JPS61186481A - Hydrophilic corrosion-resisting film-forming material - Google Patents

Hydrophilic corrosion-resisting film-forming material

Info

Publication number
JPS61186481A
JPS61186481A JP2435785A JP2435785A JPS61186481A JP S61186481 A JPS61186481 A JP S61186481A JP 2435785 A JP2435785 A JP 2435785A JP 2435785 A JP2435785 A JP 2435785A JP S61186481 A JPS61186481 A JP S61186481A
Authority
JP
Japan
Prior art keywords
film
chromium
ion exchange
fluoride
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2435785A
Other languages
Japanese (ja)
Other versions
JPH0348271B2 (en
Inventor
Toru Ishii
透 石井
Masashi Isobe
昌司 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2435785A priority Critical patent/JPS61186481A/en
Publication of JPS61186481A publication Critical patent/JPS61186481A/en
Publication of JPH0348271B2 publication Critical patent/JPH0348271B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/37Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also hexavalent chromium compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PURPOSE:To enable formation of a film excelling in corrosion resistance and plastic workability by blending each proper amount of sexivalent and trivalent Cr compounds, a fluoride, ion exchange resin powder, and an acrylic acid polymer with a water solvent. CONSTITUTION:The hydrophilic film-forming material is prepared by blending, with a water solvent, a sexivalent Cr compound such as chromium trioxide by 0.05-2g/l expressed in terms of CrO3, a trivalent Cr compound such as chromium sulfate by 1-18g/l expressed in terms of CrO3, a fluoride such as hydrofluoric acid by 0.1-5g/l in the form of F<->, ion exchange resin powder by 1-100g/l as a solid, and an acrylic acid polymer by 1-20g/l as a solid. On application of this to the surface of metallic material, a film hardly causing secular deterioration and having superior corrosion resistance as well as excellent hydrophilic property can be formed. Moreover, as the outer layer of this film is made of resin, workability after film formation can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、金属材表面に親水性、耐食性及び塑性加工性
にすぐれた皮膜を形成し得る親水性耐食性皮膜形成剤に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a hydrophilic corrosion-resistant film-forming agent capable of forming a film with excellent hydrophilicity, corrosion resistance, and plastic workability on the surface of a metal material.

〔従来の技術及び問題点〕[Conventional technology and problems]

金属材は0種々の用途に多用されているが、用途ζ二よ
ってはその表面が水によく濡れるいわゆる親水性である
ことが望まれている。すなわち、たとえば熱交換器の場
合、高性能化や小型化されるに伴なって、フィン間隔を
狭くして伝熱性能を向上させることが試みられている。
Metal materials are widely used for various purposes, and depending on the purpose, it is desired that the surface be hydrophilic, meaning that it can be easily wetted by water. That is, in the case of heat exchangers, for example, as performance becomes higher and smaller, attempts are being made to improve heat transfer performance by narrowing the fin spacing.

しかして熱交換器は、フィン表面C;おいて大気との間
に熱交換が行なわれ、フィン表面に大気中の水分が凝縮
するが、フィン間隔をたとえば3〜4m以下のように狭
はめた場合、凝縮した水分がフィン間にいわゆるブリッ
ジを形成するため(二0通風抵抗が増加して騒音の発生
やエネルギー消費効率を低下させる因となるものである
。したがって、フィン表面に親水性を付与してブリッジ
の形成を防止する試みがなされている。又、熱交換器以
外C二も、湿潤雰囲気内で金属表面の結露を防止したい
場合、光沢を必要とする金属表面の曇り止めをしたい場
合、あるいは水の濡れ性を高め金属表面から水の蒸発量
を高めたい場合などにおいても当該金属表2面に親水性
皮膜を形成することが行なわれている。
Therefore, in the heat exchanger, heat exchange is performed with the atmosphere at the fin surface C; moisture in the atmosphere condenses on the fin surface, but the fin spacing is narrowed to, for example, 3 to 4 m or less. In this case, condensed water forms so-called bridges between the fins (20), which increases ventilation resistance and causes noise generation and lowers energy consumption efficiency. Attempts have been made to prevent the formation of bridges.In addition to heat exchangers, C2 is also used when it is desired to prevent dew condensation on metal surfaces in a humid atmosphere, or when it is desired to prevent fogging on metal surfaces that require gloss. Alternatively, when it is desired to increase the wettability of water and increase the amount of water evaporated from the metal surface, a hydrophilic film is formed on two surfaces of the metal surface.

親水性を与える手段としては、使用する金属材に応じた
手段がとられているが、親水性を付与する処理剤を塗布
する方法が知られ、塗布剤としては、たとえば、樹脂塗
料C:親水性付与剤としてシリカ粉末や界面活性剤を添
加したものなどが知られているが、多量のシリカ粉末を
添加する必要があり、そのため無機質皮膜の緻密性を低
下させ皮膜の耐食性を低下させ、これを補償するために
6価りロムイオン濃度を高めると生成皮膜から6価クロ
ムイオンが溶出したり、皮膜形成後C:ダイス成形加工
などを施行する場合にダイスの摩耗を生じたり、あるい
は、界面活性剤が経時的に溶出し。
As a means of imparting hydrophilicity, means are taken depending on the metal material used, but a method of applying a treatment agent that imparts hydrophilicity is known.As a coating agent, for example, resin paint C: Hydrophilic Additions of silica powder and surfactants are known as properties imparting agents, but it is necessary to add a large amount of silica powder, which reduces the density of the inorganic film and reduces the corrosion resistance of the film. If the concentration of hexavalent chromium ions is increased to compensate for The agent elutes over time.

