JPH0348271B2 - - Google Patents

Info

Publication number
JPH0348271B2
JPH0348271B2 JP2435785A JP2435785A JPH0348271B2 JP H0348271 B2 JPH0348271 B2 JP H0348271B2 JP 2435785 A JP2435785 A JP 2435785A JP 2435785 A JP2435785 A JP 2435785A JP H0348271 B2 JPH0348271 B2 JP H0348271B2
Authority
JP
Japan
Prior art keywords
film
chromium
hydrophilicity
ion exchange
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2435785A
Other languages
Japanese (ja)
Other versions
JPS61186481A (en
Inventor
Tooru Ishii
Masashi Isobe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2435785A priority Critical patent/JPS61186481A/en
Publication of JPS61186481A publication Critical patent/JPS61186481A/en
Publication of JPH0348271B2 publication Critical patent/JPH0348271B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/37Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also hexavalent chromium compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【発明の詳现な説明】 〔産業䞊の利甚分野〕 本発明は、アルミニりム及びアルミニりム含金
材以䞋、単に「アルミ材」ずいう衚面に芪氎
性、耐食性及び塑性加工性にすぐれ皮膜を圢成し
埗る芪氎性耐食性皮膜圢成剀に関するものであ
る。 〔埓来の技術及び問題点〕 アルミ材は、皮々の甚途に倚甚されおいるが、
甚途によ぀おはその衚面が氎によく濡れるいわゆ
る芪氎性であるこずが望たれおいる。すなわち、
たずえば熱亀換噚の堎合、高性胜化や小型化され
るに䌎な぀お、フむン間隔を狭くしお䌝熱性胜を
向䞊させるこずが詊みられおいる。しかしお熱亀
換噚は、フむン衚面においお倧気ずの間に熱亀換
が行なわれ、フむン衚面に倧気䞭の氎分が凝瞮す
るが、フむン間隔をたずえば〜mm以䞋のよう
に狭ばめた堎合、凝瞮した氎分がフむン間にいわ
ゆるブリツゞを圢成するために、通颚抵抗が増加
しお隒音の発生や゚ネルギヌ消費効率を䜎䞋させ
る因ずなるものである。したが぀お、フむン衚面
に芪氎性を付䞎しおブリツゞの圢成を防止する詊
みがなされおいる。又、熱亀換噚以倖にも、湿最
雰囲気内でアルミ材衚面の結露を防止したい堎
合、光沢を必芁ずするアルミ材衚面の曇り止めを
したい堎合、あるいは氎の濡れ性を高めアルミ材
衚面から氎の蒞発量を高めたい堎合などにおいお
も圓該アルミ材衚面に芪氎性皮膜を圢成するこず
が行なわれおいる。 芪氎性を䞎える手段ずしおは、䜿甚するアルミ
材に応じた手段がずられおいるが、芪氎性を付䞎
する凊理剀を塗垃する方法が知られ、塗垃剀ずし
おは、たずえば、暹脂塗料に芪氎性付䞎剀ずしお
シリカ粉末や界面掻性剀を添加したものなどが知
られおいるが、倚量のシリカ粉末を添加する必芁
があり、そのため無機質皮膜の緻密性を䜎䞋させ
皮膜の耐食性を䜎䞋させ、これを補償するために
䟡クロムむオン濃床を高めるず生成皮膜から
䟡クロムむオンが溶出したり、皮膜圢成埌にダむ
ス成圢加工などを斜行する堎合にダむスの摩耗を
生じたり、あるいは、界面掻性剀が経時的に溶出
し、芪氎性を劣化させるずい぀たような問題や、
芪氎性を高めるず䜿甚環境によりアルミ材の耐食
性を䜎䞋させるずか芪氎性が経時的に劣化するな
どずい぀た問題もあり、より有効なアルミ材甚芪
氎性耐食皮膜圢成剀以䞋、皮膜圢成剀ずいう
が望たれおいる。 〔問題点を解決するための手段及び䜜甚〕 本発明者らは、良奜な芪氎性、耐食性を付䞎す
るずずもに塑性加工性にもすぐれた皮膜を圢成し
埗る皮膜圢成剀を埗べく研究を重ねた結果、クロ
ム化合物、フツ化物、むオン亀換暹脂及びアクリ
ル酞ポリマヌを適正に配合するこずによ぀お目的
を達し埗るこずを芋出しお本発明をなしたもので
ある。すなわち、本発明は、氎溶液䞭に、䟡の
クロム化合物をCrO3換算で0.05〜、
䟡のクロム化合物をCrO3換算で〜18、
フツ化物をF-ずしお0.1〜、むオン亀換
暹脂粉末を固圢分で〜100、アクリル酞
ポリマヌを固圢分で〜20配合したアルミ
材甚芪氎性耐食皮膜圢成剀である。 本発明におけるアルミ材ずしおは、たずえば、
アルミニりム及びその合金材䞊びにアルミニりム
被芆鋌材メツキ材又はクラツド材などなどで
補䜜された板や抌出型材のような玠圢材、又は熱
亀換噚のような特定圢状品、組立品などがあげら
れる。 本発明の皮膜圢成剀を構成する䟡のクロム化
合物の䟛絊源ずしおは、たずえば氎酞化クロム、
硝酞クロム、フツ化クロム、リン酞クロム、硫酞
クロムのような無機酞塩、酢酞クロム、マレむン
酞クロムなどのような有機酞塩が䞀般的に䜿甚し
埗、䟡のクロム化合物の䟛絊源ずしおは、たず
えば䞉酞化クロム、クロム酞アンモニりム、クロ
ム酞カリりム、クロム酞ナトリりム、クロム酞リ
チりムなどのようにクロム酞塩、あるいは重クロ
ム酞アンモニりム、重クロム酞カリりム、重クロ
ム酞ナトリりム、重クロム酞リチりムのような重
クロム酞塩などが䞀般に䜿甚し埗る。なお、䟡
のクロムは、前蚘のような化合物の圢で添加する
以倖に、䟡のクロム化合物、たずえば䞉酞化ク
ロムを䜿甚し、この䞀郚をたずえばホルマリン、
プノヌルあるいは倚䟡アルコヌルのような有機
還元剀で還元するこずにより䟡の化合物ずしお
混圚させるこずも可胜であり、䟡のクロム化合
物ず䟡の化合物ずを混合する堎合に范べお䟡
クロムの䜎濃床偎で䜿甚するこずが奜たしい。 しかしお、皮膜圢成剀䞭の䟡クロム化合物
は、CrO3換算で0.05〜の範囲で添加す
るものであ぀お、添加量が0.05以䞋では、
耐食効果が十分でなく、アクリル酞ポリマヌの架
