JPH0348455A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0348455A
JPH0348455A JP9450290A JP9450290A JPH0348455A JP H0348455 A JPH0348455 A JP H0348455A JP 9450290 A JP9450290 A JP 9450290A JP 9450290 A JP9450290 A JP 9450290A JP H0348455 A JPH0348455 A JP H0348455A
Authority
JP
Japan
Prior art keywords
signal
wiring
circuit
output
drive circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9450290A
Other languages
Japanese (ja)
Inventor
Takao Adachi
隆郎 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9450290A priority Critical patent/JPH0348455A/en
Publication of JPH0348455A publication Critical patent/JPH0348455A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE:To make it possible to lessen a transfer lag due to a long-distance wiring and to improve the operating speed of a semiconductor device by a method wherein signal wirings, which are electrically driven in the same phase, are arranged in parallel to each other. CONSTITUTION:A drive circuit 104 and another drive circuit 105 make a signal of the same phase output. Moreover, a signal wiring 102 for transferring an output signal of the circuit 104 to a passive circuit 106 and other signal wiring 103 for transferring an output signal of the circuit 105 to other passive circuit 107 are arranged in parallel to each other holding a fixed interval. As the circuits 104 and 105 output the signal of the same phase, the time constants of these circuits 104 and 105 are greatly decreased. That is, a transfer lag is decreased. In particular, when the micronization of a wiring progresses and a Calpha becomes small, the thickness of a wiring layer can not be made small so much. Therefore, a Cbeta relatively becomes large and the reduced effect of the transfer lag is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に半導体装置上の配線方
式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a wiring method on a semiconductor device.

〔従来の技術〕[Conventional technology]

従来の半導体装置においては、1つの駆動回路(任意の
信号を出力し信号配線を駆動する電気回路の意)の出力
が信号配線を介して複数の受動回路(信号配線から信号
を受け取る電気回路の意)の入力へ供給される。第2図
(a)に、簡単な場合について図示する。図中4は駆動
回路、6,7は受動回路である。この時、信号配線2に
は第2図(b)に示す寄生容量がつく。図中、C.は対
基板底面容量、C,は対基板側面容量である。この事情
を第2図(C)に回路図として示す。また電気的等価回
路を第2図(d)に示す。図中RとCDは駆動回路4の
内部抵抗と出力容量、Coは受動回路6,70入力容量
である。
In conventional semiconductor devices, the output of one drive circuit (an electrical circuit that outputs an arbitrary signal and drives the signal wiring) is connected to multiple passive circuits (an electrical circuit that receives signals from the signal wiring) via signal wiring. input). FIG. 2(a) illustrates a simple case. In the figure, 4 is a drive circuit, and 6 and 7 are passive circuits. At this time, the signal wiring 2 has a parasitic capacitance as shown in FIG. 2(b). In the figure, C. is the bottom capacitance to the board, and C is the side capacitance to the board. This situation is shown as a circuit diagram in FIG. 2(C). Further, an electrical equivalent circuit is shown in FIG. 2(d). In the figure, R and CD are the internal resistance and output capacitance of the drive circuit 4, and Co is the input capacitance of the passive circuits 6 and 70.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の半導体装置の駆動回路から受動回路への
信号伝達時定数τは、信号配線につく寄生容量を考慮す
ると、第2図(d)の等価回路から明らかな様にて=R
(CD+C−+2Cs+2Co)となる。時定数τを分
解するとτ=RCD+R(Cヶ+2Cj)+R・2Co
となる。配線が長距離になると、配線寄生容量が増大し
、第二項により、τが太きくなってしまう。この為、R
を低減する努力がはらわれるが、Rは駆動回路の内部抵
抗であり、これを低減するには駆動能力を大きくする必
要がある。しかし、通常MOSTの場合、Rを低減する
にはCDが増大すること、ならびに前段の駆動回路をも
大きくしなければ貫通電流などの問題を発生することと
なる。したがって従来の場合、長距離配線による伝達遅
延の低減に限界があり、半導体装置の動作速度の改善が
困難となるという欠点がある。
The time constant τ of signal transmission from the drive circuit to the passive circuit of the conventional semiconductor device described above is calculated as =R, as is clear from the equivalent circuit in Fig. 2(d), considering the parasitic capacitance attached to the signal wiring.
(CD+C-+2Cs+2Co). Decomposing the time constant τ = RCD + R (C + 2Cj) + R・2Co
becomes. When the wiring becomes long, the parasitic capacitance of the wiring increases, and τ becomes thicker due to the second term. For this reason, R
However, R is the internal resistance of the drive circuit, and in order to reduce this, it is necessary to increase the drive capability. However, in the case of a normal MOST, CD increases in order to reduce R, and problems such as through current occur unless the drive circuit in the previous stage is also enlarged. Therefore, in the conventional case, there is a limit to reducing the transmission delay due to long-distance wiring, and there is a drawback that it is difficult to improve the operating speed of the semiconductor device.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、駆動回路の出力信号を受動回路へ伝達する信
号配線を半導体基板上に設けてなる半導体装置において
、前記駆動回路と同相の信号を発生する他の駆動回路及
び前記他の駆動回路の出力信号を供給される他の信号配
線であって前記信号配線と並行に配置されているものを
含むというものである。
The present invention provides a semiconductor device in which signal wiring for transmitting an output signal of a drive circuit to a passive circuit is provided on a semiconductor substrate. This includes other signal wirings that are supplied with output signals and are arranged in parallel with the signal wirings.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する.第1図
(a)は本発明の一実施例の配置図である。
Next, the present invention will be explained with reference to the drawings. FIG. 1(a) is a layout diagram of an embodiment of the present invention.

