JPH0348160B2 - - Google Patents

Info

Publication number
JPH0348160B2
JPH0348160B2 JP58196054A JP19605483A JPH0348160B2 JP H0348160 B2 JPH0348160 B2 JP H0348160B2 JP 58196054 A JP58196054 A JP 58196054A JP 19605483 A JP19605483 A JP 19605483A JP H0348160 B2 JPH0348160 B2 JP H0348160B2
Authority
JP
Japan
Prior art keywords
crystal
temperature
melt
speed
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58196054A
Other languages
Japanese (ja)
Other versions
JPS6090896A (en
Inventor
Takashi Shimada
Tsuguo Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58196054A priority Critical patent/JPS6090896A/en
Publication of JPS6090896A publication Critical patent/JPS6090896A/en
Publication of JPH0348160B2 publication Critical patent/JPH0348160B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 この発明は高品質なガリウム砒素単結晶の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high quality gallium arsenide single crystals.

最近−族化合物半導体は高品質な単結晶が
得られるようになり、高速集積回路、光−電子集
積回路、電子素子用材料などに広く用いられるよ
うになつてきた。−族化合物半導体の中でも
ガリウム砒素(GaAs)はシリコンに較べて電子
移動度がはるかに早く、比抵抗が107Ω.cm以上
の高抵抗の大型ウエハーの製造が容易であること
などにより注目を浴びている。このようなGaAs
単結晶は現在主として液体封止引き上げ法により
製造されているが、この方法ではルツボ内の結晶
原料融液と封止剤との界面、結晶原料融液と引き
上げ中の結晶との界面及び結晶内の温度勾配が大
きいため、形成した結晶内に熱応力が生じ、これ
が結晶欠陥の一種である転位の発生の原因とな
り、特に結晶の胴体部に較べてテイル部において
転位密度が通常著しく大きくなつている。この原
因は成長した結晶を結晶原料融液から切り離す工
程において、結晶の引き上げ速度を結晶の胴体部
形成時の10〜100倍の速度としていたことにあり、
これにより結晶の下半部に与える温度変化が大き
く、過大な熱応力が発生して結晶のテイル部の転
位密度を増大させる結果となつていた。従つてこ
のような結晶をウエーハにすると製品としての歩
留りは低下し、特に結晶の下半部よりテイル部ま
では製品化できず、無駄なものとなる。
Recently, high-quality single crystals of - group compound semiconductors have become available, and they have come to be widely used in high-speed integrated circuits, opto-electronic integrated circuits, materials for electronic devices, and the like. Among - group compound semiconductors, gallium arsenide (GaAs) has a much faster electron mobility than silicon and a specific resistance of 10 7 Ω. It is attracting attention because it is easy to manufacture large wafers with high resistance of cm or more. GaAs like this
Currently, single crystals are mainly manufactured by the liquid-sealed pulling method, but in this method, the interface between the crystal raw material melt and the sealant in the crucible, the interface between the crystal raw material melt and the crystal being pulled, and the inside of the crystal are produced. Because of the large temperature gradient, thermal stress occurs within the formed crystal, which causes the generation of dislocations, which are a type of crystal defect, and the dislocation density is usually significantly larger in the tail region than in the body region of the crystal. There is. The reason for this is that in the process of separating the grown crystal from the crystal raw material melt, the pulling speed of the crystal was set at 10 to 100 times the speed of forming the body of the crystal.
This resulted in a large temperature change in the lower half of the crystal, generating excessive thermal stress and increasing the dislocation density in the tail portion of the crystal. Therefore, when such a crystal is made into a wafer, the yield as a product decreases, and in particular, the lower half of the crystal up to the tail cannot be made into a product, resulting in waste.

この発明の目的は結晶の下半部よりテイル部に
亘つての転位密度の増大を抑制し、結晶の頭部よ
りテイル部に到るまで転位密度分布が実質的に均
一の結晶を作成するGaAs単結晶を製造する方法
を提供することにある。
The purpose of this invention is to suppress the increase in dislocation density from the lower half of the crystal to the tail, and to create a crystal in which the dislocation density distribution is substantially uniform from the head of the crystal to the tail. An object of the present invention is to provide a method for producing a single crystal.

