JPH0348627B2 - - Google Patents

Info

Publication number
JPH0348627B2
JPH0348627B2 JP56170045A JP17004581A JPH0348627B2 JP H0348627 B2 JPH0348627 B2 JP H0348627B2 JP 56170045 A JP56170045 A JP 56170045A JP 17004581 A JP17004581 A JP 17004581A JP H0348627 B2 JPH0348627 B2 JP H0348627B2
Authority
JP
Japan
Prior art keywords
channel
flow
microchannel
obstacles
obstacle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56170045A
Other languages
Japanese (ja)
Other versions
JPS5871570A (en
Inventor
Takashi Hirose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP56170045A priority Critical patent/JPS5871570A/en
Publication of JPS5871570A publication Critical patent/JPS5871570A/en
Publication of JPH0348627B2 publication Critical patent/JPH0348627B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 本発明は、電解液に臭化金属を用いた電解液循
環型積層2次電池に関し、電極板上を流れる電解
液の流量及び流速分布を均一になし、電極板上で
生ずる電解液の流量、流速分布及び濃度の不均一
に基づく過電圧や不均一電着の発生等を防止する
と共に、電解液の流れ圧力の損失を抵減させるよ
うにしたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrolyte circulating type stacked secondary battery using metal bromide as an electrolyte, and the flow rate and flow velocity distribution of the electrolyte flowing on the electrode plate are made uniform, and the electrolyte This prevents the occurrence of overvoltage and non-uniform electrodeposition due to non-uniformity in the flow rate, flow velocity distribution and concentration of the electrolytic solution, which occurs in the electrolytic solution, and also reduces the loss of flow pressure of the electrolytic solution.

従来、この種の金属−臭素電池等の電解液循環
型積層2次電池として、第1図に示すものが知ら
れている。第1図はこの電池の要部を示すもので
あり、電極1とセパレータ2とが交互に積層され
ている。この電極1はこの電極枠3と電極板4と
により構成され、この電極枠3にはマニホールド
5a,5bと多数のボルト貫通用の孔6が穿設さ
れている。セパレータ2の枠にもマニホールド7
a,7b及びボルト貫通用の孔8が穿設されてい
る。前記電極枠3の厚みは電極板4のそれより厚
く、電極枠3に設けたチヤネル9a,9bによつ
てマニホールド5a,5bと、電極板4及びセパ
レータ2により形成される空間とが連通されてい
る。この空間には、例えばマニホールド5bから
電解液が供給され、マニホールド5aから排出さ
れる。上記空間は電極板4の表面と、セパレータ
2との間隔、即ち電極板4の表面から電極枠3の
表面までの距離dが0.5mm〜2.0mmと狭く、又電極
板の縦、横の距離l、wに相当するところが長く
(wは200〜400mm)、このためマニホールド5bか
らの電解液が上記空間を均一に、即ち幅w方向に
均等で平行流となるように流れるようにすること
が困難である。第2図は電極板4上における電解
液の流れが不均一の場合を示し、第3図は理想的
に均一な場合を示す。
BACKGROUND ART Conventionally, as an electrolyte circulation type laminated secondary battery such as a metal-bromine battery of this type, the one shown in FIG. 1 is known. FIG. 1 shows the main parts of this battery, in which electrodes 1 and separators 2 are alternately stacked. The electrode 1 is composed of an electrode frame 3 and an electrode plate 4, and the electrode frame 3 is provided with manifolds 5a, 5b and a large number of holes 6 for passing through bolts. Manifold 7 is also attached to the frame of separator 2.
a, 7b and a hole 8 for passing a bolt through. The thickness of the electrode frame 3 is thicker than that of the electrode plate 4, and the manifolds 5a and 5b are communicated with the space formed by the electrode plate 4 and the separator 2 through channels 9a and 9b provided in the electrode frame 3. There is. An electrolytic solution is supplied to this space from, for example, the manifold 5b, and is discharged from the manifold 5a. In the above space, the distance d between the surface of the electrode plate 4 and the separator 2, that is, the distance d from the surface of the electrode plate 4 to the surface of the electrode frame 3, is as narrow as 0.5 mm to 2.0 mm, and the vertical and horizontal distances of the electrode plate are narrow. The parts corresponding to l and w are long (w is 200 to 400 mm), so it is difficult to make the electrolyte from the manifold 5b flow uniformly through the space, that is, in parallel flow evenly in the width w direction. Have difficulty. FIG. 2 shows a case where the flow of the electrolytic solution on the electrode plate 4 is non-uniform, and FIG. 3 shows a case where it is ideally uniform.