101は半導体装置、104は駆動回路、105は他の
駆動回路で、104,105は同相の信号を出力する。
101 is a semiconductor device, 104 is a drive circuit, 105 is another drive circuit, and 104 and 105 output signals in the same phase.

102は駆動回路104の出力信号を受動回路106へ
伝達する信号配線、103は他の駆動回路105の出力
信号を受動回路107へ伝達する他の信号配線で、信号
配線102と一定の間隔を保って並行に配置されている
102 is a signal wiring that transmits the output signal of the drive circuit 104 to the passive circuit 106; 103 is another signal wiring that transmits the output signal of another drive circuit 105 to the passive circuit 107; are arranged in parallel.

第1図(b)は第1図(a)のA−A’線相当部で切断
した半導体チップの断面図である。信号配線102,1
03は半導体基板108に対する寄生容量と、配線間容
量を有することになる。
FIG. 1(b) is a cross-sectional view of the semiconductor chip taken along the line AA' in FIG. 1(a). Signal wiring 102,1
03 has a parasitic capacitance to the semiconductor substrate 108 and an inter-wiring capacitance.

第1図(c)に寄生容量を分類して図示する。ここに0
0は配線間容量、C.は対基板底面容量、C,は対基板
側面容量である。これに示されたように、信号配線の側
面容量のうち、1つは配線対の他方との結合容量となり
、単独配線の場合と比較して対基板容量が減少する。こ
の状況を第1図(b)に回路図として第1図(e)に等
価回路として示す。
FIG. 1(c) shows a classification of parasitic capacitances. 0 here
0 is the capacitance between wires, C. is the bottom capacitance to the board, and C is the side capacitance to the board. As shown, one of the side capacitances of the signal wiring becomes a coupling capacitance with the other of the wiring pair, and the capacitance to the substrate is reduced compared to the case of a single wiring. This situation is shown as a circuit diagram in FIG. 1(b) and as an equivalent circuit in FIG. 1(e).

前述したように、駆動回路104,105は同相の信号
を出力する為、この回路の時定数τ。はτ。
As described above, since the drive circuits 104 and 105 output signals in the same phase, the time constant τ of this circuit. is τ.

” R ( C D 十〇 , + Cβ+CO)とな
り、C0の影響が除去される。従来の場合の時定数τと
比較すると、Δr=R(CD+C.+2Ca+2Co)
  R(Co+C,十C.s+Co)=R(Cβ十〇。
”R (CD 10, + Cβ+CO), and the influence of C0 is removed.Compared with the time constant τ in the conventional case, Δr=R(CD+C.+2Ca+2Co)
R(Co+C, 10C.s+Co)=R(Cβ10.

