JPS5871570A - Electrolyte circulation type layer-built secondary battery - Google Patents

Electrolyte circulation type layer-built secondary battery

Info

Publication number
JPS5871570A
JPS5871570A JP56170045A JP17004581A JPS5871570A JP S5871570 A JPS5871570 A JP S5871570A JP 56170045 A JP56170045 A JP 56170045A JP 17004581 A JP17004581 A JP 17004581A JP S5871570 A JPS5871570 A JP S5871570A
Authority
JP
Japan
Prior art keywords
microchannel
manifold
obstacles
channel
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56170045A
Other languages
Japanese (ja)
Other versions
JPH0348627B2 (en
Inventor
Takashi Hirose
尚 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP56170045A priority Critical patent/JPS5871570A/en
Publication of JPS5871570A publication Critical patent/JPS5871570A/en
Publication of JPH0348627B2 publication Critical patent/JPH0348627B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To reduce the loss of a flow pressure and obtain a sufficient rectifying effect of flow by making uneven each length of the obstacles in a microchannel and using a channel widened towards the microchannel side as a channel between a manifold and the microchannel. CONSTITUTION:Another manifold 5b and microchannel which are not shown in the figure are formed on the diagonal line in symmetry with a manifold 5b and a microchannel 10b. In the microchannel 10b, the obstacles L11...L1N, L21... L2N', and L31...L3N' which are divided in three lines and each of which has uneven length are formed in parallel to the electrolyte flowing-in out edge surface on an electrode plate 4. The dividion part W4 between the obstacles in three lines is arranged so that the directions of electrolyte flowing-in/out are shifted each other, and the channel 11 widened towards the microchannel side is formed to allow communication between the manifold 5b and the microchannel 10b.

Description

【発明の詳細な説明】 )本発明は 電解液循環層積層2次電池に関し極板上t
Rれる電解液の流量及び流速分布を均になし、電極板上
で生ずる電解液の流量、流速分布及び鰻度の不均一に基
づく過電圧や不均一電着の発生等【防止すると共に、電
解液の流れ圧力の損失を低減させるようにしたものであ
る0従米、この種の金属−ハロゲン電池等の電解液循m
aII積層2次電池として、第1図に示すものが知られ
ている。第1図はこの電池の要部を示すものでTop、
電極1とセパレータ2とが交互に積層されている。この
電極1は電極枠3と電極板4とa 、+ 7 b及びボ
ルト貫通用の孔8が穿設されてい一レータ2により形成
される空間とが連通されている。この空間には1例えば
マニホールド5bから電解液が供給され、マニホールド
5mから排出される0上記空間は電極板4の表面と、セ
パレータ2との間隔、即ち電極板4の表面から電極枠3
の表面までの距離dが0,5 mn 〜2.Omm  
と狭く。
[Detailed Description of the Invention]) The present invention relates to an electrolyte circulating layer stacked secondary battery.
It evens out the flow rate and flow velocity distribution of the electrolytic solution being heated, and prevents the occurrence of overvoltage and uneven electrodeposition due to unevenness in the flow rate, flow velocity distribution, and density of the electrolytic solution generated on the electrode plate. Electrolyte circulation of this type of metal-halogen battery is designed to reduce flow pressure loss.
As an aII stacked secondary battery, the one shown in FIG. 1 is known. Figure 1 shows the main parts of this battery.
Electrodes 1 and separators 2 are alternately stacked. In this electrode 1, an electrode frame 3, an electrode plate 4, a, +7, and a hole 8 for passing through a bolt are bored, and a space formed by the electrode 2 is communicated. In this space, 1, for example, an electrolyte is supplied from the manifold 5b, and is discharged from the manifold 5m.
The distance d to the surface is 0.5 mn to 2. Omm
and narrowly.

又電極板の縦、横の距離#、wK相尚するところが長<
twは200〜400nm入このためマニホールド5b
からの電解液が上記空間を均一に。
Also, the vertical and horizontal distances of the electrode plates # and wK are long <
tw is 200 to 400 nm, so manifold 5b
The electrolyte from will even out the space above.