親水性を劣化させるといったような問題や、親水性を高
めると使用環境により金属材の耐食性を低下させるとか
親水性が経時的に劣化するなどといった問題もあり、よ
り有効な親水性耐食性皮膜形成剤(以下、皮膜形成剤と
いう)が望まれている。
There are problems such as deterioration of hydrophilicity, and problems such as increasing hydrophilicity may reduce the corrosion resistance of metal materials depending on the usage environment, and hydrophilicity deteriorates over time. (hereinafter referred to as a film forming agent) is desired.

〔問題点を解決するための手段及び作用〕本発明者らは
、良好な親水性、耐食性を付与するとともに塑性加工性
にもすぐれた皮膜を形成し得る皮膜形成剤を得べく研究
を重ねた結果、クロム化合物、フッ化物、イオン交換樹
脂及びアクリル酸ポリマーを適正に配合することによっ
て目的を達し得ることを見出して本発明をなしたもので
ある。すなわち9本発明は、水溶媒中に、6価のクロム
化合物をCrys換算で0,05〜29/l、3価のク
ロム化合物をCrys換算で1〜189/l、フッ化物
なF−として0.1〜51/l、イオン交換樹脂粉末を
固形分で1〜100t/l、アクリル酸ポリマーを固形
分で1〜209/L 配合した親水性耐食性皮膜形成剤
である。
[Means and effects for solving the problem] The present inventors have conducted repeated research in order to obtain a film-forming agent that can form a film that not only provides good hydrophilicity and corrosion resistance but also has excellent plastic workability. As a result, we have discovered that the object can be achieved by appropriately blending a chromium compound, fluoride, ion exchange resin, and acrylic acid polymer, and have accomplished the present invention. That is, 9 the present invention contains a hexavalent chromium compound in an aqueous solvent of 0.05 to 29/l in terms of Crys, a trivalent chromium compound of 1 to 189/l in terms of Crys, and a fluoride F- of 0. This is a hydrophilic corrosion-resistant film-forming agent containing ion exchange resin powder in a solid content of 1 to 100 t/l and acrylic acid polymer in a solid content of 1 to 209/l.

本発明における金属材としては、たとえば、アルミニウ
ム及びその合金材、ステンレス、アルミニウムあるいは
亜鉛被覆鋼材(メッキ材又はクラツド材など)などで製
作された板や押出型材のような素形材、又は熱交換器の
ような特定形状品。
In the present invention, metal materials include, for example, formed materials such as plates and extruded materials made of aluminum and its alloys, stainless steel, aluminum or zinc-coated steel materials (plated materials, clad materials, etc.), or heat exchange materials. Items with specific shapes such as vessels.

組立品などがあげられる。Examples include assembled products.

本発明の皮膜形成剤を構成する3価のクロム化合物の供
給源としては、たとえば水酸化クロム。
Examples of the source of the trivalent chromium compound constituting the film forming agent of the present invention include chromium hydroxide.

硝酸クロム、フッ化クロム、リン酸クロム、硫酸クロム
のような無機酸塩、酢酸クロム、マレイン酸クロムなど
のような有機酸塩が一般的に使用し得、6価のクロム化
合物の供給源としては、たとえば二酸化クロム、クロム
酸アンモニウム、クロム酸カリウム、クロム酸ナトリウ
ム、クロム酸リチウムなどのようなりロム酸塩、あるい
は重クロム酸アンモニウム、重クロム酸カリクム1重ク
ロム酸ナトリウム、重クロム酸リチウムのような重クロ
ム酸塩などが一般に使用し得る。なお、3価のクロムは
、前記のような化合物の形で添加する以外に、6価のク
ロム化合物、たとえば三酸化クロムを使用し、この一部
をたとえばホルマリン。
Inorganic acid salts such as chromium nitrate, chromium fluoride, chromium phosphate, chromium sulfate, organic acid salts such as chromium acetate, chromium maleate, etc. can generally be used as sources of hexavalent chromium compounds. chromates, such as chromium dioxide, ammonium chromate, potassium chromate, sodium chromate, lithium chromate, or ammonium dichromate, potassium dichromate, sodium dichromate, lithium dichromate, etc. Dichromates such as dichromates and the like may be commonly used. In addition to adding trivalent chromium in the form of a compound as described above, a hexavalent chromium compound such as chromium trioxide is used, and a part of this is added to formalin.

フェノールあるいは多価アルコールのような有機還元剤
で還元することにより3価の化合物として混在させるこ
とも可能であり、3価のクロム化合物と6価の化合物と
を混合する場合に較べて3価クロムの低濃度側で使用す
ることが好ましい。
It is also possible to mix trivalent compounds by reducing them with an organic reducing agent such as phenol or polyhydric alcohol. It is preferable to use it on the low concentration side.

しかして、皮膜形成剤中の6価クロム化合物胤Crys
換算で0.05〜2?/lの範囲で添〃aするものであ
って、添加量が0.05 g/l以下では、耐食効果が
十分でなく、アクリル酸ポリマーの架橋反応も十分満足
する程度(二行なわれず、29/を以上では。
Therefore, the hexavalent chromium compound seed Crys in the film forming agent
0.05 to 2 in terms of conversion? If the amount added is less than 0.05 g/l, the corrosion resistance effect will not be sufficient, and the crosslinking reaction of the acrylic acid polymer will be sufficiently satisfactory (29 / That's all for now.

皮膜から6価クロムが溶出し易くなり公害上問題が生じ
るし、結果的C二皮膜の耐食性を低下させる。
Hexavalent chromium is likely to be eluted from the coating, causing pollution problems, and as a result, the corrosion resistance of the C2 coating is reduced.