)となり、大きく時定数が減少している。すなわち、伝
達遅延が小さくなる。特に配線の微細化が進みC6が小
さくなると、配線層の厚さはあまり小さくできないので
、Cβは相対的に大きくなり本発明による伝達遅延の低
減効果が大きくなる。
), and the time constant has decreased significantly. That is, the transmission delay becomes smaller. In particular, as wiring becomes finer and C6 becomes smaller, the thickness of the wiring layer cannot be made much smaller, so Cβ becomes relatively larger and the transmission delay reduction effect of the present invention becomes greater.

第3図は本発明の一実施例の変形の配置図である。FIG. 3 is a layout diagram of a modification of one embodiment of the present invention.

配線対の1本が、受動回路206,207に入力しない
ダミー配線となっている。駆動回路204,205は実
施例(1)と同様に同相で動作する。この場合の回路図
及び等価回路図をそれぞれ第3図(b)及び(c)に示
す。
One of the wiring pairs is a dummy wiring that does not input to the passive circuits 206 and 207. The drive circuits 204 and 205 operate in the same phase as in the embodiment (1). A circuit diagram and an equivalent circuit diagram in this case are shown in FIGS. 3(b) and 3(c), respectively.

但し、C s ” C o + C , + C sと
なり、線間容#coの影響は完全になくならないが、時
定数は従来例より小さくなり、伝達遅延が小さくなる。
However, C s '' C o + C , + C s , and although the influence of line capacitance #co is not completely eliminated, the time constant is smaller than in the conventional example, and the propagation delay is reduced.

上述した変形のようなダミー配線を設ける場合は、第4
図(a)に示すように、配線が多層の場合より効果的と
なる。
When providing dummy wiring as in the above-mentioned modification, the fourth
As shown in Figure (a), this is more effective when the wiring is multilayered.

第4図(a)は、他の変形を示す配線部分の断面図であ
る。
FIG. 4(a) is a sectional view of a wiring portion showing another modification.

信号配線202,203が近接して多層に形或される。Signal wirings 202 and 203 are arranged in close proximity and formed in multiple layers.

信号配線203に受動回路206,207が接続される
。この場合の寄生容量のつき方を第4図(b)に示す。
Passive circuits 206 and 207 are connected to the signal wiring 203. FIG. 4(b) shows how the parasitic capacitance is generated in this case.

第4図(c)にこの場合の等価回路を示す。信号配線2
03の側面容1kcs’はC,に比較して小さいので、
底面容量と共に無視できるので、その分だけ前述の変形
の場合より時定数τは小さくなり、 但し、C+=CD+2Co,C2=C.+2Cs+Cn
,C 3 = C cで与えられる。
FIG. 4(c) shows an equivalent circuit in this case. Signal wiring 2
Since the side volume 1kcs' of 03 is smaller than that of C,
Since it can be ignored along with the bottom surface capacitance, the time constant τ becomes smaller by that amount than in the case of the above-mentioned modification. However, C+=CD+2Co, C2=C. +2Cs+Cn
, C 3 = C c.

第5図に本発明の他の実施例を宗す.本実施例はリード
オンリメモリ(ROM)であり、そのチップの平面図が
第5図(a)に500として示されている。17ビット
のアドレス信号はチツプ500のアドレス人カバッファ
AO乃至A16にそれぞれ供給され、各バッファは対応
するアドレス信号の真補のデータをデコーダ502に供
給する。デコーダ502はかくして供給されたアドレス
信号に応答してROMセルアレイ501内の所定のRO
Mセルを選択する。本実施例では一つのアドレス情報に
対して16個のROMセルが選択される。選択されたR
OMセルのストアデータはセンスアンプ503によって
振幅され16個の出カバッファ00乃至015からチッ
プ500の外部に出力される。なお、図面の簡略化のた
めにアドレス人カハッファA,デフード502,セルア
レイ50l,センスアンプ503および出力ハツファO
間の配線は省略する。
FIG. 5 shows another embodiment of the present invention. This embodiment is a read-only memory (ROM), and a plan view of the chip thereof is shown as 500 in FIG. 5(a). The 17-bit address signal is supplied to address buffers AO to A16 of chip 500, and each buffer supplies the true complement of the corresponding address signal to decoder 502. Decoder 502 responds to the supplied address signal to select a predetermined RO in ROM cell array 501.
Select M cell. In this embodiment, 16 ROM cells are selected for one address information. selected R
The stored data of the OM cell is amplified by the sense amplifier 503 and output from the 16 output buffers 00 to 015 to the outside of the chip 500. In addition, for the sake of simplicity of the drawing, the address person Kahaffa A, the dehood 502, the cell array 50l, the sense amplifier 503, and the output haffa O
The wiring between them is omitted.

