JPH0370349B2 - - Google Patents

Info

Publication number
JPH0370349B2
JPH0370349B2 JP56000742A JP74281A JPH0370349B2 JP H0370349 B2 JPH0370349 B2 JP H0370349B2 JP 56000742 A JP56000742 A JP 56000742A JP 74281 A JP74281 A JP 74281A JP H0370349 B2 JPH0370349 B2 JP H0370349B2
Authority
JP
Japan
Prior art keywords
electrode
obstacles
electrode plate
obstacle
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56000742A
Other languages
Japanese (ja)
Other versions
JPS57115772A (en
Inventor
Toshihiko Ochiai
Takashi Hirose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP56000742A priority Critical patent/JPS57115772A/en
Publication of JPS57115772A publication Critical patent/JPS57115772A/en
Publication of JPH0370349B2 publication Critical patent/JPH0370349B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 本発明は、電極上を流れる電解液の流量、流速
分布等を均一にした液循環型積層電池に関するも
ので、電極上に生ずる電解液の流量、流速分布、
濃度等の不均一に基づく過電圧や不均一電着の発
生等の諸問題を解決した液循環型積層電池を提供
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid circulation type stacked battery in which the flow rate, flow velocity distribution, etc. of the electrolytic solution flowing on the electrodes are made uniform.
The present invention provides a liquid circulation type stacked battery that solves various problems such as overvoltage and non-uniform electrodeposition caused by non-uniform concentration.

第1図は従来の液循環型積層電池の分解斜視図
である。図において、1は電極枠11を備えた電
極で、電極枠11の上方と下方にはマニホールド
13,15及びこのマニホールド13,15から
電極板1aに通ずるチヤンネル14,16が設け
られている。2は枠21を備えたセパレータで、
それぞれマニホールド23,25が設けられてい
る。3,3aは枠31,31aを備えた集電々極
である。電極1とセパレータ2いとは交互に集積
され、集電々極3,3a間に介装されている。な
お、集電電極3aにもそれぞれマニホールド、チ
ヤンネル及び端子37aが設けられている。4,
4aは集電電極3,3aの外側に配置された端板
である。6は端板4aに設けた陰極液入口、7は
陽極液入口、8は端板4に設けた陽極液出口、9
は陰極液出口で、これらは各枠に設けた通し穴1
2,22に貫挿された締付けボルト5により一体
に結合されている。
FIG. 1 is an exploded perspective view of a conventional liquid circulation type stacked battery. In the figure, reference numeral 1 denotes an electrode having an electrode frame 11, and manifolds 13, 15 and channels 14, 16 leading from the manifolds 13, 15 to the electrode plate 1a are provided above and below the electrode frame 11. 2 is a separator equipped with a frame 21;
Manifolds 23 and 25 are provided, respectively. Reference numerals 3 and 3a are current collector electrodes provided with frames 31 and 31a. Electrodes 1 and separators 2 are stacked alternately and interposed between current collector electrodes 3 and 3a. Note that the current collecting electrode 3a is also provided with a manifold, a channel, and a terminal 37a, respectively. 4,
4a is an end plate arranged on the outside of the current collecting electrodes 3, 3a. 6 is a catholyte inlet provided on the end plate 4a, 7 is an anolyte inlet, 8 is an anolyte outlet provided on the end plate 4, 9
is the catholyte outlet, and these are the through holes 1 provided in each frame.
2 and 22 are integrally connected by a tightening bolt 5 inserted therein.

