JPH034801Y2 - - Google Patents

Info

Publication number
JPH034801Y2
JPH034801Y2 JP9005684U JP9005684U JPH034801Y2 JP H034801 Y2 JPH034801 Y2 JP H034801Y2 JP 9005684 U JP9005684 U JP 9005684U JP 9005684 U JP9005684 U JP 9005684U JP H034801 Y2 JPH034801 Y2 JP H034801Y2
Authority
JP
Japan
Prior art keywords
pressure
oil passage
oil
cylinder
pressure oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9005684U
Other languages
Japanese (ja)
Other versions
JPS616003U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9005684U priority Critical patent/JPS616003U/en
Publication of JPS616003U publication Critical patent/JPS616003U/en
Application granted granted Critical
Publication of JPH034801Y2 publication Critical patent/JPH034801Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Shearing Machines (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、配電工事における電線の圧着接続あ
るいは切断に用いられる挾圧工具の駆動用高圧油
を発生するための増圧器に関するものである。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention relates to a pressure intensifier for generating high-pressure oil for driving a clamping tool used for crimp connection or disconnection of electric wires in power distribution work.

(従来の技術) 配電工事における電線の接続には、接続しよう
とする電線を銅あるいはアルミ製のスリーブ内で
互に突合せした上で、油圧駆動式の挾圧工具によ
り前記スリーブを外方から押し潰すことで両電線
を接続する方式がとられている。また、電線の切
断には、油圧駆動式の挾圧工具により当該電線を
挾圧接断する方式がとられている。前記挾圧工具
は、取扱いの容易化をはかるために小形軽量であ
ること、および充分な挾圧能力をもつていること
が要求される。このため、この挾圧工具は、通常
600〜700Kg/cm2の油圧により駆動されるようにな
つている。一方、配電作業に用いられる高所作業
車等に備わつている油圧発生装置は、百数拾Kg/
cm2の圧油発生能力しかなく、この発生油圧を増圧
器を介して600〜700Kg/cm2に増圧して前記挾圧工
具駆動用油圧として用いるようにしている。
(Prior art) To connect electric wires in power distribution work, the electric wires to be connected are butted against each other in a copper or aluminum sleeve, and then the sleeve is pushed from the outside using a hydraulically driven clamping tool. A method is used to connect both wires by crushing them. Further, for cutting the electric wire, a method is adopted in which the electric wire is clamped and cut using a hydraulically driven clamping tool. The clamping tool is required to be small and lightweight for ease of handling, and to have sufficient clamping capacity. For this reason, this clamping tool is usually
It is designed to be driven by hydraulic pressure of 600 to 700 kg/cm 2 . On the other hand, the hydraulic pressure generators installed in aerial work vehicles used for power distribution work are
The hydraulic pressure generated is only 600 to 700 kg/cm 2 through a pressure intensifier, and is used as the hydraulic pressure for driving the clamping tool.