ROMチップ500はさらにチップイネーブルバッファ
550(CE)および出力イネーブルバッファ560(
OE)を有し、外部からそれぞれチップイネーブル信号
および出力イネーブル信号が供給される。チップイネー
ブル信号はROMチップ500をイネーブル状態としア
ドレス信号を取り込んで内部回路を活性化するものであ
る。
The ROM chip 500 further includes a chip enable buffer 550 (CE) and an output enable buffer 560 (
A chip enable signal and an output enable signal are supplied from the outside. The chip enable signal enables the ROM chip 500, takes in an address signal, and activates the internal circuit.

それ故、チップイネーブルバッファ550の出力は配線
510を介してアドレス人カバッファAO乃至A16に
転送されている。図示のようにアドレス人カバッファA
O乃至A16はチップ500の周囲に沿って配置されて
いるため、配線510は非常に長くなる。そこで、本発
明に従って、チップイネーブルバッファ550は配線5
10に転送するチップイネーブル信号と同相の信号をさ
らに出力し、同信号は配線510に沿ってこれを並行に
設けられた第2の配線511に供給される。
Therefore, the output of chip enable buffer 550 is transferred to address buffers AO to A16 via wiring 510. Address person buffer A as shown
Since O to A16 are arranged along the periphery of the chip 500, the wiring 510 becomes very long. Therefore, according to the present invention, the chip enable buffer 550
A signal having the same phase as the chip enable signal transferred to the wire 510 is further output, and the same signal is supplied to a second wire 511 provided in parallel with the wire 510.

第5図(b)にチップイネーブルバッファ550の論理
回路図を示す。端子551は外部からのチップイネーブ
ル信号の供給端子であり、4つのインバータ552乃至
555を介して配線510に接続されている。インバー
タ553と554との接続点は2つのインバータ556
,557を介して第2の配線511に接続されている。
FIG. 5(b) shows a logic circuit diagram of the chip enable buffer 550. A terminal 551 is a terminal for supplying a chip enable signal from the outside, and is connected to the wiring 510 via four inverters 552 to 555. The connection point between inverters 553 and 554 is two inverters 556
, 557 to the second wiring 511.

したがって、配線510,511には同相の信号が得ら
れる。
Therefore, signals of the same phase are obtained on the wirings 510 and 511.

出力イネーブルバッファ560に供給される出力イネー
ブル信号は、チップイネーブルの状態における読み出し
データの出力タイミングを制御するものである。したが
って、チップイネーブルバッファ550からの配線51
0を介するチップイネーブル信号を受け外部からの出力
イネーブル信号を取り込んで出力バッファ00乃至01
5に転送する。出力バッファOO乃至015もチップ5
00の周囲に沿って設けられている。このため、バッフ
ァ560の出力を転送するための配線520もかなり長
くなる。そこで、本発明に従って、配線520と平行に
第2の配線521が設けられ、同配線521に出力イネ
ーブルバッファ560は配線520への信号と同相の信
号を供給する。第5図(C)に示すように、出力イネー
ブルバッファ560は、出力イネーブル信号が外部から
供給される端子561を有し、同端子は二入力NORゲ
ート562の一方の入力に供給される。その他方の入力
には配線510を介してチップイネーブル信号が供給さ
れる。NORゲート562の出力は三つのインバータ5
63,566,567を介して配線520への転送信号
となる。インバータ563の出力はさらに二つのインバ
ータ564,565を介して配線521の駆動信号とな
る。
The output enable signal supplied to the output enable buffer 560 controls the output timing of read data in the chip enable state. Therefore, the wiring 51 from the chip enable buffer 550
The output buffers 00 to 01 receive the chip enable signal via 0 and take in the output enable signal from the outside.
Transfer to 5. Output buffers OO to 015 are also chip 5
It is provided along the periphery of 00. Therefore, the wiring 520 for transferring the output of the buffer 560 also becomes quite long. Therefore, according to the present invention, a second wiring 521 is provided in parallel with the wiring 520, and the output enable buffer 560 supplies a signal in phase with the signal to the wiring 520 to the second wiring 521. As shown in FIG. 5C, the output enable buffer 560 has a terminal 561 to which an output enable signal is supplied from the outside, and the terminal is supplied to one input of a two-input NOR gate 562. A chip enable signal is supplied to the other input via wiring 510. The output of NOR gate 562 is connected to three inverters 5
It becomes a transfer signal to the wiring 520 via 63, 566, and 567. The output of the inverter 563 further passes through two inverters 564 and 565 to become a drive signal for the wiring 521.