上記電解等の流れを均一ならしめるべく整流す
るものとして、従来チヤネル9a,9bと前記空
間との間に障害物が形成されたマイクロチヤンネ
ルを設けたものが知られている。この障害物を設
けた場合には、流れの均一性を改善することはで
きるが、必ずしも満足できるものではなかつた。
即ち、整流効果を充分なものとするには(a)高流量
状態で使用する、(b)障害物列数を多段にする、(c)
障害物の配列間隔を電解液入口附近で狭くする、
等が必要であり、このためには電解液の流れ圧力
の損失が大きくなり、従つて(a)液循環用ポンプと
して大出力のものを必要とし、(b)電池内圧力増大
に伴う電池構成剤(電極、セパレータ等)の耐久
性が劣化し、(c)電池内圧力増大に伴い安全性の問
題を生じ、(d)電池内で発生するガスを電池外へ導
出させて除去するのが困難になる。
Conventionally, as a device for rectifying the flow of the electrolysis and the like to make it uniform, a device is known in which a microchannel in which an obstacle is formed between the channels 9a, 9b and the space is provided. Although the uniformity of the flow can be improved when this obstacle is provided, it is not always satisfactory.
In other words, in order to obtain a sufficient rectification effect, (a) use in a high flow state, (b) increase the number of obstacle rows, and (c)
Narrow the spacing between obstacles near the electrolyte inlet.
For this purpose, the loss of flow pressure of the electrolyte becomes large, and therefore (a) a high-output pump for liquid circulation is required, and (b) the battery configuration increases due to the increase in internal pressure of the battery. (c) safety issues arise due to increased pressure inside the battery; and (d) gas generated inside the battery is removed by leading it out of the battery. It becomes difficult.

このような欠点を除去するものとして、本出願
人は先にマイクロチヤンネルにおける障害物の長
さを不均一にした電解液循環型積層2次電池を提
案した(特願昭56−742)が、流れ圧力の損失低
減効果は必ずしも充分なものではなかつた。
In order to eliminate such drawbacks, the present applicant previously proposed an electrolyte circulation type laminated secondary battery in which the length of the obstacles in the microchannel was made uneven (Japanese Patent Application No. 1974-742). The effect of reducing flow pressure loss was not necessarily sufficient.

本発明は、上記障害物の長さを不均一にするこ
とに加え、前記マニホールドどマイクロチヤネル
との間のチヤネルとして、マイクロチヤネル側に
拡大したものを用い、流れ圧力の損失を低減させ
ると共に流れの整流効果として充分なものが得ら
れる金属一臭素電解液循環型積層2次電池を提供
するものである。
In addition to making the lengths of the obstacles non-uniform, the present invention uses a channel between the manifold and the microchannel that is expanded toward the microchannel side, thereby reducing the flow pressure loss and the flow. The object of the present invention is to provide a metal monobromine electrolyte circulation type laminated secondary battery that can obtain a sufficient rectifying effect.