液体封止引き上げ法によるGaAs単結晶の製造
方法は、通常不活性ガスによる10〜70気圧下にお
いて、上面を液体封止剤で被覆され、封止剤との
界面が1238℃に加熱されたルツボ中の結晶原料融
液に種結晶を接触させ、ルツボ及び種結晶を回転
させながら、結晶直径が50mmの場合種結晶を1時
間8〜12mm程度の速度で引き上げて結晶の成長を
行う。成長した結晶が目的とする長さに達する
と、種結晶の引き上げ速度を急激に100〜1000
mm/時と増加し、結晶をGaAs融液から切り離し
ていた。その結果、結晶のテイル部は平面または
半球面となるが、結晶の下半部からテイル部は急
速に温度の高低の差の激しい液体封止剤内を通過
し、不活性ガス中に置かれるため、この大きな温
度変化によつて熱応力が発生し、結晶の下半部か
らテイル部に亘つて転位密度が増大する結果とな
る。
The method for producing GaAs single crystals using the liquid seal pulling method is to use a crucible whose upper surface is coated with a liquid sealant and whose interface with the sealant is heated to 1238°C under an inert gas atmosphere of 10 to 70 atmospheres. A seed crystal is brought into contact with the crystal raw material melt in the crucible, and while the crucible and the seed crystal are rotated, the seed crystal is pulled up at a speed of about 8 to 12 mm for 1 hour when the crystal diameter is 50 mm to grow the crystal. When the grown crystal reaches the desired length, the pulling speed of the seed crystal is rapidly increased to 100-1000.
mm/hour, separating the crystal from the GaAs melt. As a result, the tail of the crystal becomes flat or hemispherical, but from the bottom half of the crystal, the tail rapidly passes through a liquid sealant with a large temperature difference and is placed in an inert gas. Therefore, this large temperature change generates thermal stress, resulting in an increase in dislocation density from the lower half of the crystal to the tail.

そこでこの発明においては、成長したGaAs結
晶が目的の長さに達し、結晶を融液より切り離す
工程に入つたら結晶の引き上げ速度を徐々に増速
すると共に、ルツボ内の結晶原料融液の表面温度
も徐々に上昇する。
Therefore, in this invention, when the grown GaAs crystal reaches the desired length and the process of separating the crystal from the melt begins, the pulling speed of the crystal is gradually increased, and the surface of the crystal raw material melt in the crucible is The temperature also gradually rises.

上記の結晶引き上げ速度の増速割合は結晶の胴
体部を作成した時の引き上げ速度の3倍以下と
し、具体的には50mm径の結晶を引き上げる場合1
時間20〜30mm程度に増速する。即ち、結晶の引き
上げ速度が10mm/時の場合は30mm/時程度が限度
であつて急激に引き上げ速度を減速すると温度変
化が大きくなり、結晶に転位が増加する傾向を示
すので、所定速度に達するまで40分から1時間程
度の時間を掛け徐々に増速する。
The rate of increase in the crystal pulling speed mentioned above should be 3 times or less than the pulling speed at which the body of the crystal was created. Specifically, when pulling a crystal with a diameter of 50 mm, 1
Increase the speed to about 20 to 30 mm per hour. In other words, if the crystal pulling speed is 10 mm/hour, the limit is about 30 mm/hour, and if the pulling speed is suddenly reduced, the temperature change will increase and dislocations will tend to increase in the crystal, so the specified speed will not be reached. Gradually increase the speed over a period of about 40 minutes to 1 hour.

一方、結晶原料融液の結晶と接している表面の
温度の上昇範囲は結晶の胴体部を成長完了時の温
度より15℃まであつて、増速して引き上げた結晶
の状態を考慮して温度の上昇割合を調整する。即
ち、所定の上昇割合で融液の表面温度を徐々に昇
温しても結晶のテイル部の外径が減少しはじめな
いようであれば、温度の上昇割愛を更に大きくす
る。その結果、結晶のテイル部では結晶径が次第
に細くなり、下方に凸の円錐状となり、最後にル
ツボの結晶原料融液と細い糸のような状態より切
り離されることになる。このときの結晶の下半部
は結晶の胴体部の引き上げ速度よりも2〜3倍の
早い速度で液体封止剤中を通過することとなる
が、これまでの方法と比較した場合、結晶に急激
な温度変化を与えることはなく、従つて過大な温
度勾配が結晶内に生じることもなく、その結果、
転位の増大は抑制される。また上述の結晶原料融
液の表面温度の上昇範囲が15℃を越えたり、急激
に所定の温度に昇温したりすると、既に固化して
結晶となつた部分が溶融することもあり好ましく
ない。
On the other hand, the temperature increase range of the surface of the crystal raw material melt that is in contact with the crystal is set to 15℃ above the temperature at the completion of growth of the body of the crystal, taking into account the state of the crystal that is pulled at an increased speed. Adjust the rate of increase. That is, if the outer diameter of the tail portion of the crystal does not begin to decrease even if the surface temperature of the melt is gradually increased at a predetermined rate of increase, the temperature increase allowance is further increased. As a result, the diameter of the crystal gradually becomes smaller at the tail portion of the crystal, forming a downwardly convex conical shape, and finally separates from the crystal raw material melt in the crucible in a thin thread-like state. At this time, the lower half of the crystal passes through the liquid sealant at a speed 2 to 3 times faster than the pulling speed of the body of the crystal. It does not cause sudden temperature changes and therefore does not create excessive temperature gradients within the crystal.
The increase in dislocations is suppressed. Furthermore, if the range of increase in the surface temperature of the above-mentioned crystal raw material melt exceeds 15° C. or if the temperature is rapidly raised to a predetermined temperature, the portions that have already solidified into crystals may melt, which is not preferable.