3価クロム化合物は、6価クロム化合物の使用量制限に
よるクロムの効果の低下を補うものであって、  Cr
ys換算で1〜18 f/lの範囲で添加するものであ
り、この範囲外では、前記の目的を十分に達し得ないも
のである。なお、全クロム量が20g/l以上になると
金属表面着色、クロムの局部的濃縮をおこし、皮膜の不
均一化がおこり、さらに経済的にも不利である。しかし
て、クロム化合物は。
Trivalent chromium compounds compensate for the decrease in the effectiveness of chromium due to restrictions on the amount of hexavalent chromium compounds used.
It is added in a range of 1 to 18 f/l in terms of ys, and outside this range, the above purpose cannot be fully achieved. Incidentally, if the total amount of chromium exceeds 20 g/l, the metal surface will be colored, the chromium will be locally concentrated, the film will become non-uniform, and it is also economically disadvantageous. However, chromium compounds.

フッ化物と協動的(=金属材表面に作用して耐食性に富
む無機質層を形成させるとともにアクリル酸ポリマーを
架橋させて不溶化させる。
It works in conjunction with fluoride (=acts on the surface of metal materials to form an inorganic layer with high corrosion resistance, and also crosslinks the acrylic acid polymer to make it insolubilized.

次に、フッ化物としては、たとえば、フッ酸。Next, as a fluoride, for example, hydrofluoric acid.

フッ化ケイ素、フッ化ホウ素、フッ化テタニクム。Silicon fluoride, boron fluoride, tetanicum fluoride.

フッ化ジルコニウム、フッ化亜鉛などがあげられ。Examples include zirconium fluoride and zinc fluoride.

このような可溶性フッ化物をフッ素イオン(F−)とし
て、0.1〜51/l、  好ましくは、0.7〜3.
5t/lの範囲で添加する。F−が0.1 g/l以下
では、金属材とクロム化合物との反応生成物を主体とす
る無機質層の良好な耐食性が得られず、59/を以上で
は。
Such soluble fluoride is 0.1-51/l, preferably 0.7-3.
Add in a range of 5t/l. If F- is less than 0.1 g/l, good corrosion resistance of the inorganic layer, which is mainly composed of a reaction product of a metal material and a chromium compound, cannot be obtained, and if F- is more than 59/l.

金属材の溶出がいちじるしくなりかつ皮膜の緻密性も低
下し、皮膜形成剤中の管理が困難である。
The elution of the metal material becomes noticeable and the density of the film decreases, making it difficult to control it in the film-forming agent.

しかして、フッ化物は、クロム化合物と協働的に作用し
て金属表面に耐食性かつ良塑性加工性無機層を形成する
ものである。
Thus, fluoride acts cooperatively with the chromium compound to form an inorganic layer with corrosion resistance and good plastic workability on the metal surface.

次に。イオン交換樹脂としては、親水性原子団を有し、
水に不溶性の界面活性剤として作用し得る化合物を包含
するものであり、イオン交換樹脂粒及びイオン交換樹脂
膜として市販されている樹脂類の中から適宜選択し得る
ものであり、総イオン交換容量が0.5〔■当量/f−
DryR)以上のもの。
next. As an ion exchange resin, it has a hydrophilic atomic group,
It includes compounds that can act as water-insoluble surfactants, and can be appropriately selected from resins commercially available as ion exchange resin particles and ion exchange resin membranes, and has a total ion exchange capacity. is 0.5 [■equivalent/f-
DryR) or more.

より好ましくは、1[岬当量/f−Dry−R]以上の
ものが適当である。すなわち、たとえば、縮合系イオン
交換樹脂として、フェノールスルホン酸系、エチレンイ
ミン−エビクロロヒドリン系、エポキン系など1重合系
イオン交換樹脂として、スチレン−ジビニルベンゼン系
、とニル−ジビニルベンゼン系、メタクリル酸−ジビニ
ルベンゼン系などが入手可能・であるが、これらに親水
性原子団として。
More preferably, it is 1 [Misaki equivalent/f-Dry-R] or more. That is, for example, condensation type ion exchange resins such as phenol sulfonic acid type, ethyleneimine-ebichlorohydrin type, and Epoquin type, monopolymer type ion exchange resins such as styrene-divinylbenzene type, andyl-divinylbenzene type, methacryl Acids such as divinylbenzene are available, but these have hydrophilic atomic groups.

スルホン酸基、ホスホン酸基、ホスフィン酸基あるいは
第四級アンモニウム、第一級ないし第三級アミンを付与
したものが陽イオン交換樹脂又は陰イオン交換樹脂とし
て市販されており、これらから適宜選択して使用するこ
とができる。又、たとえば強塩基性陰イオン交換樹脂に
アクリル酸を重合させたような両性イオン交換樹脂ある
いは親水性原子団を導入したフッ素樹脂なども市販され
ており、いずれも使用可能である。これらのイオン交換
樹脂の中、親水性にすぐれている点で陽イオン交換樹脂
が好適であり、さらにスルホン酸型強酸性陽イオン交換
樹脂が最適である。なお、イオン交換樹脂は、一種類だ
けでなく、所望の親水性度に応じて、たとえば強酸性と
弱酸性の陽イオン交換樹脂あるいは強塩基性と弱塩基性
の陰イオン交換樹脂を適宜の割合で二種類以上配合して
用いることができる。さらに、新品だけでなく、他工程
で使用済みの再生品であっても同様(:使用することが
できる。
Those to which sulfonic acid groups, phosphonic acid groups, phosphinic acid groups, quaternary ammonium, or primary or tertiary amines have been added are commercially available as cation exchange resins or anion exchange resins, and appropriately selected from these. can be used. Furthermore, amphoteric ion exchange resins such as strongly basic anion exchange resins polymerized with acrylic acid, and fluororesins with hydrophilic atomic groups introduced are also commercially available, and any of these can be used. Among these ion exchange resins, cation exchange resins are preferred because they have excellent hydrophilicity, and sulfonic acid type strongly acidic cation exchange resins are most suitable. In addition, the ion exchange resin is not limited to one type, but can be used in appropriate proportions depending on the desired degree of hydrophilicity, such as strong acidic and weakly acidic cation exchange resins or strongly basic and weakly basic anion exchange resins. Two or more types can be used in combination. Furthermore, not only new products but also recycled products that have been used in other processes can be used.