以下に、本発明の一実施例を第4図乃至第7図
について詳細に説明する。第4図は前記したよう
な2次電池の電極1における電極枠3を拡大して
部分的に示したものであり、マニホールド5bと
連通したマイクロチヤネル10bが示されてい
る。これらのマニホールド5b及びマイクロチヤ
ネル10−bと対称に対角線には図示していない
他のマニホールド5b及びマイクロチヤネル10
aが設けられている。このマイクロチヤネル10
a,10bには、3列の分割された不均一長さの
障害物L11…L1N,L21…L2N′,L31…L3N″が電極板
4の電解液流出入端面と平行に形成されている。
これらの3列の障害物の分割部w4は電解液の液
出入方向が互いにずれるように設けられ、又マニ
ホールド5a,5bとマイクロチヤネル10a,
10b間には該マイクロチヤネル側の拡大された
チヤネル11が設けられ連通されている。12は
チヤネル11に設けられた複数の障害物を示すも
のである。上記マイクロチヤネル10a、10b
における障害物の寸法は、電極板4の幅w=177
mmのときには第5図に示した数字(mm)のようで
あり、電極板4の電解液流入出端面と障害物L11
…L1Nとの間隔w1=4mmに、障害物L11…L1N
L21…L2N′との間隔w2=2.5mmに、障害物L21
L2N′とL31…L3N″との間隔w3=2.5mmに、又各列の
障害物相互の間隔w4=2mmに、障害物12の径
は2φにそれぞれ定められている。第5図の障害
物の寸法及びw1〜w4、障害物12の径は前記幅
w=177mmの場合であり、これらはwの変化に応
じて変化させ、幅wがw′になつたときは、γ=
w′/wを係数として上記各寸法に乗ずればよい。
An embodiment of the present invention will be described in detail below with reference to FIGS. 4 to 7. FIG. 4 is a partially enlarged view of the electrode frame 3 of the electrode 1 of the secondary battery as described above, and shows the microchannel 10b communicating with the manifold 5b. Diagonally opposite to these manifolds 5b and microchannels 10-b are other manifolds 5b and microchannels 10 that are not shown.
A is provided. This microchannel 10
In a and 10b, three rows of divided obstacles L 11 ...L 1N , L 21 ...L 2N ′, L 31 ...L 3N ″ are parallel to the electrolyte inflow and outflow end surfaces of the electrode plate 4. is formed.
These three rows of dividing parts w4 of obstacles are provided so that the directions of inflow and outflow of the electrolyte are shifted from each other, and the manifolds 5a, 5b and the microchannel 10a,
An enlarged channel 11 on the microchannel side is provided between the channels 10b and communicated with each other. Reference numeral 12 indicates a plurality of obstacles provided in the channel 11. The above microchannels 10a, 10b
The size of the obstacle at is the width of the electrode plate 4 w = 177
mm, the number (mm) is as shown in Fig. 5, and the electrolyte inflow/output end face of the electrode plate 4 and the obstacle L 11
...L 1N and the obstacle L 11 ...L 1N at a distance w 1 = 4 mm.
L 21 …L 2N ′ and the distance w 2 = 2.5 mm, there is an obstacle L 21
The distance w 3 between L 2N ′ and L 31 ...L 3N ″ is set to 2.5 mm, the distance between the obstacles in each row w 4 = 2 mm, and the diameter of the obstacle 12 is set to 2φ. The dimensions of the obstacles, w 1 to w 4 , and the diameter of the obstacle 12 in Figure 5 are for the width w = 177 mm, and these are changed according to changes in w, and when the width w becomes w'. is γ=
It is sufficient to multiply each of the above dimensions by using w'/w as a coefficient.

上記マニホールド5bよりチヤネル11を通過
した液は間隔w1を通つて横方向へ分散される必
要があるので、図面上右方向へゆく程障害物の寸
法Lijが短くなつている。又、間隔w1,w4等は流
れの均一化だけでなく、流動圧損失を左右するの
で、大きな方が望ましいが、面積効率向上等のた
め、上記値にした。
Since the liquid passing through the channel 11 from the manifold 5b needs to be dispersed laterally through the interval w1 , the dimension Lij of the obstacle becomes shorter as it moves to the right in the drawing. Further, since the intervals w 1 , w 4 etc. affect not only the uniformity of the flow but also the flow pressure loss, it is preferable that they are larger, but the above values were set in order to improve the area efficiency and the like.

障害物L21…L2Nは、その寸法L2jが第6図に示
す如く、障害物L11…L1N及び間隔w4との関係で
L2j=1/3(L1j+L1j+1)+w4に定められている。
The dimensions L 2j of the obstacles L 21 ...L 2N are determined by the relationship with the obstacles L 11 ...L 1N and the distance w 4 , as shown in Figure 6.
It is determined that L 2j = 1/3 (L 1j + L 1j+1 ) + w 4 .

但し、寸法がL2jとL2j+1との障害物の間にはL2j
L2j+1とから間隔w4の位置に寸法L′2jの障害物を設
置する。又、障害物L11に関しては上記関係式が
当てはまらない。
However, between obstacles with dimensions L 2j and L 2j+1 , there is a distance between L 2j and L 2j +1.
An obstacle with dimension L′ 2j is installed at a distance w 4 from L 2j+1 . Furthermore, the above relational expression does not apply to the obstacle L11 .