即ち幅W方向に均等で平行流となるように流れるように
することが困難である。142図は電極板4上における
電解液の流れが不均一の場合を示し。
That is, it is difficult to make the flow uniform and parallel in the width W direction. Figure 142 shows a case where the flow of the electrolytic solution on the electrode plate 4 is non-uniform.

183図は理想的に均一な場合を示す。Figure 183 shows an ideally uniform case.

上記電解液の流れを均一ならしめるべく整流するものと
して、従来チャネル9m、9bと前記空間との関に障害
物が形成されたマイクロチャンネルを設けたものが知ら
れている0この障害物【設して大出力のものを必畳とし
、 Ib)電池内圧力増大に伴う電池構成材(電極、セ
パレータ等)の耐久性が劣化し、IC)電池内圧力増大
に伴い安全性の問題を生じ、 Id)電池内で発生する
ガスを電池外へ導出させて除去するのが困JlliKな
る。
Conventionally, as a device for rectifying the flow of the electrolytic solution to make it uniform, a microchannel in which an obstacle is formed between the channels 9m and 9b and the space is known. Ib) The durability of the battery components (electrodes, separators, etc.) deteriorates as the internal pressure increases; IC) The increased internal pressure causes safety issues; Id) It is difficult to remove the gas generated inside the battery by leading it out of the battery.

このような欠点を除去するものとして1本出願人は先に
マイクロチャネルにおける障害物の長さを不均一にした
電解液循環型積層2次電池を提案した(4I願昭56−
742)が、流れ圧力の損失低減効果は必ずしも充分な
ものではなかった。
In order to eliminate such drawbacks, the present applicant previously proposed an electrolyte circulation type laminated secondary battery in which the length of obstacles in the microchannel was made uneven (4I Application No. 1983-
742), but the effect of reducing flow pressure loss was not necessarily sufficient.

本発明は、上記障害物の長さt不均一にすることに加え
、前記マニホールドとマイクロチャネルとの間のチャネ
ルとして、マイクロチャネル側に拡大したものを用い、
流れ圧力の損失を低減させると共に流れの整流効果とし
て充分なものが得られる電解液循環型積層2次電池を提
供するものである。
In addition to making the length t of the obstacles non-uniform, the present invention uses a channel between the manifold and the microchannel that is expanded toward the microchannel side,
An object of the present invention is to provide an electrolyte circulation type stacked secondary battery that can reduce flow pressure loss and provide a sufficient flow rectification effect.

−7+ A3次電池の電極1における電極枠6を拡大して部分的
に示したものでるシ、マニホールド5bと連通し九マイ
クロチャネル10bが示されている〇1’D rtらの
マニホールド5b及びマイクロチャネルケラれている。
-7+ This is a partially enlarged view of the electrode frame 6 of the electrode 1 of the A tertiary battery, and the nine microchannels 10b communicating with the manifold 5b are shown. Channel vignetting.