橋反応も十分満足する皋床に行なわれず、
以䞊では、皮膜から䟡クロムが溶出し易くな
り公害䞊問題が生じるし、結果的に皮膜の耐食性
を䜎䞋させる。䟡クロム化合物は、䟡クロム
化合物の䜿甚量制限によるクロムの効果の䜎䞋を
補うものであ぀お、CrO3換算で〜18の
範囲で添加するものであり、この範囲倖では、前
蚘の目的を十分に達成し埗ないものである。な
お、党クロム量が20以䞊になるずアルミ材
の衚面着色、クロムの局郚的濃瞮をおこし、皮膜
の䞍均䞀化がおこり、さらに経枈的にも䞍利であ
る。しかしお、クロム化合物は、フツ化物ず協動
的にアルミ材衚面に䜜甚しお耐食性に富む無機質
局を圢成させるずずもにアクリル酞ポリマヌを架
橋させお䞍溶化させる。 次に、フツ化物ずしおは、たずえば、フツ酞、
フツ化ケむ玠、フツ化ホり玠、フツ化チタニり
ム、フツ化ゞルコニりム、フツ化亜鉛などがあげ
られ、、このような可溶性フツ化物をフツ玠むオ
ンF-ずしお、0.1〜、奜たしくは0.7
〜3.5の範囲で添加する。F-が0.1以
䞋では、アルミ材ずクロム化合物ずの反応生成物
を䞻䜓ずする無機質局の良奜な耐食性が埗られ
ず、以䞊では、アルミ材の溶出がいちじ
るしくなりか぀皮膜の緻密性も䜎䞋し、皮膜圢成
剀济の管理が困難である。しかしお、フツ化物
は、クロム化合物ず協働的に䜜甚しおアルミ衚面
に耐食性か぀良塑性加工性無機局を圢成するもの
である。 次に、むオン亀換暹脂ずしおは、芪氎性原子団
を有し、氎に䞍溶性の界面掻性剀ずしお䜜甚し埗
る化合物を包含するものであり、むオン亀換暹脂
粒及びむオン亀換暹脂膜ずしお垂販されおいる暹
脂類の䞭から適宜遞択し埗るものであり、総むオ
ン亀換容量が0.5〔mg圓量−DryR〕以䞊のも
の、より奜たしくは、〔mg圓量−Dry−〕
以䞊のものが適圓である。すなわち、たずえば、
瞮合系むオン亀換暹脂ずしお、プノヌルスルホ
ン酞系、゚チレンむミン−゚ピクロロヒドリン
系、゚ポキシ系など、重合系むオン亀換暹脂ずし
お、スチレン−ゞビニルベンれン系、ビニル−ゞ
ビニルベンれン系、メタクリル酞−ゞビニルベン
れン系などが入手可胜であるが、これらに芪氎性
原子団ずしお、スルホン酞基、ホスホン酞基、ホ
スフむン酞基あるいは第四玚アンモニりム、第䞀
玚ないし第䞉玚アミンを付䞎したものが陜むオン
亀換暹脂又は陰むオン亀換暹脂ずしお垂販されお
おり、これらから適宜遞択しお䜿甚するこずがで
きる。又、たずえば匷塩基性陰むオン亀換暹脂に
アクリル酞を重合させたよような䞡性むオン亀換
暹脂あるいは芪氎性原子団を導入したフツ玠暹脂
なども垂販されおおり、いずれも䜿甚可胜であ
る。これらのむオン亀換暹脂の䞭、芪氎性にすぐ
れおいる点で陜むオン亀換暹脂が奜適であり、さ
らにスルホン酞型匷酞性陜むオン亀換暹脂が最適
である。なお、むオン亀換暹脂は、䞀皮類だけで
なく、所望の芪氎性床に応じお、たずえば匷酞性
ず匱酞性の陜むオン亀換暹脂あるいは匷塩基性ず
匱塩基性の陰むオン亀換暹脂を適宜の割合で二皮
類以䞊配合しお甚いるこずができる。さらに、新
品だけでなく、他工皋で䜿甚枈みの再生品であ぀
おも同様に䜿甚するこずができる。 しかしお、むオン亀換暹脂は、所望の皮膜厚に
応じた粒床の粉䜓が甚いられるが、たずえば皮膜
厚が5Ό以䞋の堎合、皮膜の平滑性や均質性を
加味するずき平均粒埄1Ό以䞋のものを䜿甚す
るこずが奜たしく、このような粒埄のものが入手
し難いずきは、粉砕機によ぀お埮粉砕しお調補し
お䜿甚すればよく、均䞀な芪氎性を埗るために固
圢分ずしお〜100、奜たしくは、〜60
添加するものであ぀お、以䞋で
は、均䞀な芪氎性が埗難く、100以䞊では、
むオン亀換暹脂の膚最の繰り返えしにより皮膜の
密着性や耐氎性が䜎䞋するものである。 しかしお、むオン亀換暹脂は、氎に䞍溶性の界
面掻性剀ずしお䜜甚するずずもに、皮膜に経時倉
化の少ない芪氎性ずアルミ材を塑性加工するずき
のダむス摩耗を発生しない塑性加工性を付䞎する
ものである。 次に、アクリル酞ポリマヌずしおは、氎溶性又
は氎分散性のポリアクリル酞あるいはポリアクリ
ル酞゚ステル以䞋、暹脂ず称すが䜿甚され、
たずえば、アクリル酞、アクリル酞メチル、アク
リル酞゚チル、アクリル酞む゜プロピル、アクリ
ル酞−ブチル、メタクリル酞、メタクリル酞メ
チル、メタクリル酞゚チル、メタクリル酞む゜プ
ロピル、メタクリル酞−ブチル、メタクリル酞
む゜ブチル、マレむン酞、むタコン酞などのよう
な化合物の重合あるいは共重合によ぀お埗られた
ものを䜿甚する。なお、氎溶性の暹脂では、比范
的䜎枩、短時間の加熱凊理工皋䞭に皮膜圢成剀䞭
に共存する䟡以䞊の金属皮本発明ではクロム
むオンずキレヌト反応をおこし、氎に䞍溶性ず
なる必芁があり、分子量ずしおは、氎溶性暹脂で
は、平均分子量が10000〜300000のものであるこ
ずが望たしく、このような暹脂ずしお、プラむマ
ヌル−、−、−商品名、ロヌム
ハヌス瀟補などが垂販されおいる。氎分散型゚
マルゞペンタむプの暹脂では、分子量の䞊限はこ
の限りではない。又、暹脂の酞䟡は、分子量ずの
盞関においお決められるべきであるが、以䞊で
あるこずが奜たしく、これ以䞋では、高枩長時間
の凊理が必芁ずなり経枈的にも䞍利である。 しかしお、暹脂の添加量は、固圢分で〜20
、奜たしくは、〜14の範囲であ
り、以䞋及び20以䞊では、いずれ
も皮膜が郚䜍により䞍均䞀化し易くなり、皮膜の
密着性や耐食性も均䞀性を欠くようになり、皮膜
圢成剀の安定性も枛少する。又、゚マルゞペン型
暹脂を䜿甚するずきには、゚マルゞペンの安定性
から10以䞋ずするこずが奜たしい。 なお、本発明における氎溶性暹脂の䞍溶化は、
前述のように共存するクロム化合物ずの架橋反応
による難溶性の有機クロメヌト化合物の生成によ
るものであ぀お、架橋に必芁なクロム量は、Cr
0.2以䞊添加すればよく、本発明のクロム
化合物含有量であれば暹脂の量は実質的に任意に
倉えるこずができる。さらに、熱硬化型の氎溶性
暹脂を加えるこずによ぀お皮膜の耐食性を向䞊さ
せるこずも可胜である。 本発明の皮膜圢成剀は、これらの化合物類を前
述の範囲で配合しお調補されるものであ぀お、PH
1.5〜皋床である。なお、所望により初期芪氎
性向䞊剀ずしおたずえばα−オレフむンスルホネ
ヌト、アルキルナフタレンスルホン酞ナトリりム
などのような界面掻性剀を0.5〜皋床添
加するこずは支障がなく、正リン酞、ピロリン
酞、ポリリン酞、メタリン酞、亜リン酞などを
PO3- 4ずしお0.1〜50添加するず皮膜の均䞀
塗垃性が増し芪氎性の長期安定性をより向䞊させ
るので塗垃手段に応じお䜿甚するこずができる。 又、シリカゟルやヒナヌムドシリカなどのシリ