しかして、イオン交換樹脂は、所望の皮膜厚に応じた粒
度の粉体が用いられるが、たとえば皮膜厚が5Iin以
下の場合、皮膜の平滑性や均質性を加味するとき平均粒
径IIJ!mJ21下のものを使用することが好ましく
、このような粒径のものが入手し難いときは、粉砕機に
よって微粉砕して調製して使用すればよく、均一な親水
性を得るために固形分として1〜100 F/4好まし
くは、3〜60 g/l添加するものであって、1g/
l以下では、均一な親水性が得難<、1ooy7を以上
では、イオン交換樹脂の膨潤の繰り返えしにより皮膜の
密着性や耐水性が低下するものである。    。
Therefore, the ion exchange resin is used as a powder with a particle size that corresponds to the desired film thickness. For example, when the film thickness is 5 Iin or less, the average particle size IIJ! It is preferable to use particles with a particle size of mJ21 or less. If particles with such a particle size are difficult to obtain, they can be finely ground using a grinder. 1 to 100 F/4, preferably 3 to 60 g/l, and 1 g/l
If it is less than 1, it is difficult to obtain uniform hydrophilicity, and if it is more than 1ooy7, the adhesion and water resistance of the film will decrease due to repeated swelling of the ion exchange resin. .

しかして、イオン交換樹脂は、水に不溶性の界面活性剤
として作用するとともに、皮膜に経時変化の少ない親水
性と金属材を塑性加工するときのダイス摩耗を発生しな
い塑性加工性を付与するものである。
Therefore, the ion exchange resin acts as a water-insoluble surfactant, and also gives the film hydrophilicity that does not change over time and plastic workability that does not cause die wear when plastic working metal materials. be.

次に、アクリル酸ポリマーとしては、水溶性又は水分散
性のポリアクリル酸あるいはポリアクリル酸エステル(
以下、樹脂と称す)が使用され。
Next, as the acrylic acid polymer, water-soluble or water-dispersible polyacrylic acid or polyacrylic ester (
(hereinafter referred to as resin) is used.

たとえば、アクリル酸、アクリル酸メチル、アクリル酸
エチル、アクリル酸イソプロピル、アクリル酸n−ブチ
ル、メタクリル酸、メタクリル酸メチル、メタクリル酸
エチル、メタクリル酸イソプロピル、メタクリル酸n−
ブチル、メタクリル酸イソブチル、マレイン酸、イタコ
ン酸などのような化合物の重合あるいは共重合C二よっ
て得られたものを使用する。なお、水溶性の樹脂では、
比較的低温、短時間の加熱処理工程中に皮膜形成剤中に
共存する2価以上の金属種(本発明ではクロムイオン)
とキレート反応をおこし、水に不溶性となる必要があり
9分子量としては、水溶性の樹脂では、平均分子量が1
0,000〜300.000のものであることが望まし
く、このような樹脂として、ブライマールA−1,A−
3,A−5(商品名、ローム&へ−ス社製)などが市販
されている。水分散型エマルジョンタイプの樹脂では9
分子量め上限はこの限りではない。又、樹脂の酸価は9
分子量との相関において決められるべきであるが、5以
上であることが好ましく、これ以下では、高温長時間の
処理が必要となり経済的にも不利である。
For example, acrylic acid, methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-methacrylate
Those obtained by polymerization or copolymerization of compounds such as butyl, isobutyl methacrylate, maleic acid, itaconic acid, etc. are used. In addition, for water-soluble resins,
Metal species of divalent or higher valence (chromium ion in the present invention) coexisting in the film forming agent during the relatively low temperature, short time heat treatment process
It is necessary for water-soluble resin to undergo a chelate reaction and become insoluble in water.
It is desirable that the resin has a molecular weight of 0,000 to 300,000, and such resins include Brimar A-1, A-
3, A-5 (trade name, manufactured by Rohm & Hess), etc. are commercially available. 9 for water-dispersed emulsion type resins
The upper limit for molecular weight is not limited to this. Also, the acid value of the resin is 9
Although it should be determined based on the correlation with the molecular weight, it is preferably 5 or more; if it is less than this, high temperature and long-term treatment will be required, which is economically disadvantageous.

しかして、樹脂の添加量は、固形分で1〜20f/4好
ましくは、4〜14 t/lの範囲であり、 1 t/
を以下及び20 g/l以上では、いずれも皮膜が部位
により不均一化し易くなり、皮膜の密着性や耐食性も均
一性を欠くようになり、皮膜形成剤の安定性も減少する
。又、エマルジョン型樹脂を使用するときには、エマル
ジョンの安定性から10 f/L以下とすることが好ま
しい。
Therefore, the amount of resin added is in the range of 1 to 20 f/4 in terms of solid content, preferably 4 to 14 t/l, and 1 t/l.
If the amount is less than 20 g/l or more than 20 g/l, the film tends to become uneven depending on the region, the adhesion and corrosion resistance of the film become non-uniform, and the stability of the film forming agent decreases. Furthermore, when using an emulsion type resin, it is preferable to keep it at 10 f/L or less in view of the stability of the emulsion.

なお9本発明における水溶性樹脂の不溶化は。Note that the insolubilization of the water-soluble resin in the present invention is as follows.