このマイクロチャネル10a、10tBcは、3列の分
割さnた不拘−長さの障害物Ltt −LIN 、 L
*I++1LIN’、LSI …Ls1/が電極板4の
電解液流出入端面と平行に形成されている。これらの3
列の障害物の分割部w4は電解液の液出入方向が互いに
ずれるように設けられ、又マニホールド5m、5bとl
イ90チャネル10■、10b間には咳マイクロチャネ
ル何の拡大されたチャネル11が設けられ連通さ1てい
る。12にチャネル11に設けらrL次複数の障害物を
示すものて6る。上記マイクロチャネル10a、10b
における障害物の寸法は、電極板40幅w = 177
mのときKは第5図に示した数字L mn )  のよ
うであり、電極板4の電解液流人出肩面と障害物り目”
°LIMとの間隔wt=4mnに、障害物Lll’・・
LlMと Let ”” l1mM’ との間隔W雪=
 2,5 mn yC、障害物Lsヒ” LIM’とL
s I”・Lm)I’との間隔Ws−2,5の径は前記
幅@=177nm の場合であり、こVらは「の変化に
応じて変化させ1幅Wが−になったときは 1 = w
l 7ぎ tgk数として上記各寸法に乗ずれによい。
The microchannels 10a, 10tBc are divided into three rows of obstacles Ltt-LIN, L
*I++1LIN', LSI...Ls1/ are formed parallel to the electrolyte inflow/outflow end face of the electrode plate 4. These 3
The divided parts w4 of the row obstacles are provided so that the directions of inflow and outflow of the electrolyte are shifted from each other, and the manifolds 5m, 5b and l
An enlarged channel 11 of the cough microchannel is provided between the channels 10 and 10b and communicates with each other. 12 shows a plurality of rL-order obstacles provided in the channel 11. The above microchannels 10a, 10b
The size of the obstacle in is the electrode plate 40 width w = 177
When m, K is the number L mn ) shown in FIG.
At the distance wt=4mn from °LIM, there is an obstacle Lll'...
Distance between LlM and Let ``''l1mM' =
2,5 mn yC, obstacle Lshi"LIM' and L
The diameter of the distance Ws-2,5 from s I"・Lm)I' is for the above width @ = 177 nm, and these V are changed according to the change of ", and when the width W becomes - is 1 = w
It is good for multiplying each of the above dimensions as a tgk number.

流れの均一化、′eけではなく、流動圧損失を左右する
のて、大きな方が望ましいが2面積効率向上等のため、
上記値にした。
A larger size is desirable because it affects the flow pressure loss, not just the uniformity of the flow, but in order to improve the two-area efficiency, etc.
The above value was set.

障害物Lll・・・L、Mは、七の寸法り匂が第6図に
示す如く、障害物り目・・・LIN及び間隔w1  と
の関係でLSI −1(Lsj + L+j+s ) 
十wa  に定めらrている0但し1寸法がLmjとL
tj++との障害−の間にはL杓とLsj+*とから間
隔W4  の位置に寸法L’ljの障害物を設置する。
Obstacles Lll...L, M are LSI -1 (Lsj + L+j+s) in relation to obstacle Lll...L and M, as shown in Figure 6.
However, the dimensions are Lmj and L.
Between the obstacle tj++ and the obstacle -, an obstacle having a dimension L'lj is installed at a distance W4 from the L scoop and Lsj+*.

又、障害物Lllに関しては上記関係式が当てはまらな
い。
Furthermore, the above relational expression does not apply to the obstacle Lll.

上記障害物LsI・・・Lm)rは、その寸法が第6図
について説明し良障害物Lx>・・・ILI、の場合と
同様に。
The dimensions of the obstacles LsI...Lm)r are the same as in the case of the good obstacles Lx>...ILI as described with reference to FIG.

又#:tj17図のようにして定められているO第7因
においで障害物La!・・・Llliの寸法Lsi =
7 L LIN十り嘗j4−> ) −W4  になっ
ている。
Also #: tj In the seventh factor O determined as shown in Figure 17, the obstacle La! ... Llli dimension Lsi =
7 L LIN 4-> ) -W4.

上記陣書吻Lll 0” LIN 、 L雪l・・°L
雪H’、Lm+パ。
Said Jinsho Lll 0” LIN, L snow l...°L
Snow H', Lm+Pa.

のであるがマニホールド5alllKついても障害−勢
が同様の形で線対称で配置されている。
However, for the manifold 5allK, the fault forces are arranged in a similar manner with line symmetry.

上記障害物の配列等については、参考写真1にも示され
ている。又、これらの障害物によって流れか均一になる
ことは参考写真2〜4に示されているC写真2昧流量が
’ OOwe/、s@の低速の場合を示し、写真3祉1
50iの中速、写真4は200゛←の高速の場合を示し
、略々全流速域において量前整流となることがわかる。
The arrangement of the obstacles mentioned above is also shown in Reference Photo 1. In addition, these obstacles make the flow uniform, as shown in reference photos 2 to 4.
Photo 4 shows the case of a medium speed of 50i and a high speed of 200゛←, and it can be seen that pre-rectification occurs in almost the entire flow velocity range.