カ粉末を本皮膜圢成剀の増粘剀、むオン亀換暹脂
の分散剀あるいは芪氎性付䞎補助剀などずしお
0.5〜皋床添加するこずや通垞の塗料に
添加されおいる防カビ剀、スリツプ剀などの添加
剀を党量で0.01〜0.5皋床配合するこずな
ども支障がない。 本発明の皮膜圢成剀の調補方法ずしおは、たず
えば、暹脂液䞭にむオン亀換暹脂粉末を均䞀に分
散させた济ず、クロム化合物、フツ化物ずを氎
に混合溶解させた济ずを別個に調補しおおい
お、予め又は䜿甚盎前に䞡济を混合しお䜿甚する
方法。又は、暹脂液䞭にむオン亀換暹脂粉末を均
䞀に分散させお䟡クロム液を添加したA′济ず、
フツ化物ず䟡クロムずを混合調補したB′济ず
を䜿甚盎前に混合しお䜿甚する方法。あるいは、
䜿甚盎前にすべおの化合物を混合しお䜿甚する方
法。さらに、、济あるいはA′、B′济をアル
ミ材衚面䞊に別々に塗垃しおアルミ材衚面䞊で混
合するようにする方法など適宜の方法をずり埗る
ものである。 しかしお、本発明の皮膜圢成剀は、埓前の凊理
剀ず同様に、たずえば、連続した板や抌出型材な
どの単玔な圢状の玠圢材の堎合には、ロヌル塗
り、スプレヌ法などが、耇雑な圢状を有する補品
の堎合には、はけ塗り、浞挬法、スプレヌ法など
アルミ材の圢状に応じお適宜の方法によ぀おアル
ミ衚面に塗垃するこずができる。すなわち、これ
らの塗垃手段に応じた組成に調補された皮膜圢成
剀を、液枩20〜40℃で、塗垃量0.1〜m2
也燥膜芏準になるように塗垃し、぀いで100〜
250℃で10秒〜30分間加熱凊理し、皮膜の也燥ず
焌付固定化を行う。 なお、アルミ材が圧延又は抌出あるいはその他
の熱凊理埌で残熱を保有する状態のずきに冷华を
兌ねお本発明の皮膜圢成剀を塗垃すれば、その埌
の皮膜の加熱固定化工皋を省くこずができ、䜙熱
を利甚するこずができる。又、皮膜の䞍溶化を行
なう以前ならば、本発明の皮膜圢成剀を倚数回に
亘぀お繰返し塗垃しお皮膜厚を厚くするこずがで
きる。さらに、塗垃は、アルミ材を成圢加工した
埌に斜行する方法ばかりでなく、生成皮膜がプレ
ス成圢性にもすぐれおいるので、皮膜圢成埌に成
圢加工を行なうこずもでき、たずえばプレス打ち
抜き加工などに際しお成圢ダむスの摩耗を枛少し
埗るなどの副次的効果も発珟し埗るものである。 このようにしお皮膜圢成剀を塗垃しお埗た皮膜
は、クロム化合物を含み耐食性に富む無機質局か
らなる䞋局ず、むオン亀換暹脂を䞻䜓ずしお芪氎
性に富みか぀クロム化合物の溶出を抑える暹脂局
からなる䞊局ずの二局構造ずな぀おいる。このた
めに埓来の凊理剀に范べ遥かにすぐれた芪氎性ず
耐食性が氞続的に発揮されたものず考えられる。 〔発明の効果〕 本発明は、クロム化合物、フツ化物、むオン亀
換暹脂及びアクリル酞ポリマヌを構成成分ずし、
これらをそれぞれ所定量を配合したので、これを
アルミ材の衚面に塗垃した堎合、通垞の塗垃操䜜
が行ない埗、経幎劣化が少なく、すぐれた芪氎性
ず耐食性に富んだ皮膜を圢成し埗、圢成される皮
膜が少なくずも二局構造であ぀お、しかもその倖
局が暹脂局であるために皮膜圢成埌の加工性にす
ぐれおおり、加工甚ダむスの摩耗及び皮膜自䜓の
割れなどをおこすこずはなく、皮膜䞭の䟡のク
ロムの溶出も防止し埗るなどすぐれた効果が認め
られる。 次に、本発明の実斜䟋を述べる。 実斜䟋  (1) 芪氎性耐食皮膜圢成剀の調補 ポリアクリル酞20重量氎溶液商品名シナ
リマヌAC10H、日本玔薬瀟補に氎を加えポ
リアクリル酞の濃床が16ずなるようにし
た埌、粉砕埌也燥しお平均粒埄1Όに調補し
たスルホン酞ポリ゚チレン系陜むオン亀換暹脂
商品名アンバヌラむトIR−120、ロヌムハ
ヌス瀟補を16の割合で添加し、均䞀分
散させた溶液济及び硫酞クロムCr2
SO43・5H2O19.3、䞉酞化クロム
CrO31.5、フツ酞46HF2.1
の割合で混合した氎溶液济ずをあらか
じめ調補しおおき、䜿甚時に济ず济ずを同
量づ぀混合しお調補した。 (2) 皮膜の圢成及びプレス加工 アルミ材ずしお、厚さ0.15mmのAA3102アル
ミニりム合金コむル材を匱アルカリ性掗浄液で
脱脂掗浄した埌、ロヌル塗垃法によ぀お前項(1)
によ぀お調補した皮膜圢成剀を1.2m2也
燥膜芏準になるように塗垃し、熱颚也燥炉で
150℃で20分間加熱凊理しお皮膜の䞍溶性化、
固定化させた。 ぀いで、埗られたコむル材を䜿甚しおプレス
打抜き加工ずプレスしごき加工ずによ぀お熱亀
換噚甚クロスフむン材を補䜜した。 (3) 評䟡詊隓 (a) 芪氎性及び耐食性の詊隓方法及び評䟡 (ã‚€) 芪氎性の詊隓方法 (i) 初期性胜脱むオン氎䞭に浞挬埌、匕
き䞊げお30秒攟眮したずきの濡れ面積率
を枬定した。 (ii) 長期耐久性盞察湿床95、枩床50℃
の雰囲気䞭に500時間攟眮した埌の濡れ
面積率を枬定した。 (ロ) 耐食性の詊隓方法 (i) 塩氎噎霧JISZ23711955による塩
氎噎霧法に基づく1000時間埌の腐食面積
率を枬定した。 (ii) 酢酞酞性塩氎噎霧アルミニりム衚面
凊理技術研究組合詊隓芏栌ARS2132に
基づく100時間埌の腐食面積率を枬定し
た。 (ハ) 評䟡 䞊蚘詊隓の枬定結果は別衚に瀺す通りで
あり、本発明の皮膜凊理剀の芪氎性は、埓
来の凊理剀ず同等の芪氎性を発揮し、耐食
性は、いちじるしくすぐれおいるこずがわ
かる。 (b) プレス成圢性の評䟡 本発明の皮膜圢成剀を斜行したコむル材を
加工するのに甚いた加工甚ダむスは、埓来の
凊理剀を斜行した比范材に甚いた凊理の10倍
以䞊の凊理量に達した時点でもトラブルが党
くなく䜿甚するこずができ、ダむス摩耗量が
少ない皮膜が埗られるこずが確認された。こ
のこずは圧球摩耗詊隓でも同様に立蚌されお
いる。 実斜䟋  (1) 芪氎性耐食皮膜圢成剀の調補 酢酞クロムCr2C2H3O6・2H2Oを1.92
、、䞉酞化クロムCrO3を1.42
、フツ酞46HFを、正リン酞
100H3PO4をの割合で混合した
氎溶液济、及び、アクリル酞ポリマヌの
25重量氎溶液商品名プラむマヌ−、ロ
ヌムハヌス瀟補を氎で垌釈しおアクリル酞
ポリマヌ濃床を15.4ずした埌、平均粒埄
が0.5〜1Όのスルホン酞型むオン亀換暹脂
商品名−120B、オルガノ瀟補を固圢分で
50ずなるように混合しお均䞀に分散させ
た氎溶液济ずを予らかじめ調補しおお
き、䜿甚前にそれぞれ等量を混合しお調補し
た。 (2) 皮膜の圢成及びプレス加工 アルミ材ずしおトリクレン脱脂凊理した厚さ
0.12mmのAA1050合金補アルミニりム板にロヌ
ルコヌト機を甚いお実斜䟋ず同様に塗垃し、
同様に皮膜の䞍溶性化、固定化凊理を行ない厚
さ1Όの皮膜を圢成させた。぀いで、実斜䟋