上記障害物L31…L3Nは、その寸法が第6図につ
いて説明した障害物L21…L2Nの場合と同様に、又
は第7図のようにして定められている。第7図に
おいて障害物L31…L3Nの寸法L3j=1/2(L2j+ L2j+1)−w4になつている。
The dimensions of the obstacles L 31 . In FIG. 7, the dimensions of the obstacles L 31 . . . L 3N are L 3 j=1/2 (L 2j + L 2j+1 )−w 4 .

上記障害物L11…L1N,L21…L2N′,L31…L3N″の
うち、L11…L1N及びN21…N2N′は、電解液の流れ
を第4図において右方向へ分配する役を果し、
L31…L3N″は流れを細分化して調流するものであ
る。第5図のように、N31…N3Nは、11mm以内の
寸法であり、前記空間へ拡散する流れ出し口を多
数獲保することによる流れの均一化を果すもので
ある。
Among the above obstacles L 11 ...L 1N , L 21 ...L 2N ′, L 31 ...L 3N ″, L 11 ...L 1N and N 21 ...N 2N ′ prevent the flow of the electrolyte to the right in Fig. 4. It plays the role of distributing to
L 31 ...L 3N '' is used to divide the flow into smaller pieces and regulate the flow.As shown in Figure 5, N 31 ...N 3N has a dimension of 11 mm or less, and has many outlets that diffuse into the space. This helps to equalize the flow by maintaining the flow.

上記説明は、マニホールド5b側についてのも
のであるがマニホールド5a側についても障害物
等が同様の形で線対称で配置されている。
Although the above description is about the manifold 5b side, obstacles and the like are arranged in a similar manner and line-symmetrical on the manifold 5a side as well.

上記障害物の配列等については、参考写真1に
も示されている。又、これらの障害物によつて流
れが均一になることは参考写真2〜4に示されて
いる。写真2は流量が100ml/minの低速の場合
を示し、写真3は150ml/minの中速、写真4は
200ml/minの高速の場合を示し、略々全流速域
において平行整流となることがわかる。
The arrangement of the obstacles mentioned above is also shown in Reference Photo 1. Reference photos 2 to 4 also show that these obstacles make the flow uniform. Photo 2 shows the flow rate at a low speed of 100ml/min, Photo 3 shows the medium speed of 150ml/min, and Photo 4 shows the flow rate at a low speed of 100ml/min.
The case of a high speed of 200 ml/min is shown, and it can be seen that parallel rectification occurs in almost the entire flow rate range.

前記電解液がマニホールド5bより出てゆく間
での電解液を一定流量で流すために要する力、及
び消費する力を圧力損失で水銀柱mmHgで示せば、
この損失の大きさはチヤネル形状及びマイクロチ
ヤネル形状に依存する。前記距離d=1mmについ
て、この圧力損失を測定した結果を第8図乃至第
12図に示す。これらの図から明らかなように、
チヤネルによる損失と、マイクロチヤネルに平行
極間部による損失を加算したものとを比較した場
合、後者(2〜2′で示す値)の大きさ前記距離d
に大きく依存し、マイクロチヤネルの形状にはそ
れほど依存しない(マイクロチヤネルの損失は小
さい)。一方、前者(1〜2、2′〜1′で示す)は
距離dに影響を受けると同時にその形状によつて
も変化し、第9図及び第10図に示すタイプのチ
ヤネルのものより、第8図に示す本発明のタイプ
のチヤネル、即ちマイクロチヤネル側に拡大した
形状のチヤネルの場合には損失が少いことがわか
る。更に第11図に示すタイプのチヤネルでは損
失が一層大きくなる。
If the force required and the power consumed to flow the electrolytic solution at a constant flow rate while the electrolytic solution exits the manifold 5b are expressed as pressure loss in mmHg of mercury, then
The magnitude of this loss depends on the channel shape and microchannel shape. The results of measuring the pressure loss for the distance d=1 mm are shown in FIGS. 8 to 12. As is clear from these figures,
When comparing the loss due to the channel and the sum of the loss due to the microchannel and the parallel pole part, the magnitude of the latter (value indicated by 2 to 2') is the distance d
and less dependent on the shape of the microchannel (microchannel losses are small). On the other hand, the former (indicated by 1 to 2, 2' to 1') are affected by the distance d and also change by its shape, and are more It can be seen that the loss is small in the case of the channel of the type of the present invention shown in FIG. 8, that is, the channel expanded toward the microchannel side. Additionally, a channel of the type shown in FIG. 11 has even greater losses.