) 、1、−記電解液がi二ホールド5bよシ出てゆく間で
の電解液を一定流量で流すために要する力、及び消費す
る力を圧力損失で水蒙柱nlI!IHgで示せば、この
損失の大きさはチャネル形状及びマイクロチャネル形状
に依存するC前記距離d = 1 mmについて、この
圧力損失をlit定した結果を第8図乃至倉・後者(2
〜2′で示す値)の大きさは前記距離dに大きく依存し
、マイクロチャネルの形状にはそれほど依存しない(マ
イクロチャネルの損失拡小さい)〇一方、前者(1〜2
.2′〜1′で示す)は距離dK−影響を受けると同時
にその形状に1っで本変化し、第9図及びJIIl!1
0図に示すタイプのチャネルのものより、[8図に示す
本発明のタイプのチャネル、即ちマイクロチャネIvl
&に拡大した形状のチャネルの場合KFi損失が少いこ
とがわかる0更にllm11図に示すタイプのチャネl
しでは、厄ことかでき、且つこの流れ圧力を低減するこ
とができるものである0
), 1, - The force required to flow the electrolytic solution at a constant flow rate and the power consumed while the electrolytic solution exits the i-hold 5b is calculated as water pressure loss nlI! In terms of IHg, the magnitude of this loss depends on the channel shape and microchannel shape. Figure 8 shows the results of determining the pressure loss for the distance d = 1 mm as shown in Figure 8 to Kura-Later (2).
The magnitude of the former value (value indicated by
.. 2' to 1') is affected by the distance dK- and at the same time changes its shape, as shown in FIG. 9 and JIIl! 1
0, the channel of the type of the invention shown in FIG.
It can be seen that the KFi loss is small in the case of a channel with a shape enlarged to &.
Then, this flow pressure can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

w41図は従来偽を示す電解液循環型積層2次電池の1
!部の分解斜視図、第211及び第5図は電極@におけ
る電解液の流れを説明するための説明図。 第415!Qは本発明の一実施例を示す要部の正面図。 畠5図は第4図のものにおける障害物の方法を示す正面
図、第6図及び#17図はIR4図のものの障、!物の
寸法算出方法を説明する説明図、あ8図乃a811図に
電解液の流れ圧力損失の測定結果を、2よj 9” 5
7 ”t’“パ1°1“*QI’jll、 JR?lW
′11図は従来例によるものである。第12図は第8図
の場合の測定データを示す固嵌である。 1・・電極、3−Φ電極枠、4・・電極板、5a、5b
−・マニホールl/、IQb・・マイクロチャネル、1
1・・チャネlし、12・・障害物、L’ヒ” LIH
、LIN =・Lui’、 Law −LsH”・・障
害物。 特許出願人 工業技術院長 石@賦− 第1図 第2図    9s3図 竿4図 第8図 第9図 第10図 第11図
Figure w41 is one of the conventional electrolyte circulation type stacked secondary batteries that show false results.
! FIG. 211 and FIG. 5 are explanatory diagrams for explaining the flow of electrolyte in the electrode @. 415th! Q is a front view of essential parts showing one embodiment of the present invention. Figure Hatake 5 is a front view showing the method of obstacles in Figure 4, Figures 6 and #17 are obstacles in Figure IR4,! Explanatory diagrams explaining how to calculate the dimensions of objects, Figure A8 to Figure A811 show the measurement results of the flow pressure loss of the electrolyte.
7 "t'"Pa1°1"*QI'jll, JR?lW
Figure '11 is based on a conventional example. FIG. 12 shows the measurement data for the case of FIG. 8 with a tight fit. 1... Electrode, 3-Φ electrode frame, 4... Electrode plate, 5a, 5b
-・Manihole l/, IQb・・Microchannel, 1
1...Channel, 12...Obstacle, L'HI"LIH
, LIN =・Lui', Law -LsH"・・Obstacle. Patent applicant: Agency of Industrial Science and Technology

Claims (1)