上記のように構成した電池においては、電極板
1及び集電電極3,3aとセパレータ2間の距離
が0.6〜3mm程度できわめて狭いため、電極とセ
パレータ間を流れる電解液は、第2図a,b,c
に示すような分布となり、電極板の中央又は端部
のみが流速が速くなる傾向がある。このような流
量及び流速分布の不均一は、電解液の出口から液
の貯蔵槽(図示せず)入口までの落差(△h)、
液送パイプの径及び長さ等に影響されることが実
験で知られている。このため、これら諸要因を解
決すべく、落差(△h)、パイプの径、パイプの
長さ等に種々改良を加えているが、それにも限度
があり必ずしも満足すべき結果が得られなかつ
た。したがつて、上記諸要因によつて生ずる流れ
の乱れがそのまゝマニホールドからチヤンネルを
径て電極面に加えられるため、第2図に示すよう
な流量、流速の不均一分布が生じ、このため過電
圧や不均一電着等の好しくない問題が発生してい
た。
In the battery configured as described above, the distance between the electrode plate 1 and current collecting electrodes 3, 3a and the separator 2 is extremely narrow, approximately 0.6 to 3 mm, so the electrolyte flowing between the electrodes and the separator is as shown in Figure 2a. ,b,c
The distribution is as shown in , and the flow velocity tends to be faster only at the center or edge of the electrode plate. Such non-uniformity in flow rate and flow velocity distribution is caused by the head difference (△h) from the electrolyte outlet to the inlet of the liquid storage tank (not shown);
Experiments have shown that this is influenced by the diameter, length, etc. of the liquid delivery pipe. Therefore, in order to solve these various factors, various improvements have been made to the head (△h), pipe diameter, pipe length, etc. However, there are limits to these improvements, and satisfactory results have not always been obtained. . Therefore, the flow turbulence caused by the above factors is directly applied to the electrode surface from the manifold through the channel, resulting in non-uniform distribution of flow rate and flow velocity as shown in Figure 2. Undesirable problems such as overvoltage and non-uniform electrodeposition occurred.

本発明は、上記のような従来の問題点を解決す
るためになされたもので、電極枠のチヤンネルと
電極板との間に障害物を設け、これにより電極板
に流入する電極液を整流して、流量、流速の分布
を均一にするようにしたものである。以下図面に
より本発明を説明する。
The present invention was made in order to solve the above-mentioned conventional problems, and it is possible to provide an obstacle between the channel of the electrode frame and the electrode plate, thereby rectifying the electrode liquid flowing into the electrode plate. In this way, the distribution of flow rate and flow velocity is made uniform. The present invention will be explained below with reference to the drawings.

第3図は本発明実施例の要部を示す正面図、第
4図はそのA−A拡大断面図である。両図におい
て、1は電極板、11は電極枠、13はマニホー
ルドで、電極枠11の対角線上に設けられてい
る。14はチヤンネルでマニホールド13と連通
している。17は電極枠11の電極板1a側に設
けたマイクロチヤンネルで、チヤンネル14と平
行にかつ電極枠11の表面と同じ高さまで突出し
た多数の障害物(以下オブスタクルという)18
a,18b,18c(以下オブスタクルを総称し
て18ということがある)と、各オブスタクル1
8a,18b,18cの両側に設けられた溝19
a,19b,19cとからなつており、溝19a
はチヤンネル14と連通している。ポンプ(図示
せず)によつて送られた電解液は、マニホールド
13、チヤンネル14を経てマイクロチヤンネル
17に送り込まれ、オブスタクル18により流量
が均等に配分され、電極板1aに達したときは左
右均一の流速となり、速度の方向は垂直方向にな
つている。なお、図示していないが、このマイク
ロチヤンネル17は、電極1の下方(この場合は電
解液の出口側)にも対称的に設けられている。
FIG. 3 is a front view showing essential parts of an embodiment of the present invention, and FIG. 4 is an enlarged sectional view taken along line A-A. In both figures, 1 is an electrode plate, 11 is an electrode frame, and 13 is a manifold, which are provided on the diagonal of the electrode frame 11. 14 is a channel that communicates with the manifold 13. Reference numeral 17 denotes a microchannel provided on the electrode plate 1a side of the electrode frame 11, and a large number of obstacles (hereinafter referred to as obstacles) 18 protrude parallel to the channel 14 and to the same height as the surface of the electrode frame 11.
a, 18b, 18c (hereinafter the obstacles may be collectively referred to as 18), and each obstacle 1
Grooves 19 provided on both sides of 8a, 18b, 18c
a, 19b, and 19c, and the groove 19a
is in communication with channel 14. The electrolytic solution sent by a pump (not shown) is sent to the microchannel 17 via the manifold 13 and the channel 14, and the flow rate is evenly distributed by the obstacle 18, so that when it reaches the electrode plate 1a, it is evenly distributed on the left and right sides. The flow velocity is , and the direction of velocity is vertical. Although not shown, the microchannel 17 is also provided symmetrically below the electrode 1 (in this case, on the electrolyte outlet side).