上記の如く、本発明は電解液の流れを均一にす
ることができ、且つこの流れ圧力を低減すること
ができる。
As mentioned above, the present invention can uniformize the flow of electrolyte and reduce the flow pressure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の示す電解液循環型積層2次電
池の要部の分解斜視図、第2図及び第3図は電極
板における電解液の流れを説明するための説明
図、第4図は本発明の一実施例を示す要部の正面
図、第5図は第4図のものにおける障害物の方法
を示す正面図、第6図及び第7図は第4図のもの
の障害物の寸法算出方法を説明する説明図、第8
図乃至第11図は電解液の流れ圧力損失の測定結
果を示すグラフであり、第8図は本発明、第9図
乃至第11図は従来例によるものである。第12
図は第8図の場合の測定データを示す図表であ
る。 1……電極、3……電極枠、4……電極板、5
a,5b……マニホールド、10b……マイクロ
チヤネル、11……チヤネル、12……障害物、
L11…L1N,L21…L2N′,L31…L3N″……障害物。
Fig. 1 is an exploded perspective view of the main parts of a conventional electrolyte circulation type stacked secondary battery, Figs. 2 and 3 are explanatory diagrams for explaining the flow of electrolyte in the electrode plate, and Fig. 4 is a front view of the main part showing one embodiment of the present invention, FIG. 5 is a front view showing the method of obstacles in the one in FIG. 4, and FIGS. 6 and 7 are the front views of the obstacles in the one in FIG. Explanatory diagram explaining the dimension calculation method, No. 8
11 are graphs showing the measurement results of the flow pressure loss of the electrolytic solution, FIG. 8 is for the present invention, and FIGS. 9 through 11 are for the conventional example. 12th
The figure is a chart showing measurement data in the case of FIG. 1... Electrode, 3... Electrode frame, 4... Electrode plate, 5
a, 5b...manifold, 10b...microchannel, 11...channel, 12...obstacle,
L 11 …L 1N , L 21 …L 2N ′, L 31 …L 3N ″……Obstacle.

Claims (1)

【特許請求の範囲】 1 矩形状の電極枠内に電極板を設け、この電極
枠に一対のマニホールドを対角線位置に設け、該
各マニホールドと連通してチヤンネル及びマイク
ロチヤンネルを各々対称に設け、 前記一方のマニホールドから一方のチヤンネル
及びマイクロチヤンネルを介して臭化金属から成
る電解液を電極枠内に流入せしめると共に他方の
マイクロチヤンネル及びチヤンネルを介して他方
のマニホールドに流出せしめるように構成した電
解液循環型積層2次電池において、 前記チヤンネルの流路幅をマイクロチヤンネル
側がマニホールド側より幅広にして形成すると共
に該チヤンネル内に流通方向及び流路幅方向に対
して各々複数個の障害突起を設け、 前記マイクロチヤンネルの流路幅方向と平行な
方向に複数列の障害物を間隔を介して設けると共
に、更に前記障害物のマイクロチヤンネルの流路
幅方向の長さをマニホールド側から電極板方向に
おいて、順次短い長さとなるように分割して設け
て、各分割障害物間に流路を形成し、且つ各列に
おける流路が他の列の障害物と対向する如く成し
て前記マイクロチヤンネルを構成し、 前記障害物のうち、前記チヤンネルに対向する
障害物の長さ寸法をチヤンネルの開口幅寸法より
大きい寸法として設け、前記各障害物の長さ寸法
の関係を、マイクロチヤンネルの流路幅方向及び
流路方向においても前記チヤンネルに対向する障
害物の長さ寸法を最も長い寸法にし、 且つチヤンネルに対向する列の各障害物をチヤ
ンネルからマイクロチヤンネルの流路幅方向に遠
ざかるにつれて順次短い寸法にして構成したこと
を特徴とする金属−臭素電解液循環型積層2次電
池。
[Scope of Claims] 1. An electrode plate is provided in a rectangular electrode frame, a pair of manifolds are provided in the electrode frame at diagonal positions, and channels and microchannels are provided symmetrically in communication with each manifold, An electrolyte circulation system configured to cause an electrolytic solution consisting of metal bromide to flow into the electrode frame from one manifold through one channel and a microchannel, and to flow out into the other manifold through the other microchannel and a channel. type stacked secondary battery, the channel is formed so that the channel width is wider on the microchannel side than on the manifold side, and a plurality of obstruction protrusions are provided in the channel in each of the flow direction and the flow channel width direction, A plurality of rows of obstacles are provided at intervals in a direction parallel to the flow width direction of the microchannel, and the lengths of the obstacles in the flow width direction of the microchannel are sequentially arranged from the manifold side toward the electrode plate. The microchannel is formed by dividing the obstacles into short lengths, forming a flow path between each divided obstacle, and making the flow path in each row face the obstacles in the other row. , Among the obstacles, the length of the obstacle facing the channel is set to be larger than the opening width of the channel, and the relationship between the length of each obstacle is determined in the flow path width direction of the microchannel and Also in the flow path direction, the length of the obstacle facing the channel is set to be the longest length, and each obstacle in the row facing the channel is set to have a shorter length as it moves away from the channel in the flow width direction of the microchannel. 1. A metal-bromine electrolyte circulation type laminated secondary battery comprising:
JP56170045A 1981-10-26 1981-10-26 Electrolyte circulation type layer-built secondary battery Granted JPS5871570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56170045A JPS5871570A (en) 1981-10-26 1981-10-26 Electrolyte circulation type layer-built secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56170045A JPS5871570A (en) 1981-10-26 1981-10-26 Electrolyte circulation type layer-built secondary battery