前述のように共存するクロム化合物との架橋反応による
難溶性の有機クロメート化合物の生成によるものであっ
て、架橋に必要なりロム量は、 CrQ[)0.2%以
上添加すればよ゛く0本発明のクロム化合物含有量であ
れば樹脂の量は実質的1:任意に変えることができる。
As mentioned above, this is due to the formation of poorly soluble organic chromate compounds through a crosslinking reaction with coexisting chromium compounds, and the amount of chromium required for crosslinking can be reduced to zero by adding 0.2% or more of CrQ[). As long as the chromium compound content of the present invention is present, the amount of resin can be substantially 1: arbitrarily changed.

さらに、熱硬化型の水溶性樹脂を加えることによって皮
膜の耐食性を向上させることも可能である。
Furthermore, it is also possible to improve the corrosion resistance of the film by adding a thermosetting water-soluble resin.

本発明の皮膜形成剤は、これらの化合物類を前述の範囲
で配合して調製されるものであって、 pH1,5〜3
程度である。なお、所望により初期親水性向上剤として
たとえばα−オレフィンスルホネート、アルキルナフタ
レンスルホン酸ナトリウムなどのような界面活性剤を0
.5〜1 g/l程度添加することは支障がなく、正す
ン酸、ピロリン酸、ポリリン酸、メタリン酸、亜リン酸
などをPOiとして0.1〜50 g/l添加すると皮
膜の均一塗布性が増し親水性の長期安定性をより向上さ
せるので塗布手段書一応じて使用することができる。
The film forming agent of the present invention is prepared by blending these compounds in the above-mentioned range, and has a pH of 1.5 to 3.
That's about it. Incidentally, if desired, a surfactant such as α-olefin sulfonate, sodium alkylnaphthalene sulfonate, etc. may be added as an initial hydrophilicity improver.
.. Adding about 5 to 1 g/l causes no problem, and adding 0.1 to 50 g/l of phosphoric acid, pyrophosphoric acid, polyphosphoric acid, metaphosphoric acid, phosphorous acid, etc. as POi improves the uniform coating of the film. This increases the long-term stability of hydrophilicity, so it can be used depending on the application method.

又、シリカゾルやヒユームドシリカなどのシリカ粉末を
本皮膜形成剤の増粘剤、イオン交換樹脂の分散剤あるい
は親水性付与補助剤などとして0.5〜41/を程度添
加することや通常の塗料に添加されている防カビ剤、ス
リップ剤などの添加剤を全量で0.01〜0.5t/L
程度配合することなども支障がない。
In addition, silica powder such as silica sol or fumed silica can be added to an amount of 0.5 to 41% as a thickener for the film forming agent, a dispersant for ion exchange resins, or an auxiliary agent for imparting hydrophilicity, or it can be added to ordinary paints. The total amount of additives such as antifungal agents and slip agents is 0.01 to 0.5 t/L.
There is no problem in mixing them to a certain extent.

本発明の皮膜形成剤の調製方法としては、たと、えは、
樹脂液中にイオン交換樹脂粉末を均一に分散させた入浴
と、クロム化合物、フッ化物とを水C二混合溶解させた
B浴とを別個に調製しておいて。
The method for preparing the film forming agent of the present invention includes, for example,
A bath in which ion exchange resin powder is uniformly dispersed in a resin liquid and a bath B in which a chromium compound and a fluoride are dissolved in a mixture of water and C are separately prepared.

予め又は使用直前(二両浴を混合して使用する方法。In advance or just before use (method of mixing both baths).

又は、樹脂液中にイオン交換樹脂粉末を均一に分散させ
て3価クロム液を添加した入浴と、フッ化物と6価クロ
ムとを混合調製したB′浴とを使用直前に混合して使用
する方法。あるいは、使用直前(:すべての化合物を混
合して使用する方法。さらに、A、B浴あるいはA、 
 B’浴を金属材表面上C:別々C;塗布して金属材表
面上で混合するようにする方法など適宜の方法をとり得
るものである。
Alternatively, a bath in which ion exchange resin powder is uniformly dispersed in a resin solution and a trivalent chromium solution is added, and a B' bath prepared by mixing fluoride and hexavalent chromium are mixed immediately before use. Method. Alternatively, immediately before use (a method in which all compounds are mixed and used. Furthermore, A, B baths or A,
Any suitable method can be used, such as a method in which the B' bath is applied separately on the surface of the metal material and mixed on the surface of the metal material.

しかして9本発明の皮膜形成剤は、従前の処理剤と同様
に、たとえば、連続した板や押出型材などの単純な形状
の素形材の場合には、ロール塗り。
Therefore, the film forming agent of the present invention can be applied by roll coating, for example, in the case of a simple shaped material such as a continuous plate or an extruded material, in the same way as the conventional processing agent.

スプレー法などが、複雑な形状を有する製品の場合には
、はけ塗り、浸漬法、スプレー法など金属材の形状に応
じて適宜の方法によって金属表面C二塗布することがで
きる。すなわち、これらの塗布手段に応じた組成に調製
された皮膜形成剤を、液温20〜40℃で、塗布量0.
1〜5 f/ゴ(乾燥膜規準)になるように塗布し、つ
いで100〜250℃で10秒〜30分間加熱処理し、
皮膜の乾燥と焼付固定化を行なう。
In the case of a product having a complicated shape, the metal surface C2 can be coated by a suitable method depending on the shape of the metal material, such as brushing, dipping, or spraying. That is, a film-forming agent prepared to have a composition suitable for these application means is applied at a liquid temperature of 20 to 40° C. in a coating amount of 0.
It is coated at a rate of 1 to 5 f/g (dry film standard), and then heat treated at 100 to 250°C for 10 seconds to 30 minutes.
The film is dried and fixed by baking.