マイクロチヤンネル17のオブスタクル18の
配置例を第5図に示す。なお、第5図は電極1の
下部(第1図の16参照)に設けたマイクロチヤ
ンネル17を示す。この実施例においては、オブ
スタクル18を3段に設け、各段の間隔をそれぞ
れ1mmとした。第1段のオブスタクル18aの流
さl1は、チヤンネル16の入口側は長く、下流側
(電解液の流れ方向を矢印で示す)に向うに従つ
て短かく形成されている。また、各オブスタクル
18aの間には僅かな間隙g1が設けられているの
で、電解液は溝19aを通つて矢印方向に流れる
と共に、各間隙g1を通つて上方の溝19bに流入
する。
An example of the arrangement of the obstacles 18 in the microchannel 17 is shown in FIG. Note that FIG. 5 shows a microchannel 17 provided under the electrode 1 (see 16 in FIG. 1). In this embodiment, the obstacles 18 are provided in three stages, and the interval between each stage is 1 mm. The flow length l 1 of the first stage obstacle 18a is long on the inlet side of the channel 16 and becomes shorter toward the downstream side (the flow direction of the electrolyte is indicated by an arrow). Further, since a small gap g 1 is provided between each obstacle 18a, the electrolyte flows in the direction of the arrow through the groove 19a, and flows into the upper groove 19b through each gap g 1 .

第2段のオブスタクル18bは、図の左方が
やゝ短かく、次いで長くなりまた右方に向うに従
つて短くなり、右端は若干長くなている。第1段
のオブスタクル18aの間隙g1から送り込まれた
電解液は、溝19bを経て第2のオブスタクル1
8bの間隙g2からさらに上方に送り込まれる。第
3段のオブスタクル18cは、長いもの短かいも
のが計算及び実験結果に基づいて配置されてお
り、かつ電極板1aの横幅Lのほゞ3分の2の位
置で終り、それから右方には開放部20が形成さ
れている。第2段のオブスタクル18bの間隙g2
を通つた電解液は、溝19cから第3段のオブス
タクル18cの間隙g3及び開放部20を通り、電
極板1aに送り込まれる。なお、各段のオブスタ
クル18a,18b,18cは、その間隙g1
g2,g3が同一線上に重ならないように、それぞれ
ずらせて設けられている。
The second-stage obstacle 18b is slightly shorter on the left side of the figure, then becomes longer and becomes shorter toward the right, and is slightly longer at the right end. The electrolytic solution sent from the gap g1 of the first stage obstacle 18a passes through the groove 19b to the second obstacle 1.
It is sent further upward through the gap g2 of 8b. The third stage obstacles 18c are long and short ones arranged based on calculation and experimental results, and end at a position approximately two-thirds of the width L of the electrode plate 1a, and then on the right side. An open portion 20 is formed. Gap g 2 of second stage obstacle 18b
The electrolytic solution that has passed through the groove 19c passes through the gap g3 of the third stage obstacle 18c and the opening 20, and is sent into the electrode plate 1a. Note that the obstacles 18a, 18b, and 18c at each stage have a gap g 1 ,
g 2 and g 3 are provided offset from each other so that they do not overlap on the same line.

次に本発明の実施例を示せば次の通りである。 Next, examples of the present invention are as follows.