従来の増圧器を第3図に基づいて説明する。第
3図においてAは増圧器であつて、この増圧器A
は、低圧シリンダB、高圧シリンダC、および油
圧制御装置Dとから構成されている。前記低圧シ
リンダAは、大径シリンダ1、この大径シリンダ
1内に油密摺動自在に嵌挿され大径シリンダ1内
を伸長動作側油室2と縮小動作側油室3に区画す
る大径ピストン4、およびその基端を大径ピスト
ン4に固着され前記縮小動作側圧油室3を通つて
大径シリンダ1外へ延出したピストンロツド5と
から構成されている。前記高圧シリンダCは、前
記低圧シリンダBのピストンロツド5先端部に形
成した小径ピストン6と、この小径ピストン6を
油密摺動自在に受容し小径ピストン6と共に増圧
室7を画定する小径シリンダ8とから構成されて
いる。前記油圧制御装置Dは、前記低圧シリンダ
Bの伸長動作側圧油室2に連なる油路9、縮小動
作側圧油室3に連なる油路10、高所作業車等の
油圧発生装置11に連なる高圧油路12およびタ
ンク13に連なるタンク油路14との間に介装さ
れた四方向三位置センタバイパスabポートブロ
ツク形の油圧切換弁で構成されている。15は、
高圧シリンダCの増圧室7と挾圧工具16の出力
シリンダ17を接続する油路である。前記油圧制
御装置(四方向三位置センタバイパスabポート
ブロツク形の油圧切換弁)Dは、 低圧シリンダBの伸長動作側圧油室2に連な
る油路9および縮小動作側圧油室3に連なる油
路10を、高圧油路12およびタンク油路14
から遮断した状態、 高圧油路12と低圧油圧シリンダBの伸長動
作側圧油室2に連なる油路9を接続すると共
に、低圧シリンダBの縮小動作側圧油室3に連
なる油路10とタンク油路14を接続した状
態、 高圧油路12と低圧油圧シリンダBの縮小動
作側圧油室3に連なる油路10を接続すると共
に、低圧油圧シリンダBの伸長動作側圧油室2
に連なる油路9とタンク油路14を接続した状
態 との間で切換制御できるようになつている。18
および19は、油圧制御装置Dの制御スイツチで
ある。制御スイツチ18は、これを接続操作する
ことによつて電路20を介して油圧制御装置Dの
ソレノイド21に通電し油圧制御装置Dを上記
の状態に切換制御するものである。制御スイツチ
19は、これを接続操作することによつて電路2
2を介して油圧制御装置Dのソレノイド23に通
電し油圧制御装置Dを上記の状態に切換制御す
るものである。制御スイツチ18および19の何
れをも接続操作しないときは、油圧制御装置D
は、上記の状態にある。
A conventional pressure booster will be explained based on FIG. In FIG. 3, A is a pressure intensifier, and this pressure intensifier A
is composed of a low pressure cylinder B, a high pressure cylinder C, and a hydraulic control device D. The low pressure cylinder A includes a large diameter cylinder 1, and a large diameter cylinder 1 that is slidably fitted in an oil-tight manner into the large diameter cylinder 1 and partitions the inside of the large diameter cylinder 1 into an oil chamber 2 on the extension operation side and an oil chamber 3 on the contraction operation side. It consists of a diameter piston 4, and a piston rod 5 whose base end is fixed to the large diameter piston 4 and extends out of the large diameter cylinder 1 through the reduction operation side pressure oil chamber 3. The high-pressure cylinder C includes a small-diameter piston 6 formed at the tip of the piston rod 5 of the low-pressure cylinder B, and a small-diameter cylinder 8 that receives the small-diameter piston 6 in an oil-tight and slidable manner and defines a pressure increasing chamber 7 together with the small-diameter piston 6. It is composed of. The hydraulic control device D includes an oil passage 9 connected to the extension operation side pressure oil chamber 2 of the low pressure cylinder B, an oil passage 10 connected to the contraction operation side pressure oil chamber 3, and a high pressure oil passage connected to the hydraulic pressure generator 11 of an aerial work vehicle or the like. It is comprised of a four-way, three-position center bypass ab port block type hydraulic switching valve interposed between the oil passage 12 and the tank oil passage 14 connected to the tank 13. 15 is
This is an oil passage that connects the pressure increase chamber 7 of the high pressure cylinder C and the output cylinder 17 of the clamping tool 16. The hydraulic control device (four-way three-position center bypass AB port block type hydraulic switching valve) D has an oil passage 9 connected to the extension operation side pressure oil chamber 2 of the low pressure cylinder B and an oil passage 10 connected to the contraction operation side pressure oil chamber 3. , high pressure oil line 12 and tank oil line 14
The high pressure oil passage 12 and the oil passage 9 connected to the extension operation side pressure oil chamber 2 of the low pressure hydraulic cylinder B are connected, and the oil passage 10 and the tank oil passage connected to the contraction operation side pressure oil chamber 3 of the low pressure cylinder B are connected. 14 is connected, the high pressure oil passage 12 is connected to the oil passage 10 which is connected to the contraction operation side pressure oil chamber 3 of the low pressure hydraulic cylinder B, and the extension operation side pressure oil chamber 2 of the low pressure hydraulic cylinder B is connected.
Switching control can be performed between a state in which the oil passage 9 connected to the tank oil passage 14 is connected to the tank oil passage 14. 18
and 19 are control switches of the hydraulic control device D. When the control switch 18 is connected, the solenoid 21 of the hydraulic control device D is energized via the electric line 20 to switch and control the hydraulic control device D to the above-mentioned state. By connecting the control switch 19, the electric circuit 2
2, the solenoid 23 of the hydraulic control device D is energized to switch and control the hydraulic control device D to the above state. When neither of the control switches 18 and 19 is connected, the hydraulic control device D
is in the above state.