ず同様にプレス加工を行な぀た。 (3) 評䟡詊隓 実斜䟋ず同様な詊隓方法を行な぀た。これ
らの結果は、次衚に瀺す通りであ぀お、埓来の
凊理剀に范べお耐食性がいちじるしくすぐれお
おり、塑性加工性は埓来のものの10倍以䞊の凊
理量に達した時点でもトラブルが党くなか぀
た。 比范䟋 垂販のアクリル暹脂塗料商品名りオヌタヌ
ゟル727、倧日本むンキ瀟補ずメラミン暹脂
塗料商品名りオヌタヌゟルS695、倧日本む
ンキ瀟補ずコロむダルシリカ商品名スノヌ
テツクス、日産化孊瀟補ずを固圢分で、それ
ぞれ48郚、12郚、40郚ずなるように混合したも
のを調補し、実斜䟋ず同様条件で塗垃・焌付き
固定化及びプレス加工を行ない、同様な詊隓を
行な぀た。結果は別衚に瀺す通りである。 【衚】
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for forming a film with excellent hydrophilicity, corrosion resistance, and plastic workability on the surface of aluminum and aluminum-containing materials (hereinafter simply referred to as "aluminum materials"). The present invention relates to a hydrophilic corrosion-resistant film-forming agent. [Conventional technology and problems] Aluminum materials are widely used for various purposes, but
Depending on the application, it is desired that the surface be so-called hydrophilic, meaning that it can be easily wetted by water. That is,
For example, in the case of heat exchangers, as performance increases and miniaturization progresses, attempts are being made to improve heat transfer performance by narrowing the fin spacing. However, in a heat exchanger, heat is exchanged with the atmosphere on the fin surface, and moisture in the atmosphere condenses on the fin surface. However, if the fin spacing is narrowed to, for example, 3 to 4 mm or less, Condensed water forms so-called bridges between the fins, which increases ventilation resistance and causes noise generation and a reduction in energy consumption efficiency. Therefore, attempts have been made to impart hydrophilicity to the fin surface to prevent the formation of bridges. In addition to heat exchangers, it is also used when you want to prevent dew condensation on the surface of aluminum materials in a humid atmosphere, when you want to prevent fogging on the surface of aluminum materials that require gloss, or when you want to increase the wettability of water and remove water from the surface of aluminum materials. In cases where it is desired to increase the amount of evaporation of aluminum, a hydrophilic film is formed on the surface of the aluminum material. As a means of imparting hydrophilicity, methods are taken depending on the aluminum material used, but a method of applying a treatment agent that imparts hydrophilicity is known. Additives such as silica powder and surfactants are known, but it is necessary to add a large amount of silica powder, which reduces the density of the inorganic film and reduces the corrosion resistance of the film. If the concentration of hexavalent chromium ions is increased to compensate, 6
Problems such as chromium ion leaching, dies wearing out when performing die molding after film formation, or surfactants leaching over time and deteriorating hydrophilicity. or,