(1) 電極板 横幅L190mm、縦幅220mm (2) マイクロチヤンネル 横幅190mm、縦幅合計7〜13mm (3) 第1段のオブスタクル18aの長さl1左か
ら、22.5mm、24mm、28mm、18mm、12mm、8mm…
…2mm (4) 第2段のオブスタクル18bの長さl2左か
ら、9mm、22mm、27mm、23mm、15.5mm……3
mm、5.5mm (5) 第3段のオブスタクル18cの長さl3左か
ら、1.5mm、2mm、5.5mm、6mm、6mm、6mm、
3.5mm、3mm……2.5mm、6mm左右の開放の長さ
52mm (6) オブスタクル18の幅W1,W2,W3各2mm (7) 各オブスタクル18a,18b,18cの間
隙g1,g2,g3各1mm (8) オブスタクル18a,18b,18cの上下
の間隔各1mm (9) 電解液の流量 40ml/min〜200ml/min (10) 落差(△h)−50cm〜50cm(電解液出口より
貯蔵槽入口の方が高い場合をマイナスとする) (11) 電極板1aとセパレータ2との距離0.6mm〜
2mm 上記により実施の結果、電極板の全面に亘つて
ほぼ均一な流量及び流速が得られた。なお△h>
50cmでは、流れ方向は垂直であるが、電極中央部
の流速が端部より遅くなる。また△h<−50cmで
は、流速は中央部が速くなる。さらに、流量が40
ml/min以下になると、流れの速度の方向が垂直
方向から若干ずれ、チヤンネルの入口に近い方が
流速が増加する。流量が200ml/min以上ではほ
ぼ均一に流れたが、流速は中央部が僅かに速くな
る。
(1) Electrode plate Width L 190 mm, Height width 220 mm (2) Microchannel Width 190 mm, Height total width 7 to 13 mm (3) Length l of first stage obstacle 18a 1 From left: 22.5 mm, 24 mm, 28 mm, 18 mm , 12mm, 8mm…
...2mm (4) Length l of second stage obstacle 18b 2 From left: 9mm, 22mm, 27mm, 23mm, 15.5mm...3
mm, 5.5mm (5) Length l of the third stage obstacle 18c 3 From left: 1.5mm, 2mm, 5.5mm, 6mm, 6mm, 6mm,
3.5mm, 3mm...2.5mm, 6mm left and right open length
52mm (6) Width of the obstacle 18 W 1 , W 2 , W 3 2 mm each (7) Gap g 1 , g 2 , g 3 of each obstacle 18a, 18b, 18c 1 mm each (8) Obstacle 18a, 18b, 18c Top and bottom spacing 1mm each (9) Electrolyte flow rate 40ml/min ~ 200ml/min (10) Head (△h) -50cm ~ 50cm (If the storage tank inlet is higher than the electrolyte outlet, it is considered a negative value) ( 11) Distance between electrode plate 1a and separator 2: 0.6mm~
2 mm As a result of the above implementation, a substantially uniform flow rate and flow rate were obtained over the entire surface of the electrode plate. Note that △h>
At 50 cm, the flow direction is vertical, but the flow velocity at the center of the electrode is slower than at the edges. Furthermore, when Δh<-50cm, the flow velocity becomes faster in the center. In addition, the flow rate is 40
Below ml/min, the direction of the flow velocity deviates slightly from the vertical direction, and the flow velocity increases closer to the channel entrance. When the flow rate was 200 ml/min or more, the flow was almost uniform, but the flow rate was slightly faster in the center.

以上のことから、本発明を実施した場合次のこ
とが明らかになつた。
From the above, the following became clear when the present invention was implemented.

(1) 電極板とセパレータ間の距離及び落差△hが
一定であれば、広範囲の流量(40ml/min〜
200ml/min)において、均一な流速分布、均
一な流量分布が得られる。
(1) If the distance between the electrode plate and the separator and the head △h are constant, a wide range of flow rate (40ml/min ~
200ml/min), uniform flow rate distribution and uniform flow rate distribution can be obtained.

(2) 電解液出口と液貯蔵槽間の落差△hを±50cm
まで広げることができる。
(2) The head difference △h between the electrolyte outlet and the liquid storage tank is ±50cm.
It can be expanded to.