なお、金属材が圧延又は押出あるいはその他の熱処理後
で残熱な保有する状態のときに冷却を兼ねて本発明の皮
膜形成剤を塗布すれば、その後の皮膜の加熱固定化工程
を省くことができ、余熱を利用することができる。又、
皮膜の不溶化を行なう以前ならば1本発明の皮膜形成剤
を多数回に亘って繰返し塗布して皮膜厚を厚くすること
ができる。さらに、塗布は、金属材を成形加工した後に
施行する方法ばかりでなく、生成皮膜がプレス成形性に
もすぐれているので、皮膜形成後に成形加工を行なうこ
ともでき、たとえばプレス打ち抜き加工などに際して成
形ダイスの摩耗を減少し得るなどの副次的効果も発現し
得るものである。
Note that if the film forming agent of the present invention is applied while the metal material still has residual heat after rolling, extrusion, or other heat treatment, the film forming agent of the present invention can be applied to cool the metal material, thereby eliminating the subsequent step of heating and fixing the film. You can use the residual heat. or,
Before insolubilizing the film, the film-forming agent of the present invention can be repeatedly applied many times to increase the film thickness. Furthermore, coating can be applied not only after the metal material has been formed, but also because the resulting film has excellent press formability, so it can also be applied after forming the film.For example, it can be applied during press punching, etc. Secondary effects such as reducing die wear may also occur.

このようにして皮膜形成剤を塗布して得た皮膜は、クロ
ム化合物を含み耐食性に富む無機質層からなる下層と、
イオン交換樹脂を主体として親水性に富みかつクロム化
合物の溶出を抑える樹脂層からなる上層との二層構造と
なっている。このために従来の処理剤に較べ遥かにすぐ
れた親水性と耐食性が永続的に発揮されT;ものと考え
られる。
The film obtained by applying the film forming agent in this way has a lower layer consisting of an inorganic layer containing a chromium compound and having high corrosion resistance.
It has a two-layer structure, consisting mainly of ion exchange resin and an upper layer consisting of a resin layer that is highly hydrophilic and suppresses the elution of chromium compounds. For this reason, it is believed that far superior hydrophilicity and corrosion resistance are permanently exhibited compared to conventional treatment agents.

〔発明の効果〕〔Effect of the invention〕

本発明は、クロム化合物、フッ化物、イオン交換樹脂及
びアクリル酸ポリマーを構成成分とし。
The present invention uses a chromium compound, a fluoride, an ion exchange resin, and an acrylic acid polymer as constituent components.

これらをそれぞれ所定量を配合したので、これを金属材
の表面C二塗布した場合9通常の塗布操作が行ない得、
経年劣化が少なく、すぐれた親水性と耐食性に富んだ皮
膜を形成し得、形成される皮膜が少なくとも二層構造で
あって、しかもその外層が樹脂層であるために皮膜形成
後の加工性にすぐれており、加工用ダイスの摩耗及び皮
膜自体の割れなどをおこすことはなく、皮膜中の6価の
クロムの溶出も防止し得るなどすぐれた効果が認められ
る。
Since a predetermined amount of each of these is blended, when this is applied to the surface of a metal material, a normal coating operation can be performed.
It is possible to form a film with little aging deterioration, excellent hydrophilicity and corrosion resistance, and the formed film has at least a two-layer structure, and the outer layer is a resin layer, so it is easy to process after forming the film. It has excellent effects, such as not causing wear of processing dies or cracking of the film itself, and being able to prevent the elution of hexavalent chromium in the film.

次に9本発明の実施例を述べる。Next, nine embodiments of the present invention will be described.

実施例 1 (1)親水性耐食性皮膜形成剤の調製 ポリアクリル酸20重量%水溶液(商品名シュリマーA
CIOH,日本純薬社製)に水を加えポリアクリル酸の
濃度が16 f/lとなるよう(二した後。
Example 1 (1) Preparation of hydrophilic corrosion-resistant film forming agent 20% by weight aqueous solution of polyacrylic acid (trade name: Schlimer A)
CIOH (manufactured by Nippon Pure Chemical Industries, Ltd.) with water so that the concentration of polyacrylic acid was 16 f/l (after dilution).

粉砕後乾燥して平均粒径1tIm(二!3111mした
スルホン酸ポリエチレン系陽イオン交換樹脂(商品名ア
ンバーライトIR−120,ローム&]\−ス社製)を
162/lの割合で添加し、均一分散させた溶液(入浴
)及び硫酸/y o ム(Crt(SO2)s ・5H
zO) 19.3 f/l、三酸化クロム(Cr(h)
1.5 fμ、フッ酸(464HF)2.1t71の割
合で混合した水溶液(B浴)とをあらかじめ調製してお
き、使用時に入浴とB浴とを同量づつ混合して調製した
After pulverization, a sulfonic acid polyethylene cation exchange resin (trade name Amberlite IR-120, manufactured by Rohm &]\-S Co., Ltd.) having an average particle size of 1tIm (2!3111m) was added at a ratio of 162/l after being dried. Uniformly dispersed solution (bath) and sulfuric acid/yomu (Crt(SO2)s ・5H
zO) 19.3 f/l, chromium trioxide (Cr(h)
An aqueous solution (bath B) was prepared in advance by mixing 1.5 fμ of hydrofluoric acid (464HF) and 2.1t71 of hydrofluoric acid (464HF), and at the time of use, equal amounts of the bath and bath B were mixed.

(2)皮膜の形成及びプレス加工 金属材として、厚さ0.15111のAA3102アル
ミニウム合金コイル材を弱アルカリ性洗浄液で脱脂洗浄
した後、ロール塗布法によって前項(1)によって調製
した皮膜形成剤を1.2f/に″ (乾燥膜規準)にな
るように塗布し、熱風乾燥炉で150℃で20分間加熱
処理して皮膜の不溶性化、固定化させた。
(2) Formation of film and press processing As a metal material, after degreasing and cleaning an AA3102 aluminum alloy coil material with a thickness of 0.15111 with a weak alkaline cleaning solution, apply 1 coat of the film forming agent prepared according to the previous item (1) using a roll coating method. .2f/'' (dry film standard) and heat-treated in a hot air drying oven at 150°C for 20 minutes to make the film insoluble and fix it.