このように、内部チップイネーブル信号の転送配線51
0および内部出力イネーブル信号の転送配線520は長
くなるが、本発明に従ってそれぞれ並行に第2の配線5
11.521が設けられ、同相の信号が供給される。し
たがって、配線5lO,520の実効的な寄生容量が小
さくなり、信号伝達遅延はその分小さくなる。
In this way, the internal chip enable signal transfer wiring 51
0 and the internal output enable signal transfer wiring 520 are long, but according to the present invention, the second wiring 520 is connected in parallel with each other.
11.521 is provided, and in-phase signals are supplied. Therefore, the effective parasitic capacitance of the wirings 5lO and 520 is reduced, and the signal transmission delay is correspondingly reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、電気的に同相で駆動され
る信号配線を並行にかつ近接して配置することにより、
信号配線につく寄生容量の内、部を共有し合い、寄生容
量の実効的な低減を実現し、長距離配線に伴う伝達遅延
を少なくすることができ、半導体装置の動作速度を改善
できる効果がある。
As explained above, the present invention provides signal wiring that is electrically driven in the same phase by arranging them in parallel and close together.
By sharing a portion of the parasitic capacitance in signal wiring, it is possible to effectively reduce parasitic capacitance, reduce transmission delays associated with long-distance wiring, and improve the operating speed of semiconductor devices. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の一実施例の配置図、第1図(b
)は第1図(a)のA−A’線相当部で切断した半導体
チップの断面図、第1図(c)は一実施例における信号
配線の寄生容量を示す図、第1図(d)は一実施例の回
路図、第1図(e)は一実施例の等価回路図、第2図(
a), (b), (c)及び(d)は従来例の配置図
,信号配線の寄生容量を示す図,回路図及び等価回路図
、第3図(a), (b)及び(c)は一実施例の変形
を示す配置図,回路図及び等価回路図、第4図(a),
 (b)及び(c)は一実施例の他の変形を示す断面図
,信号配線の寄生容量を示す図及び等価回路図、第5図
(a)は本発明の他の実施例を示すROMチップの平面
図、第5図(b)および(C)はそれぞれ同図(a)の
チップイネーブルバッファ550および出力イネーブル
バッファ560を示す論理回路図である。 1,101,201・・・・・・半導体装置、2,10
2,202・・・・・・信号配線、103,203・・
・・・・他の信号配線、4,104,204・・・・・
・駆動回路、105,205・・・・・・他の駆動回路
、6,106,206,7,107,207・・・・・
・受動回路、108,208・・・・・・半導体基板、
109,209・・・・・・層間絶縁膜。
FIG. 1(a) is a layout diagram of an embodiment of the present invention, FIG. 1(b)
) is a cross-sectional view of the semiconductor chip taken along the line A-A' in FIG. 1(a), FIG. ) is a circuit diagram of one embodiment, FIG. 1(e) is an equivalent circuit diagram of one embodiment, and FIG. 2(
a), (b), (c) and (d) are layout diagrams of conventional examples, diagrams showing parasitic capacitance of signal wiring, circuit diagrams and equivalent circuit diagrams, and Figures 3 (a), (b) and (c). ) are layout diagrams, circuit diagrams, and equivalent circuit diagrams showing modifications of one embodiment, and FIG. 4(a),
(b) and (c) are cross-sectional views showing other modifications of one embodiment, a diagram showing parasitic capacitance of signal wiring, and an equivalent circuit diagram, and FIG. 5(a) is a ROM showing another embodiment of the present invention. The plan view of the chip, FIGS. 5(b) and 5(C), is a logic circuit diagram showing the chip enable buffer 550 and output enable buffer 560 of FIG. 5(a), respectively. 1,101,201... Semiconductor device, 2,10
2,202...Signal wiring, 103,203...
...Other signal wiring, 4,104,204...
・Drive circuit, 105, 205...Other drive circuits, 6, 106, 206, 7, 107, 207...
・Passive circuit, 108, 208... Semiconductor substrate,
109,209...Interlayer insulating film.