(3) 電池室内へ均一な流れを提供することによ
り、特に陰極析出金属、例えば亜鉛を電極板上
に均一に電着させることが可能である。
(3) By providing a uniform flow into the cell chamber, it is possible in particular to uniformly electrodeposit cathodically deposited metals, such as zinc, onto the electrode plates.

(4) 電解液濃度の不均一などによる過電圧、流れ
の不均一による電池の反応の局所化などを防止
できる。
(4) It is possible to prevent overvoltage due to non-uniform electrolyte concentration and localization of battery reactions due to non-uniform flow.

上記実施例の代表例を参考写真に示す。各参考
写真a,b,c,dにおいて、液は下方よりマニ
ホールド、チヤンネルを経てマイクロチヤンネル
に至り、整流されたのち電極板上を上方に流れ、
上方のマイクロチヤンネル、チヤンネルを経てマ
ニホールドに至るものである。
A representative example of the above embodiment is shown in the reference photograph. In each of the reference photos a, b, c, and d, the liquid reaches the microchannel from below through the manifold and channel, and after being rectified, flows upward on the electrode plate.
It goes through the upper microchannel and channel to the manifold.

上記の説明では、オブスタクルの流さ、幅、間
隙、各段の間隔等についてそれぞれ数値を示した
が、本発明はこれに限定するものではなく、電極
の大きさ、落差(△h)、パイプの径、パイプの
長さ等に応じて適宜変更することができる。
In the above explanation, numerical values were shown for the obstacle flow, width, gap, interval between each stage, etc., but the present invention is not limited to these, and the size of the electrode, the head (△h), the pipe size, etc. It can be changed as appropriate depending on the diameter, length of the pipe, etc.

以上詳記したように、本発明によれば電極板上
を流れる電解液の流量及び流速分布を均一にでき
るので、過電圧や不均一電着等の発生を防止でき
る。このため、精度が高く長寿命の電池を実現で
きる。
As described in detail above, according to the present invention, the flow rate and flow velocity distribution of the electrolytic solution flowing on the electrode plate can be made uniform, so that generation of overvoltage, non-uniform electrodeposition, etc. can be prevented. Therefore, a battery with high accuracy and long life can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の液循環型電池の分解斜視図、第
2図a,b,cはその電解液の流れ分布図、第3
図は本発明実施例の要部の正面図、第4図はその
A−A拡大断面図、第5図はマイクロチヤンネル
の実施例の説明図である。 1:電極、1a:電極板、11:電極枠、1
3,15:マニホールド、14,16:チヤンネ
ル、17:マイクロチヤンネル、18,18a,
18b,18c:オブスタクル、2:セパレー
タ。
Figure 1 is an exploded perspective view of a conventional liquid circulation type battery, Figures 2 a, b, and c are flow distribution diagrams of the electrolyte, and Figure 3 is an exploded perspective view of a conventional liquid circulation type battery.
The figure is a front view of the main part of the embodiment of the present invention, FIG. 4 is an enlarged sectional view taken along line AA, and FIG. 5 is an explanatory diagram of the microchannel embodiment. 1: Electrode, 1a: Electrode plate, 11: Electrode frame, 1
3, 15: Manifold, 14, 16: Channel, 17: Microchannel, 18, 18a,
18b, 18c: Obstacle, 2: Separator.

Claims (1)