ついで、得られたコイル材を使用してプレス打抜き加工
とプレスしごき加工とC二よって熱交換器用クロスフィ
ン材を製作した。
Next, using the obtained coil material, a cross fin material for a heat exchanger was manufactured by press punching, press ironing, and C2.

(3)評価試験 (a)親水性及び耐食性の試験方法及び評価(イ)親水
性の試験方法 (1)初期性能:脱イオン水中に浸漬後、引き上げて3
0秒放置したときの濡れ面積率を測定した。
(3) Evaluation test (a) Test method and evaluation of hydrophilicity and corrosion resistance (b) Test method of hydrophilicity (1) Initial performance: After immersing in deionized water, pulling it out for 3
The wetted area ratio was measured after being left for 0 seconds.

(11)長期耐久性:相対湿度95%、温度50℃の雰
囲気中に500 時間放置した後の濡れ面積率を測定し
た。
(11) Long-term durability: The wetted area ratio was measured after being left in an atmosphere with a relative humidity of 95% and a temperature of 50° C. for 500 hours.

(ロ)耐食性の試験方法 (1)塩水噴霧: JISZ 2371(1955)i
nよる塩水噴霧法に基づ< 1000時間後の腐食面積
率を測定した。
(b) Corrosion resistance test method (1) Salt spray: JISZ 2371 (1955)i
The corrosion area rate after <1000 hours was measured based on the salt spray method according to n.

(11)酢酸酸性塩水噴霧ニアルミニウム表面処理技術
研究組合試験規格AR82132に基づ<100時間後
の腐食面積率を測定した。
(11) Acetic acid salt water spray Nialuminum Surface Treatment Technology Research Association Test Standard AR82132 was used to measure the corrosion area rate after <100 hours.

(ハ)評 価 上記試験の測定結果は別表に示す通りであり。(c) Evaluation The measurement results of the above test are shown in the attached table.

本発明の皮膜処理剤の親水性は、従来の処理剤と同等の
親水性を発揮し、耐食性は、いちぢるしくすぐれている
ことがわかる。
It can be seen that the film treatment agent of the present invention exhibits hydrophilicity equivalent to that of conventional treatment agents, and its corrosion resistance is significantly superior.

(b)プレス成形性の評価 本発明の皮膜形成剤を施行したコイル材を加工するのに
用いた加工用ダイスは、従来の処理剤を施行した比較材
(=用いた処理の10倍以上の処理量に達した時点でも
トラブルが全くなく使用することができ、ダイス摩耗量
が少ない皮膜が得られることが確認された。このことは
圧球摩耗試験でも同様に立証されている。
(b) Evaluation of press formability The processing die used to process the coil material treated with the film-forming agent of the present invention was used to process the coil material treated with the film-forming agent of the present invention. It was confirmed that the product could be used without any trouble even when the throughput was reached, and that a film with less die wear was obtained.This was also proven in the pressure ball wear test.

実施例 2 (1)親水性耐食皮膜形成剤の調製 酢酸)y o ム(Crt(CzHsO)s ・2H2
0)を1.92 t/l。
Example 2 (1) Preparation of hydrophilic corrosion-resistant film forming agent
0) to 1.92 t/l.

二酸化クロム(Crys)を1.42F/4フツ酸(4
6チHF)を1 t/l、正リン酸(100チHsPO
4)を1 f/lの割合で混合した水溶液(入浴)、及
び、アクリル酸ポリマーの25重量%水溶液(商品名ブ
ライマーA−1,ローム&)1−ス社製)を水で希釈し
てアクリル酸ポリマー濃度を15.4Vtとした後。
Chromium dioxide (Crys) is converted to 1.42F/4fluoric acid (4
1 t/l of orthophosphoric acid (100 tHsPO)
4) mixed at a ratio of 1 f/l (bath) and a 25% by weight aqueous solution of acrylic acid polymer (trade name Brymer A-1, manufactured by Rohm & Co., Ltd.) diluted with water. After setting the acrylic acid polymer concentration to 15.4Vt.

平均粒径が05〜IA1mのスルホン酸型イオン交換樹
脂(商品名R−120B、オルガノ社製)を固形分で5
0 f/lとなるように混合して均一(二分散させた水
溶液(B浴)とを予らかしめ調製しておき。
The solid content of sulfonic acid type ion exchange resin (trade name R-120B, manufactured by Organo) with an average particle size of 05 to IA1m is 5.
A homogeneous (bidispersed aqueous solution (bath B)) is prepared in advance by mixing to give a ratio of 0 f/l.

使用前にそれぞれ等量を混合して調製した。They were prepared by mixing equal amounts of each before use.

(2)皮膜の形成及びプレス加工 金属材としてトリクレン脱脂処理した厚さ012謀のA
A1050 合金製アルミニウム板にロールコート機を
用いて実施例1と同様に塗布し、同様に皮膜の不溶性化
、固定化処理を行ない厚さIAlrrlの皮膜を形成さ
せた。ついで、実施例1と同様にプレス加工を行なった
〇 (3)評価試験 実施例1と同様な試験方法を行なった。これらの結果は
1次表に示す通りであって、従来の処理剤に較べて耐食
性がいちじるシ、<すぐれており。
(2) Film formation and press processing A with a thickness of 012 mm treated with trichlene degreasing as a metal material
The coating was applied to an aluminum plate made of A1050 alloy using a roll coater in the same manner as in Example 1, and the coating was made insoluble and fixed in the same manner to form a coating with a thickness of IAlrrl. Then, press working was performed in the same manner as in Example 1. (3) Evaluation test The same test method as in Example 1 was conducted. These results are shown in the table below, and the corrosion resistance is significantly superior to that of conventional treatment agents.