If the hydrophilicity is increased, there are problems such as lowering the corrosion resistance of the aluminum material depending on the usage environment and deterioration of the hydrophilicity over time. )
is desired. [Means and effects for solving the problem] The present inventors have conducted repeated research in order to obtain a film-forming agent that can form a film that not only provides good hydrophilicity and corrosion resistance but also has excellent plastic workability. As a result, we have discovered that the object can be achieved by appropriately blending a chromium compound, fluoride, ion exchange resin, and acrylic acid polymer, and have accomplished the present invention. That is, in the present invention, a hexavalent chromium compound is added in an amount of 0.05 to 2 g/3 in terms of CrO 3 in an aqueous solution.
1 to 18 g of chromium compounds in terms of CrO3 ,
This is a hydrophilic corrosion-resistant film-forming agent for aluminum materials, which contains 0.1 to 5 g of fluoride as F - , 1 to 100 g of ion exchange resin powder as solid content, and 1 to 20 g of acrylic acid polymer as solid content. Examples of the aluminum material in the present invention include:
Examples include formed materials such as plates and extruded materials made of aluminum and its alloys, aluminum-coated steel materials (plated materials, clad materials, etc.), and products with specific shapes and assemblies such as heat exchangers. . Examples of the source of the trivalent chromium compound constituting the film forming agent of the present invention include chromium hydroxide,
Inorganic acid salts such as chromium nitrate, chromium fluoride, chromium phosphate, chromium sulfate, organic acid salts such as chromium acetate, chromium maleate, etc. can generally be used as a source of hexavalent chromium compounds. is a chromate, such as chromium trioxide, ammonium chromate, potassium chromate, sodium chromate, lithium chromate, or ammonium dichromate, potassium dichromate, sodium dichromate, lithium dichromate. Dichromates such as dichromates may be commonly used. In addition to adding trivalent chromium in the form of a compound as described above, a hexavalent chromium compound such as chromium trioxide is used, and a portion of this is added in formalin, formalin, etc.
It is also possible to mix trivalent compounds by reducing them with an organic reducing agent such as phenol or polyhydric alcohol, and compared to the case of mixing trivalent chromium compounds and hexavalent compounds, trivalent chromium It is preferable to use it on the low concentration side. Therefore, the hexavalent chromium compound in the film forming agent is added in the range of 0.05 to 2 g/in terms of CrO3 , and if the amount added is less than 0.05 g/,
The corrosion resistance effect was not sufficient, and the crosslinking reaction of the acrylic acid polymer was not carried out to a sufficiently satisfactory extent.