【特許請求の範囲】[Claims] 電極枠内に電極板倉設け、この電極枠にはマニホールド
を対角線に配設すると共に、咳マニホールドと連通した
マイクロチャネルをそれぞれ対称の分割部を電解液の液
由入方向が互いにずれるように設け、前記マニホールド
とマイクロチャネル間ヲ皺マイクロチャネル側に拡大し
たチャネルによシ連通し、咳チャネルKa複数の障害物
を形成したことを特徴とする電解液循*ai積層2次電
池。
An electrode plate is provided in the electrode frame, a manifold is arranged diagonally in the electrode frame, and a microchannel communicating with the cough manifold is provided with symmetrical divided portions such that the directions of electrolyte inflow are shifted from each other, An electrolyte circulation*ai laminated secondary battery, characterized in that the manifold and the microchannel are communicated through a channel enlarged toward the wrinkled microchannel side, and a plurality of obstacles are formed in the cough channel Ka.
JP56170045A 1981-10-26 1981-10-26 Electrolyte circulation type layer-built secondary battery Granted JPS5871570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56170045A JPS5871570A (en) 1981-10-26 1981-10-26 Electrolyte circulation type layer-built secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56170045A JPS5871570A (en) 1981-10-26 1981-10-26 Electrolyte circulation type layer-built secondary battery

Publications (2)

Publication Number Publication Date
JPS5871570A true JPS5871570A (en) 1983-04-28
JPH0348627B2 JPH0348627B2 (en) 1991-07-25

Family

ID=15897587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56170045A Granted JPS5871570A (en) 1981-10-26 1981-10-26 Electrolyte circulation type layer-built secondary battery

Country Status (1)

Country Link
JP (1) JPS5871570A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737489U (en) * 1993-12-25 1995-07-11 優 岡崎 Press equipment for scrap metal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4870035A (en) * 1971-12-27 1973-09-22
JPS4913637A (en) * 1972-03-24 1974-02-06

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4870035A (en) * 1971-12-27 1973-09-22
JPS4913637A (en) * 1972-03-24 1974-02-06

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737489U (en) * 1993-12-25 1995-07-11 優 岡崎 Press equipment for scrap metal

Also Published As

Publication number Publication date
JPH0348627B2 (en) 1991-07-25

Similar Documents

Publication Publication Date Title
US8211564B2 (en) Middle or large-sized battery pack case providing improved distribution uniformity in coolant flux
US9614206B2 (en) Middle or large-sized battery pack case providing improved distribution uniformity in coolant flux
US4169917A (en) Electrochemical cell and separator plate thereof
DE102011015556B4 (en) Secondary battery module
CN101142342A (en) Flow field plate arrangement
DE102014102578A1 (en) Liquid cooled battery module
JP7346777B2 (en) Bipolar plate for electrochemical systems
JP2000504140A (en) Fluid-cooled fuel cell with distribution passage
CA2477467A1 (en) Fuel cell flow field plate
DE102011015557A1 (en) Device and system for thermal management of a secondary battery
EP2023432B1 (en) Fuel cell
JPS5871570A (en) Electrolyte circulation type layer-built secondary battery
JPH01105474A (en) Cooling method for fuel cell
JPH02129858A (en) Cooling plate for fuel cell
JP4887285B2 (en) Fuel cell reactant flow area to maximize utilization of planar graphics
JP3219600B2 (en) Solid oxide fuel cell
CN216563226U (en) Protruding vortex structure based on stereoplasm frame gas flow field access &amp; exit
CN214588921U (en) Double polar plate with inclination angle hexagon rib proton exchange film fuel cell
US10923740B2 (en) Fuel cell separator, fuel cell joint separator, and power generation cell
JPS5830074A (en) Fuel cell
CN206541889U (en) Hydrogen fuel cell, automobile, unmanned plane and ship
CN217691473U (en) Battery pack
KR20200084404A (en) Cooling panel for battery module of electric vehicles
JPH07135005A (en) Fuel cell
CN210092223U (en) Bipolar plate with novel micro-nano-level airflow channel and fuel cell thereof