上記の説明で明らかなように、この発明の方法
により結晶の胴体部の成長が完了し、結晶を融液
より切り離す工程において、結晶の引き上げ速度
及び融液の表面の温度を上述の如く徐々に増速、
昇温することにより、形成する結晶の下半部の転
位の増大を抑制し、転位密度分布が結晶全体に亘
つてほぼ均一な結晶を得ることができるようにな
つたため、GaAs結晶の製品化の歩留りが著しく
向上し、安価に高品質のウエーハを提供すること
となる。
As is clear from the above description, the growth of the body of the crystal is completed by the method of the present invention, and in the process of separating the crystal from the melt, the pulling speed of the crystal and the temperature of the surface of the melt are gradually adjusted as described above. speed increase,
By increasing the temperature, it became possible to suppress the increase in dislocations in the lower half of the crystal to be formed, and to obtain a crystal with a nearly uniform dislocation density distribution throughout the crystal, which made it possible to commercialize GaAs crystals. Yield is significantly improved and high quality wafers can be provided at low cost.

次にこの発明を実施例より説明する。 Next, this invention will be explained using examples.

内径95mm、深さ100mmのパイロリテツク窒化ボ
ロン製ルツボにGa500g、As540g、液体封止剤
として酸化ボロン(B2O3)300gを入れ、このル
ツボを高圧容器内に設置して、アルゴンガスで50
気圧に加圧し、ルツボを1300℃で加熱してGaAs
融液を合成した。
Put 500 g of Ga, 540 g of As, and 300 g of boron oxide (B 2 O 3 ) as a liquid sealant into a pyrolithic boron nitride crucible with an inner diameter of 95 mm and a depth of 100 mm.The crucible was placed in a high-pressure container and heated with argon gas for 50 g.
Pressurize to atmospheric pressure and heat the crucible to 1300℃ to produce GaAs.
A melt was synthesized.

次にGaAs融液とB2O3との界面の温度が1238℃
となるように調整した後、種結晶をGaAs融液に
接触させ、ルツボは1分間15回の速度で時計方向
に回転させ、種結晶は1分間10回の速度で反時計
方向に回転させながら、種結晶を1時間10mmの速
度で引き上げた。7時間の引き上げ操作の結果、
直径約50mm、長さ約80mmの円柱状の結晶が形成し
たので、結晶の引き上げ速度を1時間掛けて20
mm/時の速度に増速し、結晶融液表面温度も1240
℃に昇温した。20mm/時に増速してから更に1時
間30分間結晶の引き上げを行つた結果、結晶のテ
イル部の末尾は結晶原料融液と切離された。
Next, the temperature at the interface between GaAs melt and B 2 O 3 is 1238℃.
After adjusting the seed crystal so that , the seed crystal was pulled at a speed of 10 mm for 1 hour. As a result of the 7-hour lifting operation,
A cylindrical crystal with a diameter of about 50 mm and a length of about 80 mm was formed, so the crystal pulling speed was multiplied by 1 hour to 20
The speed is increased to mm/hour, and the surface temperature of the crystal melt is 1240.
The temperature was raised to ℃. As a result of increasing the speed to 20 mm/hour and pulling the crystal for another 1 hour and 30 minutes, the tail of the crystal was separated from the crystal raw material melt.

得られたGaAs結晶には高さ約50mmの円錐状の
テイル部が形成し、この結晶を結晶長に沿つて切
断し、転位密度分布を測定した結果、頭部より約
80mmまでの結晶の転位密度分布は1×104〜5×
104cm-2であつた。
A conical tail with a height of approximately 50 mm was formed in the GaAs crystal obtained. This crystal was cut along the crystal length and the dislocation density distribution was measured.
The dislocation density distribution of crystals up to 80 mm is 1×10 4 to 5×
It was 10 4 cm -2 .

比較のため、同一条件で結晶の成長を行い、直
径約50mm、長さ約80mmの円柱状結晶が形成した時
点で、結晶の引き上げ速度を500mm/時に増速し
て結晶テイル部と結晶原料融液の切離しを行つ
た。
For comparison, a crystal was grown under the same conditions, and when a cylindrical crystal with a diameter of about 50 mm and a length of about 80 mm was formed, the crystal pulling speed was increased to 500 mm/hour to remove the crystal tail and crystal raw material melt. The liquid was separated.