In this case, hexavalent chromium is likely to be eluted from the film, causing a pollution problem, and as a result, the corrosion resistance of the film is reduced. The trivalent chromium compound is used to compensate for the decrease in the effectiveness of chromium due to the restriction on the amount of hexavalent chromium compound used, and is added in a range of 1 to 18 g/in terms of CrO3 . The purpose of the project cannot be fully achieved. It should be noted that if the total amount of chromium exceeds 20 g/min, the surface of the aluminum material will be colored, the chromium will be locally concentrated, the film will become non-uniform, and it is also economically disadvantageous. Thus, the chromium compound acts on the surface of the aluminum material in cooperation with the fluoride to form an inorganic layer with high corrosion resistance, and also crosslinks the acrylic acid polymer to make it insolubilized. Next, examples of fluorides include fluoric acid,
Silicon fluoride, boron fluoride, titanium fluoride, zirconium fluoride, zinc fluoride, etc. are mentioned, and such soluble fluoride is expressed as fluorine ion (F - ) in an amount of 0.1 to 5 g/, preferably 0.7
Add in a range of ~3.5g/. If F - is less than 0.1g/, good corrosion resistance of the inorganic layer, which is mainly composed of reaction products between aluminum material and chromium compound, cannot be obtained, and if it is more than 5g/, the elution of aluminum material becomes noticeable and the film becomes dense. The film-forming agent bath is difficult to control. Thus, the fluoride acts cooperatively with the chromium compound to form an inorganic layer with corrosion resistance and good plastic workability on the aluminum surface. Next, ion exchange resins include compounds that have hydrophilic atomic groups and can act as water-insoluble surfactants, and are commercially available as ion exchange resin particles and ion exchange resin membranes. It can be appropriately selected from resins, and has a total ion exchange capacity of 0.5 [mg equivalent/g-DryR] or more, more preferably 1 [mg equivalent/g-Dry-R].
The above are appropriate. That is, for example,
Condensation type ion exchange resins include phenolsulfonic acid type, ethyleneimine-epichlorohydrin type, epoxy type, etc. Polymerized type ion exchange resins include styrene-divinylbenzene type, vinyl-divinylbenzene type, methacrylic acid-divinylbenzene type. Cation exchange resins are available with hydrophilic groups such as sulfonic acid groups, phosphonic acid groups, phosphinic acid groups, quaternary ammonium, or primary or tertiary amines. Alternatively, it is commercially available as an anion exchange resin, and an appropriate one can be selected from these and used. In addition, amphoteric ion exchange resins such as strongly basic anion exchange resins polymerized with acrylic acid, or fluorine resins into which hydrophilic atomic groups are introduced are also commercially available, and any of these can be used. Among these ion exchange resins, cation exchange resins are preferred because they have excellent hydrophilicity, and sulfonic acid type strongly acidic cation exchange resins are most suitable. In addition, the ion exchange resin is not limited to one type, but can be used in appropriate proportions depending on the desired degree of hydrophilicity, such as strong acidic and weakly acidic cation exchange resins or strongly basic and weakly basic anion exchange resins. Two or more types can be used in combination. Furthermore, not only new products but also recycled products that have been used in other processes can be used in the same way. Therefore, ion exchange resin is used as a powder with a particle size that corresponds to the desired film thickness. If it is difficult to obtain particles of such a particle size, it may be finely ground using a grinder.In order to obtain uniform hydrophilicity, the solid content should be 1-100g/, preferably 3-60
If the amount is less than 1 g/g, it is difficult to obtain uniform hydrophilicity, and if it is more than 100 g/, it is difficult to obtain uniform hydrophilicity.
Repeated swelling of the ion exchange resin reduces the adhesion and water resistance of the film. Therefore, the ion exchange resin acts as a water-insoluble surfactant, and also gives the film hydrophilicity that does not change over time and plastic workability that does not cause die wear when plastic working aluminum materials. be. Next, as the acrylic acid polymer, water-soluble or water-dispersible polyacrylic acid or polyacrylic ester (hereinafter referred to as resin) is used,
For example, acrylic acid, methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, maleic acid A compound obtained by polymerization or copolymerization of compounds such as , itaconic acid, etc. is used. Note that water-soluble resins undergo a chelate reaction with divalent or higher metal species (chromium ions in the present invention) coexisting in the film-forming agent during a relatively low-temperature, short-time heat treatment process, resulting in water-insoluble resins. The average molecular weight of water-soluble resins is preferably 10,000 to 300,000. Examples of such resins include Primal A-1, A-3, and A-5 (trade name). , ROHM &
(manufactured by Haas) are commercially available. For water-dispersed emulsion type resins, the upper limit of the molecular weight is not limited to this. Further, the acid value of the resin should be determined in relation to the molecular weight, but it is preferably 5 or more, and if it is less than this, high temperature and long-term treatment will be required, which is economically disadvantageous. However, the amount of resin added is 1 to 20 in terms of solid content.
g/, preferably in the range of 4 to 14 g/; below 1 g/and above 20 g/, the film tends to become uneven depending on the area, and the adhesion and corrosion resistance of the film also lacks uniformity. , the stability of the film former is also reduced. Further, when using an emulsion type resin, the amount is preferably 10 g/or less in view of the stability of the emulsion. In addition, the insolubilization of the water-soluble resin in the present invention is
As mentioned above, this is due to the formation of poorly soluble organic chromate compounds through a crosslinking reaction with coexisting chromium compounds, and the amount of chromium required for crosslinking is
() It is sufficient to add 0.2% or more, and the amount of the resin can be changed substantially arbitrarily as long as the content of the chromium compound of the present invention is met. Furthermore, it is also possible to improve the corrosion resistance of the film by adding a thermosetting water-soluble resin. The film forming agent of the present invention is prepared by blending these compounds within the above-mentioned range, and is
It is about 1.5 to 3. If desired, it is possible to add surfactants such as α-olefin sulfonate, sodium alkylnaphthalene sulfonate, etc. at a rate of about 0.5 to 1 g/as an initial hydrophilicity improver; acids, metaphosphoric acid, phosphorous acid, etc.