塑性加工性は従来のものの10倍以上の処理量に達した
時点でもトラブ〉が全くなかった。
Regarding the plastic workability, there was no trouble even when the throughput was 10 times higher than that of the conventional method.

比較例 市販のアクリル樹脂塗料(商品名ウォーターシルア27
.大日本インキ社製)とメラミン樹脂塗料(商品名ウォ
ーターゾル8695.大日本インキ社製)とコロイダル
シリカ(商品名スノーテックス。
Comparative Example: Commercially available acrylic resin paint (product name Water Silua 27)
.. (manufactured by Dainippon Ink Co., Ltd.), melamine resin paint (trade name: Watersol 8695; manufactured by Dainippon Ink Co., Ltd.), and colloidal silica (trade name: Snowtex).

日産化学社製)とを固形分で、それぞれ48部。(manufactured by Nissan Chemical Co., Ltd.) and 48 parts each in terms of solid content.

12部、40部となるように混合したものを調製し、実
施例と同様条件で塗布・焼付き固定化及びプレス加工を
行ない、同様な試験を行なった。結果は別表に示す通り
である。
A mixture of 12 parts and 40 parts was prepared, and the same tests were conducted by applying, fixing by baking, and pressing under the same conditions as in the example. The results are shown in the attached table.

Claims (1)

【特許請求の範囲】[Claims] 1)水溶媒中に、6価のクロム化合物をCrO_3換算
で0.05〜2g/l、3価のクロム化合物をCrO_
3換算で1〜18g/l、フツ化物をF^−として0.
1〜5g/l、イオン交換樹脂粉末を固形分で1〜10
0g/l、アクリル酸ポリマーを固形分で1〜20g/
l配合してなることを特徴とする親水性耐食性皮膜形成
剤。
1) In an aqueous solvent, add a hexavalent chromium compound to 0.05 to 2 g/l in terms of CrO_3, and a trivalent chromium compound to CrO_3.
1 to 18 g/l in terms of fluoride, 0.3 as F^-.
1-5g/l, solid content of ion exchange resin powder 1-10
0g/l, acrylic acid polymer solid content 1-20g/l
1. A hydrophilic corrosion-resistant film-forming agent characterized by comprising: l.
JP2435785A 1985-02-13 1985-02-13 Hydrophilic corrosion-resisting film-forming material Granted JPS61186481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2435785A JPS61186481A (en) 1985-02-13 1985-02-13 Hydrophilic corrosion-resisting film-forming material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2435785A JPS61186481A (en) 1985-02-13 1985-02-13 Hydrophilic corrosion-resisting film-forming material

Publications (2)

Publication Number Publication Date
JPS61186481A true JPS61186481A (en) 1986-08-20
JPH0348271B2 JPH0348271B2 (en) 1991-07-23

Family

ID=12135940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2435785A Granted JPS61186481A (en) 1985-02-13 1985-02-13 Hydrophilic corrosion-resisting film-forming material

Country Status (1)

Country Link
JP (1) JPS61186481A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275648A (en) * 2001-03-15 2002-09-25 Nippon Paint Co Ltd Metal surface treating agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275648A (en) * 2001-03-15 2002-09-25 Nippon Paint Co Ltd Metal surface treating agent
JP4652592B2 (en) * 2001-03-15 2011-03-16 日本ペイント株式会社 Metal surface treatment agent

Also Published As

Publication number Publication date
JPH0348271B2 (en) 1991-07-23

Similar Documents

Publication Publication Date Title
US4421789A (en) Process for treating the surfaces of aluminum heat exchangers
US4650527A (en) Hydrophilic surface-treating process for an aluminum article
US4183772A (en) Composition and method for coating metal surfaces
EP0911427B1 (en) Process for surface-treating an aluminium-containing metal
US6338876B1 (en) Process for hydrophilic treatment of aluminum materials and primers therefor and hydrophilic coatings
JPH0422986B2 (en)
JPS621882A (en) Corrosion-resisting hydrophilic film-forming agent
US4647316A (en) Metal base coating composition comprising chromium, silica and phosphate and process for coating metal therewith
GB1583103A (en) Method for the treatment of metal surfaces
JP3292754B2 (en) Composition for metal surface treatment containing sol of trivalent chromium compound and method for producing the same
US6294262B1 (en) Composition and process for anticorrosive treatment of non-ferrous metal
US6149735A (en) Chromate treatment bath composition and process for application to metals
JPS61186481A (en) Hydrophilic corrosion-resisting film-forming material
JPH086063B2 (en) Hydrophilic surface treatment agent and treatment method
CA1216695A (en) Hydrophilic-film-forming preparation
US6653384B1 (en) Process for priming aluminum materials and primers
JPS6187878A (en) Formation of corrosion resistant hydrophilic film
JP2000328259A (en) Precoated fin material for heat exchanger
JP3615781B2 (en) Method for producing trivalent chromium compound sol, surface treatment agent for metal material containing the sol, and surface treatment method
JPS61136685A (en) Formation of hydrophilic and corrosion resistant film
JPS6210280A (en) Corrosion resistant hydrophilic film treating agent
JPH02219875A (en) Hydrophilic coating agent, aluminum or aluminum alloy sheet for fin and heat exchanger
JPH02103133A (en) Aluminum fin material for heat exchanger
JPH0215383B2 (en)
JP2579487B2 (en) White chromate treatment method with excellent surface properties