passed through the specimens to the plurality of types of analyzers. When performing sequential analysis, the processing capacity of each analyzer is compared with the number of samples waiting to be analyzed by each analyzer and the number of samples to be analyzed with priority by each analyzer due to emergency designation, and the analysis of each sample is performed. A sample transport method in which each sample is distributed to the main transport line, a forward bypass transport line, and a reverse bypass transport line so that waiting time is minimized. 6. A clinical test automation system to which the specimen handling method according to any one of claims 1 to 5 is applied. 7. A plurality of types of analyzers are arranged continuously on the main transport line, a bypass transport line is provided in parallel to the main transport line, and the main transport line and the bypass transport line are installed before and after each of the analyzers. A bypass transport line is provided to connect the above, and data such as the number of samples waiting to be analyzed by each of the analyzers and the number of samples to be analyzed with priority by each analyzer due to emergency designation is imported. A control device is provided for controlling switching of the main transport line, bypass transport line, and bypass transport line side path so that the analysis waiting time for each specimen is minimized by comparing the throughput of each of the analyzers. Operation device.
JP1184377A 1989-07-17 1989-07-17 Sample operation device Expired - Lifetime JPH0833400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1184377A JPH0833400B2 (en) 1989-07-17 1989-07-17 Sample operation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1184377A JPH0833400B2 (en) 1989-07-17 1989-07-17 Sample operation device

Publications (2)

Publication Number Publication Date
JPH0348769A true JPH0348769A (en) 1991-03-01
JPH0833400B2 JPH0833400B2 (en) 1996-03-29

Family

ID=16152140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1184377A Expired - Lifetime JPH0833400B2 (en) 1989-07-17 1989-07-17 Sample operation device

Country Status (1)

Country Link
JP (1) JPH0833400B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04283170A (en) * 1991-03-07 1992-10-08 Kayaba Ind Co Ltd Rear wheel steering device for vehicle
JPH0536366U (en) * 1991-10-21 1993-05-18 株式会社ニツテク Blood container dispenser
JPH11281652A (en) * 1998-03-27 1999-10-15 Hitachi Ltd Inspection and pretreatment system for sample and its operating method
JPH11304813A (en) * 1998-04-17 1999-11-05 Hitachi Ltd Specimen processing system
JP2001228158A (en) * 2000-02-18 2001-08-24 Hitachi Ltd Automatic analyzer and automatic analyzing method
JP2003057251A (en) * 2001-08-21 2003-02-26 Hitachi Ltd Automatic analysis system for living-body sample
JP2004020457A (en) * 2002-06-19 2004-01-22 Olympus Corp Automatic analyzing apparatus
JP2009121839A (en) * 2007-11-12 2009-06-04 Hitachi High-Technologies Corp Specimen processing system
JP2010139502A (en) * 2008-11-17 2010-06-24 Sysmex Corp Transport device, and specimen analyzer using the same
JP2010139501A (en) * 2008-11-17 2010-06-24 Sysmex Corp Transport device, and specimen analyzer using the same
JP2011137680A (en) * 2009-12-28 2011-07-14 Sysmex Corp Sample analyzer and sample rack transport method
JP2016048255A (en) * 2013-06-17 2016-04-07 株式会社日立ハイテクノロジーズ Automatic analyzer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69837230T2 (en) * 1997-04-10 2007-12-20 Hitachi, Ltd. Automatic analyzer
JP5031518B2 (en) * 1997-04-10 2012-09-19 株式会社日立製作所 Automatic analyzer
JP3505078B2 (en) * 1998-02-23 2004-03-08 株式会社日立製作所 Clinical testing system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218870A (en) * 1986-03-20 1987-09-26 Nitsuteku:Kk Container conveying method in automatic analysing apparatus and its apparatus
JPS63271164A (en) * 1987-04-28 1988-11-09 Shimadzu Corp Automatic biochemical analysis system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218870A (en) * 1986-03-20 1987-09-26 Nitsuteku:Kk Container conveying method in automatic analysing apparatus and its apparatus
JPS63271164A (en) * 1987-04-28 1988-11-09 Shimadzu Corp Automatic biochemical analysis system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04283170A (en) * 1991-03-07 1992-10-08 Kayaba Ind Co Ltd Rear wheel steering device for vehicle
JPH0536366U (en) * 1991-10-21 1993-05-18 株式会社ニツテク Blood container dispenser
JPH11281652A (en) * 1998-03-27 1999-10-15 Hitachi Ltd Inspection and pretreatment system for sample and its operating method
JPH11304813A (en) * 1998-04-17 1999-11-05 Hitachi Ltd Specimen processing system
JP2001228158A (en) * 2000-02-18 2001-08-24 Hitachi Ltd Automatic analyzer and automatic analyzing method
JP2003057251A (en) * 2001-08-21 2003-02-26 Hitachi Ltd Automatic analysis system for living-body sample
JP2004020457A (en) * 2002-06-19 2004-01-22 Olympus Corp Automatic analyzing apparatus
JP2009121839A (en) * 2007-11-12 2009-06-04 Hitachi High-Technologies Corp Specimen processing system
JP2010139502A (en) * 2008-11-17 2010-06-24 Sysmex Corp Transport device, and specimen analyzer using the same
JP2010139501A (en) * 2008-11-17 2010-06-24 Sysmex Corp Transport device, and specimen analyzer using the same
JP2011137680A (en) * 2009-12-28 2011-07-14 Sysmex Corp Sample analyzer and sample rack transport method
JP2016048255A (en) * 2013-06-17 2016-04-07 株式会社日立ハイテクノロジーズ Automatic analyzer
JP2016183984A (en) * 2013-06-17 2016-10-20 株式会社日立ハイテクノロジーズ Automatic analyzing apparatus
JP2017067794A (en) * 2013-06-17 2017-04-06 株式会社日立ハイテクノロジーズ Automatic analyzing apparatus
JP2017067795A (en) * 2013-06-17 2017-04-06 株式会社日立ハイテクノロジーズ Automatic analyzing apparatus

Also Published As

Publication number Publication date
JPH0833400B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
JP5925931B2 (en) Specimen automation system
JPH0348769A (en) Method and device for sample motion
JP7194036B2 (en) Transfer device, sample processing system, and transportation method
CN109212242B (en) Sample rack carrying and transporting device and sample rack transporting method
JP3047571B2 (en) Clinical test equipment
JP3829666B2 (en) Automated analysis system for biological samples
US5814276A (en) Automated blood sample processing system
US5380488A (en) Container feeding system
US6776961B2 (en) Workstation for integrating automated chemical analyzers
JP3720990B2 (en) Sample processing system
JP2006038881A (en) Automatic analyzing system of biological sample
WO2018163674A1 (en) Automated analyzer
US20110256022A1 (en) Automatic analyzer
EP2455763B1 (en) Junction, device and process for transporting sample racks
CN214622684U (en) Automatic sample introduction device
JPH0943249A (en) Specimen conveying system
JP7359927B2 (en) How to transport sample containers
JP2947917B2 (en) Laboratory test system
CN114008459A (en) Automatic sample introduction system, sample analysis system and automatic sample introduction control method
JP4146674B2 (en) Automatic analyzer
JP4729594B2 (en) Automatic analyzer
JP3589020B2 (en) Sample processing system
JP3618067B2 (en) Sample sorter
JP2669541B2 (en) Sample test equipment
JP3740317B2 (en) Automatic analyzer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 14