Addition of 0.1 to 50 g of PO 3-4 increases the uniform application of the film and further improves the long-term stability of hydrophilicity, so it can be used depending on the application method. In addition, silica powder such as silica sol or fumed silica can be used as a thickener for the film forming agent, a dispersant for ion exchange resins, or a hydrophilicity imparting aid.
There is no problem in adding about 0.5 to 4 g/approximately, or blending the total amount of additives such as antifungal agents and slip agents that are added to ordinary paints to about 0.01 to 0.5 g/approximately. As a method for preparing the film forming agent of the present invention, for example, a bath A in which ion exchange resin powder is uniformly dispersed in a resin liquid and a bath B in which a chromium compound and a fluoride are mixed and dissolved in water are separately prepared. A method in which both baths are prepared in advance or immediately before use and mixed together. Or A' bath in which ion exchange resin powder is uniformly dispersed in the resin liquid and trivalent chromium liquid is added;
A method in which fluoride and hexavalent chromium are mixed and prepared in bath B' immediately before use. or,
Mix all compounds immediately before use. Furthermore, any suitable method may be used, such as a method in which baths A and B or baths A' and B' are separately applied onto the surface of the aluminum material and mixed on the surface of the aluminum material. However, the film-forming agent of the present invention, like the conventional processing agents, requires complicated roll coating, spraying, etc. methods for forming materials with simple shapes such as continuous plates and extruded materials. In the case of a product having a specific shape, it can be applied to the aluminum surface by an appropriate method depending on the shape of the aluminum material, such as brushing, dipping, or spraying. That is, a film forming agent prepared to have a composition suitable for these application means is applied at a liquid temperature of 20 to 40°C in an application amount of 0.1 to 5 g/m 2 .
(dry film standard), then apply to
Heat treatment is performed at 250℃ for 10 seconds to 30 minutes to dry and bake the film. Note that if the film forming agent of the present invention is applied to the aluminum material while still retaining residual heat after rolling, extrusion, or other heat treatment, the subsequent heating and fixing process of the film can be omitted. You can use the residual heat. Furthermore, before the film is insolubilized, the film thickness can be increased by repeatedly applying the film forming agent of the present invention many times. Furthermore, coating can be applied not only after forming the aluminum material, but also because the resulting film has excellent press formability, so it can also be applied after forming the film.For example, it can be applied during press punching, etc. Secondary effects such as reducing die wear may also occur. The film obtained by applying the film-forming agent in this way consists of a lower layer consisting of an inorganic layer containing a chromium compound and highly corrosion resistant, and a resin layer mainly composed of an ion exchange resin that is highly hydrophilic and suppresses the elution of chromium compounds. It has a two-layer structure with an upper layer. This is thought to be the reason why the treatment agent permanently exhibited far superior hydrophilicity and corrosion resistance compared to conventional treatment agents. [Effects of the Invention] The present invention has a chromium compound, a fluoride, an ion exchange resin, and an acrylic acid polymer as constituent components,
Since we have blended a predetermined amount of each of these, when applied to the surface of an aluminum material, normal coating operations can be performed, and a film with little deterioration over time and excellent hydrophilicity and corrosion resistance can be formed. The resulting film has at least a two-layer structure, and the outer layer is a resin layer, so it has excellent processability after forming the film, and does not cause wear of processing dies or cracks in the film itself. Excellent effects are recognized, such as being able to prevent the elution of hexavalent chromium in the film. Next, examples of the present invention will be described. Example 1 (1) Preparation of hydrophilic corrosion-resistant film forming agent Water was added to a 20% by weight aqueous solution of polyacrylic acid (trade name Schurimar AC10H, manufactured by Nippon Pure Chemical Industries, Ltd.) so that the concentration of polyacrylic acid was 16 g/ml. After that, a sulfonic acid polyethylene cation exchange resin (trade name: Amberlite IR-120, manufactured by Rohm & Haas), which had been ground and dried to have an average particle size of 1 ÎŒm, was added at a rate of 16 g/ml and uniformly dispersed. solution (A bath) and chromium sulfate (Cr 2
(SO 4 ) 3・5H 2 O) 19.3 g/, chromium trioxide (CrO 3 ) 1.5 g/, hydrofluoric acid (46% HF) 2.1 g/
An aqueous solution (bath B) was prepared in advance, and when used, the same amounts of bath A and bath B were mixed together. (2) Film formation and press processing As the aluminum material, after degreasing and cleaning a 0.15 mm thick AA3102 aluminum alloy coil material with a weak alkaline cleaning solution, it was coated as described in the previous section (1) using a roll coating method.
A film-forming agent prepared by
Heat treatment at 150℃ for 20 minutes to make the film insoluble.
fixed. Next, using the obtained coil material, a cross fin material for a heat exchanger was manufactured by press punching and press ironing. (3) Evaluation test (a) Test method and evaluation of hydrophilicity and corrosion resistance (a) Test method of hydrophilicity (i) Initial performance: After immersing in deionized water, take it out and leave it for 30 seconds. It was measured. (ii) Long-term durability: relative humidity 95%, temperature 50℃
The wetted area ratio was measured after being left in the atmosphere for 500 hours. (b) Corrosion resistance test method (i) Salt spray: The corrosion area rate was measured after 1000 hours based on the salt spray method according to JISZ2371 (1955). (ii) Acetic acid salt spray: The corrosion area rate was measured after 100 hours based on the Aluminum Surface Treatment Technology Research Association test standard ARS2132. (c) Evaluation The measurement results of the above test are shown in the attached table, and it can be seen that the film treatment agent of the present invention exhibits hydrophilicity equivalent to that of conventional treatment agents, and its corrosion resistance is significantly superior. Recognize. (b) Evaluation of press formability The processing die used to process the coil material treated with the film-forming agent of the present invention was processed at least 10 times as much as the treatment used for the comparative material treated with the conventional treatment agent. It was confirmed that the product could be used without any trouble even after reaching a certain amount, and that a film with a small amount of die wear could be obtained. This is also proven in the pressure ball abrasion test. Example 2 (1) Preparation of hydrophilic corrosion-resistant film forming agent Chromium acetate (Cr 2 (C 2 H 3 O) 6・2H 2 O)
g/, chromium trioxide (CrO 3 ) 1.42g/
, an aqueous solution (A bath) containing 1 g of hydrofluoric acid (46% HF) and 1 g of orthophosphoric acid (100% H 3 PO 4 ), and an acrylic acid polymer.