Claims (1)

【特許請求の範囲】[Claims] 駆動回路の出力信号を受動回路へ伝達する信号配線を半
導体基板上に設けてなる半導体装置において、前記駆動
回路と同相の信号を発生する他の駆動回路及び前記他の
駆動回路の出力信号を供給される他の信号配線であって
前記信号配線と並行に配置されている他の信号配線を含
むことを特徴とする半導体装置。
In a semiconductor device in which signal wiring for transmitting an output signal of a drive circuit to a passive circuit is provided on a semiconductor substrate, another drive circuit that generates a signal in phase with the drive circuit and an output signal of the other drive circuit are supplied. What is claimed is: 1. A semiconductor device comprising another signal wiring arranged parallel to the signal wiring.
JP9450290A 1989-04-17 1990-04-10 Semiconductor device Pending JPH0348455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9450290A JPH0348455A (en) 1989-04-17 1990-04-10 Semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9794689 1989-04-17
JP1-97946 1989-04-17
JP9450290A JPH0348455A (en) 1989-04-17 1990-04-10 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0348455A true JPH0348455A (en) 1991-03-01

Family

ID=26435784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9450290A Pending JPH0348455A (en) 1989-04-17 1990-04-10 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0348455A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147380A (en) * 1993-11-24 1995-06-06 Nec Corp Semiconductor device
JPH08306868A (en) * 1995-04-27 1996-11-22 Nec Corp Semiconductor device
US5644546A (en) * 1992-09-11 1997-07-01 Fujitsu Limited MOS static RAM with improved soft error resistance; high-level supply voltage drop detection circuit and complementary signal transition detection circuit for the same; and semiconductor device with improved intersignal time margin
US6166940A (en) * 1999-03-15 2000-12-26 Nec Corporation Semiconductor memory device having a plurality of storage regions

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644546A (en) * 1992-09-11 1997-07-01 Fujitsu Limited MOS static RAM with improved soft error resistance; high-level supply voltage drop detection circuit and complementary signal transition detection circuit for the same; and semiconductor device with improved intersignal time margin
US5734622A (en) * 1992-09-11 1998-03-31 Fujitsu Limited MOS static RAM with improved soft error resistance; high-level supply voltage drop detection circuit and complementary signal transition detection circuit for the same; and semiconductor device with improved intersignal time margin
JPH07147380A (en) * 1993-11-24 1995-06-06 Nec Corp Semiconductor device
JPH08306868A (en) * 1995-04-27 1996-11-22 Nec Corp Semiconductor device
US6166940A (en) * 1999-03-15 2000-12-26 Nec Corporation Semiconductor memory device having a plurality of storage regions

Similar Documents

Publication Publication Date Title
US5309015A (en) Clock wiring and semiconductor integrated circuit device having the same
US7768790B2 (en) Electronic circuit
US8148814B2 (en) Semiconductor integrated circuit device comprising a plurality of semiconductor chips mounted to stack for transmitting a signal between the semiconductor chips
JP4205553B2 (en) Memory module and memory system
JP2577536B2 (en) Integrated circuit structure
KR100533552B1 (en) Electronic device
US8143966B2 (en) Coupling cancellation scheme
JP2001256772A (en) Memory module
JPH08504060A (en) Module for an IC microprocessor, including an IC memory stack structurally combined with the IC microprocessor
JP2012104707A (en) Semiconductor package
JP3026387B2 (en) Semiconductor integrated circuit
JP2023509025A (en) Transmission circuits, interface circuits and memories
EP0041844B1 (en) Semiconductor integrated circuit devices
JPH0348455A (en) Semiconductor device
JP3462921B2 (en) Semiconductor device
JP2000012738A (en) Integrated circuit with unique lead configuration
JP2830793B2 (en) Multi-chip module
JPH11186492A (en) Semiconductor package and its mounting structure
JP3166722B2 (en) Stack structure of stacked semiconductor device
JP2776551B2 (en) Bus line type semiconductor memory device
JP3387988B2 (en) Wiring board and semiconductor module
JP3540190B2 (en) Semiconductor storage device
JPH07221182A (en) Semiconductor device
JPH09102584A (en) Integrated circuit device and clock transmission device
JPH0237763A (en) Semiconductor integrated circuit