【特許請求の範囲】 1 複数の電極とセパレータとを交互に積層して
なり、該電極は電極枠と、該電極枠内に嵌合され
た電極板とからなり、該電極枠にはマニホールド
が略対角線上に穿設され、更に該電極枠の表面に
はチヤンネルを介して該マニホールドとつながつ
たマイクロチヤンネルが設けられている液循環型
積層電池において、 前記マイクロチヤンネルは複数の障害物と該障
害物の周りに形成された溝とによつて構成され、 前記複数の障害物は前記電極板の電解液流出入
端面と平行に形成された複数列を分割溝により複
数に分断されて構成され、 前記複数列の障害物の分割部は電解液の流出入
方向が互いにずれるように設け、 該複数列の障害物の長手方向の長さが電極板の
中央とチヤンネルとの間の位置で最も長くなるよ
うにし、且つチヤンネルから最も遠い列の遠い位
置では前記障害物が形成されていないことを特徴
とする液循環型積層電池。
[Claims] 1. A plurality of electrodes and separators are alternately laminated, and the electrode is composed of an electrode frame and an electrode plate fitted in the electrode frame, and the electrode frame has a manifold. In a liquid circulation type stacked battery in which microchannels are formed approximately diagonally and further connected to the manifold via channels on the surface of the electrode frame, the microchannels are connected to a plurality of obstacles and the obstacles. a groove formed around an object, and the plurality of obstacles are formed by dividing a plurality of rows formed parallel to the electrolyte inflow and outflow end surfaces of the electrode plate into a plurality of parts by a dividing groove, The dividing portions of the plurality of rows of obstacles are provided so that the directions of inflow and outflow of the electrolyte are shifted from each other, and the length of the obstacles in the plurality of rows in the longitudinal direction is longest at a position between the center of the electrode plate and the channel. A liquid circulation type stacked battery characterized in that the obstacle is not formed in a farthest position of the row farthest from the channel.
JP56000742A 1981-01-08 1981-01-08 Liquid circulation type laminated cell Granted JPS57115772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56000742A JPS57115772A (en) 1981-01-08 1981-01-08 Liquid circulation type laminated cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56000742A JPS57115772A (en) 1981-01-08 1981-01-08 Liquid circulation type laminated cell

Publications (2)

Publication Number Publication Date
JPS57115772A JPS57115772A (en) 1982-07-19
JPH0370349B2 true JPH0370349B2 (en) 1991-11-07

Family

ID=11482157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56000742A Granted JPS57115772A (en) 1981-01-08 1981-01-08 Liquid circulation type laminated cell

Country Status (1)

Country Link
JP (1) JPS57115772A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH041657Y2 (en) * 1984-12-10 1992-01-21
US4696870A (en) * 1985-03-12 1987-09-29 Toyota Jidosha Kabushiki Kaisha Solution circulation type metal-halogen battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913637A (en) * 1972-03-24 1974-02-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913637A (en) * 1972-03-24 1974-02-06

Also Published As

Publication number Publication date
JPS57115772A (en) 1982-07-19

Similar Documents

Publication Publication Date Title
US4948681A (en) Terminal electrode
US6193869B1 (en) Modular apparatus for the demineralization of liquids
EP0101240B1 (en) Electrode for electrolyte circulation-type cell stack secondary battery
US3660259A (en) Electrolytic cell
CN109786783A (en) A kind of flow battery electrode frame of multi-cavity structure and its battery stack of composition
US8221930B2 (en) Bipolar separators with improved fluid distribution
US7048838B2 (en) Ion exchange membrane electrolyzer
JPH0370349B2 (en)
US3645880A (en) Electrode apparatus for brine electrolysis
WO2008024401A1 (en) Bipolar separators with improved fluid distribution
JP3337835B2 (en) Electrolytic cell
CN110217866B (en) Electrodialysis device and method for treating stainless steel pickling wastewater by using electrodialysis device
CN211620021U (en) Spiral electrolyzed water generator
CN210057503U (en) High anticorrosive mainboard of integral type for full-automatic filter press of board-like
US4696870A (en) Solution circulation type metal-halogen battery
JPH021017Y2 (en)
JP2601808B2 (en) Electrolyte circulation type secondary battery
JP4451954B2 (en) Separator and electrolytic cell structure using the same
CN113474492A (en) Electrolyte manufacturing device and electrolyte manufacturing method
CN111039362A (en) Spiral electrolyzed water generator
JP2003313690A (en) Ion exchange membrane electrolytic cell
JPS60149796A (en) Electroplating method of strip
JPH0629893Y2 (en) Secondary battery separator
JP2002011477A (en) Electric deionization apparatus
JPH0334843Y2 (en)