A 25% by weight aqueous solution (trade name: Primer A-1, manufactured by Rohm & Haas) was diluted with water to give an acrylic acid polymer concentration of 15.4 g/cm, and then a sulfonic acid type ion exchange resin with an average particle size of 0.5 to 1 ÎŒm was prepared. (Product name: R-120B, manufactured by Organo) in solid content.
An aqueous solution (bath B) was prepared in advance by mixing and uniformly dispersing 50 g of each, and equal amounts of each were mixed before use. (2) Formation of film and press processing Thickness of aluminum material treated with Triclean degreasing
It was coated on a 0.12 mm AA1050 alloy aluminum plate using a roll coater in the same manner as in Example 1,
Similarly, the film was made insoluble and fixed to form a film with a thickness of 1 ÎŒm. Then, press working was performed in the same manner as in Example 1. (3) Evaluation test The same test method as in Example 1 was conducted. These results are shown in the table below, and the corrosion resistance is significantly superior to that of conventional treatment agents, and the plastic workability shows no trouble at all even when the throughput is more than 10 times that of conventional treatment agents. Ta. Comparative example Commercially available acrylic resin paint (trade name Watersol 727, manufactured by Dainippon Ink Co., Ltd.), melamine resin paint (trade name Watersol S695, manufactured by Dainippon Ink Co., Ltd.), and colloidal silica (trade name Snotex, manufactured by Nissan Chemical Co., Ltd.) A mixture of 48 parts, 12 parts, and 40 parts of solids was prepared, and the same tests were conducted by coating, fixing by baking, and pressing under the same conditions as in the example. Ta. The results are shown in the attached table. 【table】

Claims (1)

【特蚱請求の範囲】[Claims]  氎溶液䞭に、䟡のクロム化合物をCrO3換
算で0.05〜、䟡のクロム化合物を
CrO3換算で〜18、フツ化物をF-ずしお
0.1〜、むオン亀換暹脂粉末を固圢分で
〜100、アクリル酞ポリマヌを固圢分で
〜20配合しおなるこずを特城ずするアル
ミ材甚芪氎性耐食皮膜圢成剀。
1 In an aqueous solution, add 0.05 to 2 g of a hexavalent chromium compound (calculated as CrO 3 ) and a trivalent chromium compound
1 to 18g/ in terms of CrO3 , fluoride as F-
A hydrophilic corrosion-resistant film forming agent for aluminum material, characterized in that it contains 0.1 to 5 g/solid content of ion exchange resin powder, and 1 to 100 g/solid content of acrylic acid polymer.
JP2435785A 1985-02-13 1985-02-13 Hydrophilic corrosion-resisting film-forming material Granted JPS61186481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2435785A JPS61186481A (en) 1985-02-13 1985-02-13 Hydrophilic corrosion-resisting film-forming material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2435785A JPS61186481A (en) 1985-02-13 1985-02-13 Hydrophilic corrosion-resisting film-forming material

Publications (2)

Publication Number Publication Date
JPS61186481A JPS61186481A (en) 1986-08-20
JPH0348271B2 true JPH0348271B2 (en) 1991-07-23

Family

ID=12135940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2435785A Granted JPS61186481A (en) 1985-02-13 1985-02-13 Hydrophilic corrosion-resisting film-forming material

Country Status (1)

Country Link
JP (1) JPS61186481A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4652592B2 (en) * 2001-03-15 2011-03-16 日本ペむント株匏䌚瀟 Metal surface treatment agent

Also Published As

Publication number Publication date
JPS61186481A (en) 1986-08-20

Similar Documents

Publication Publication Date Title
CN1169886C (en) Rust preventer of aluminium non-chromate, rust preventing method and rustproof aluminium articles
US4421789A (en) Process for treating the surfaces of aluminum heat exchangers
US4650527A (en) Hydrophilic surface-treating process for an aluminum article
JPS621882A (en) Corrosion-resisting hydrophilic film-forming agent
JP3373802B2 (en) Method for hydrophilic treatment of aluminum material, base treating agent and hydrophilic paint
US4775588A (en) Metal substrates having hydrophilic resin paints containing finely divided ion exchange resins on its surface
JPH0422986B2 (en)
WO1993015154A1 (en) Autodeposition coating composition
GB1583103A (en) Method for the treatment of metal surfaces
JPH05214265A (en) Self-depositing water-based coating composition
JPH0348271B2 (en)
JPH086063B2 (en) Hydrophilic surface treatment agent and treatment method
CA1216695A (en) Hydrophilic-film-forming preparation
JPH086064B2 (en) Hydrophilic surface treatment agent and treatment method
JP3373801B2 (en) Aluminum substrate surface treatment method and surface treatment agent
JP2000328259A (en) Precoated fin material for heat exchanger
JPH0571382B2 (en)
JPH0159356B2 (en)
JPS6210280A (en) Corrosion resistant hydrophilic film treating agent
JPS61136685A (en) Formation of hydrophilic and corrosion resistant film
US5510410A (en) Autodeposition coating composition
JPH0215383B2 (en)
JP2000119865A (en) Coating type surface treatment agent of aluminum or aluminum alloy and surface treatment method
JPS6057394B2 (en) Pretreatment method for powder coating
JPS621476B2 (en)