Publications (2)

Publication Number Publication Date
JPS5871570A JPS5871570A (en) 1983-04-28
JPH0348627B2 true JPH0348627B2 (en) 1991-07-25

Family

ID=15897587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56170045A Granted JPS5871570A (en) 1981-10-26 1981-10-26 Electrolyte circulation type layer-built secondary battery

Country Status (1)

Country Link
JP (1) JPS5871570A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087994Y2 (en) * 1993-12-25 1996-03-06 優 岡崎 Press equipment for scrap metal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4870035A (en) * 1971-12-27 1973-09-22
JPS4913637A (en) * 1972-03-24 1974-02-06

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4870035A (en) * 1971-12-27 1973-09-22
JPS4913637A (en) * 1972-03-24 1974-02-06

Also Published As

Publication number Publication date
JPS5871570A (en) 1983-04-28

Similar Documents

Publication Publication Date Title
US9761890B2 (en) Redox flow battery with anisotropic electrode layer
DE112006002851B4 (en) Gas separator for fuel cells and fuel cell
US3814631A (en) Framed electrodes containing means for supplying or draining liquid along the edge of an electrode
US4124478A (en) Thin sheet apparatus and a fluid flow device
JP5973713B2 (en) Interdigitated finger type co-extrusion
JP5992162B2 (en) Method for manufacturing an electrode structure
JPH0562667A (en) Inlet and outlet manifold for battery
MXPA04004279A (en) Fuel cell fluid flow field plates.
US10381660B2 (en) Separator for fuel cell
BR9913371A (en) Bipolar multicellular electrochemical reactor with separate membranes
JPS5927461A (en) Electrode for layer-built secondary battery
JPH0348627B2 (en)
JP5912579B2 (en) Fuel cell
JP2570771B2 (en) Fuel cell cooling method
JPH03266365A (en) Separator of solid electrolytic type fuel cell
CN109585782A (en) Method that is a kind of while producing Multiple Type electrodes of lithium-ion batteries and extrusion coated device
WO2024045669A1 (en) Fuel cell and bipolar plate assembly thereof
JPS6039186A (en) Separate electrochemical assembly
JPH0831434A (en) Solid electrolyte fuel cell
JPS5830074A (en) Fuel cell
CN108259359A (en) A kind of Double-layer water cold type router device
CN217768432U (en) Flow field polar plate with variable flow channel size for hydrogen fuel cell
CN101807679B (en) Fuel cell structure and separator plate for use therein
JP2601808B2 (en) Electrolyte circulation type secondary battery
JPH0370349B2 (en)