得られた結晶のテイル部の形状は半円状であつ
て、この結晶を結晶長に沿つて切断し、転位密度
分布を測定した結果、頭部より50mmまでの結晶の
転位密度分布は1×104〜105cm-2であつたが、そ
れ以上はテイル部に近づくに従つて増大し、頭部
より80mmの位置の結晶の転位密度分布は5×106
cm-2であつた。
The shape of the tail part of the obtained crystal was semicircular. When this crystal was cut along the crystal length and the dislocation density distribution was measured, the dislocation density distribution of the crystal up to 50 mm from the head was 1× The dislocation density distribution of the crystal at a position 80 mm from the head was 5× 10 6 .
It was warm at cm -2 .

Claims (1)

【特許請求の範囲】[Claims] 1 融液表面の温度が結晶引き上げ最適温度に調
整されたガリウム砒素融液に種結晶を接触させて
引き上げる液体封止引き上げ法によるガリウム砒
素単結晶の製造方法において、結晶の胴体部の成
長が完了し、この結晶を融液より切り離す際に、
上記結晶の引き上げ速度を上記胴体部を形成した
ときの引き上げ速度の2倍以上3倍以下に増速
し、これに伴つて上記融液表面の温度を、上記胴
体部の成長完了時の温度より15℃までの範囲で
徐々に昇温することを特徴とするガリウム砒素単
結晶の製造方法。
1. In a method for manufacturing a gallium arsenide single crystal using a liquid-sealed pulling method in which a seed crystal is brought into contact with a gallium arsenide melt whose surface temperature has been adjusted to the optimum temperature for crystal pulling, the growth of the body of the crystal is completed. However, when separating this crystal from the melt,
The pulling speed of the crystal is increased to 2 times or more and 3 times or less the pulling speed when the body was formed, and the temperature of the surface of the melt is increased from the temperature at the time when the growth of the body is completed. A method for producing gallium arsenide single crystal, which is characterized by gradually increasing the temperature within a range of up to 15°C.
JP58196054A 1983-10-21 1983-10-21 Manufacture of gallium-arsenic single crystal Granted JPS6090896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58196054A JPS6090896A (en) 1983-10-21 1983-10-21 Manufacture of gallium-arsenic single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58196054A JPS6090896A (en) 1983-10-21 1983-10-21 Manufacture of gallium-arsenic single crystal

Publications (2)

Publication Number Publication Date
JPS6090896A JPS6090896A (en) 1985-05-22
JPH0348160B2 true JPH0348160B2 (en) 1991-07-23

Family

ID=16351426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58196054A Granted JPS6090896A (en) 1983-10-21 1983-10-21 Manufacture of gallium-arsenic single crystal

Country Status (1)

Country Link
JP (1) JPS6090896A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188500A (en) * 1988-01-19 1989-07-27 Nippon Mining Co Ltd Production of compound semiconductor single crystal

Also Published As

Publication number Publication date
JPS6090896A (en) 1985-05-22

Similar Documents

Publication Publication Date Title
EP0751242B1 (en) Process for bulk crystal growth
CA1166556A (en) Minimization of strain in single crystals
JP3500921B2 (en) Method for producing silicon carbide single crystal
JPH0348160B2 (en)
JPH11302094A (en) Production of compound semiconductor single crystal
JPS606918B2 (en) Method for producing Group 3-5 compound single crystal
JP2781856B2 (en) Method for manufacturing compound semiconductor single crystal
JP2700145B2 (en) Method for manufacturing compound semiconductor single crystal
JP2879078B2 (en) Method for producing compound semiconductor crystal and crucible used therefor
JPH0725533B2 (en) Method for producing silicon polycrystalline ingot
JP4161787B2 (en) Method for producing compound semiconductor single crystal
JPH05178684A (en) Production of semiconductor single crystal
JPS6251237B2 (en)
JPH02212395A (en) Production of compound semiconductor crystal and producing device
JP2773441B2 (en) Method for producing GaAs single crystal
JPH0124760B2 (en)
JP2751359B2 (en) Group III-V compound single crystal
JPH0867593A (en) Method for growing single crystal
JPH06128097A (en) Production of gallium arsenide single crystal
JPH05286798A (en) Production of iii-v compound semiconductor single crystal block material
JPH0559880B2 (en)
JPH08104591A (en) Apparatus for growing single crystal
JP2004010467A (en) Method for growing compound semiconductor single crystal
JPS59116194A (en) Manufacture of compound semiconductor single crystal
JPH06263589A (en) Production of single crystal