今、第3図の状態で制御スイツチ18を接続操
作すると、油圧制御装置Dを介して高圧油路12
から低圧シリンダBの伸長動作側圧油室2へ圧油
が供給されると共に縮小動作側圧油室3の油がタ
ンク油路14へ排出され低圧油圧シリンダBが伸
長する。これに伴い高圧シリンダCの増圧室7内
の作動油が押し出されこれが油路15を経て挾圧
工具16に到り挾圧工具16を挾圧駆動する(こ
のとき増圧室7の油圧は、大径ピストン4に比し
小径ピストン6の面積が小さいので増圧され
る。)。挾圧工具16による挾圧を解除する場合に
は、制御スイツチ19を接続操作する。これによ
り低圧シリンダBが縮小駆動され小径ピストン6
は図において右動し、挾圧工具16はそのリター
ンスプリング24により復帰する。
Now, when the control switch 18 is connected and operated in the state shown in FIG.
Pressure oil is supplied from the low-pressure cylinder B to the extension-side pressure oil chamber 2, and at the same time, oil in the contraction-side pressure oil chamber 3 is discharged to the tank oil passage 14, causing the low-pressure hydraulic cylinder B to extend. Along with this, the hydraulic oil in the pressure intensification chamber 7 of the high pressure cylinder C is pushed out, which reaches the clamping pressure tool 16 through the oil passage 15 and drives the clamping pressure tool 16 (at this time, the hydraulic pressure in the pressure intensification chamber 7 is , the pressure is increased because the area of the small diameter piston 6 is smaller than that of the large diameter piston 4). To release the clamping pressure by the clamping tool 16, the control switch 19 is connected. As a result, the low pressure cylinder B is driven to contract and the small diameter piston 6
moves to the right in the figure, and the clamping tool 16 is returned by its return spring 24.

尚、第3図において、40は低圧シリンダBの
最縮小状態において開放され、増圧室7を油槽4
1に連通するチエツク弁であつて、増圧式7内の
充填油の油量を調節するためのものである。
In addition, in FIG. 3, 40 is opened when the low pressure cylinder B is in the most contracted state, and the pressure increasing chamber 7 is connected to the oil tank 4.
This is a check valve that communicates with the pressure booster 7 and is used to adjust the amount of oil filled in the pressure booster 7.

このように構成した従来の増圧器Aにあつて
は、その増圧室7に発生する油圧は600〜700Kg/
cm2の高圧と、ほゞ零Kg/cm2の低圧の何れかであつ
て、中間的な油圧力すなわち、挾圧工具16が被
加工物を塑性変形を起さない程度の小さな力で把
持する程度の中間的な油圧力を発生することがで
きないものであつた。このため、従来の増圧器に
よつて駆動される挾圧工具を用いて被加工物を挾
着接続あるいは切断しようとするときは、挾圧工
具をおよその挾圧位置へ位置させた上で一気に被
加工物を挾圧接続あるいは切断せざるを得ず、圧
着または切断位置がずれ易いという欠点があつ
た。
In the conventional pressure intensifier A configured in this way, the hydraulic pressure generated in the pressure intensifier chamber 7 is 600 to 700 kg/
The clamping tool 16 grips the workpiece with a small force that does not cause plastic deformation. However, it was not possible to generate an intermediate hydraulic pressure of the same degree. For this reason, when attempting to connect or disconnect workpieces using a clamping tool driven by a conventional pressure intensifier, the clamping tool should be positioned at the approximate clamping position and then This method has the disadvantage that the workpiece must be connected or cut by clamping, and the crimping or cutting position is likely to shift.

(本考案が解決しようとする問題点) 本考案は、従来の増圧器のもつ上述の欠点すな
わち、増圧器の発生圧力が高圧とほゞ零気圧の二
様にしか選定できずそのため挾圧工具による被加
工物の仮保持ができないという欠点に鑑みてなし
たものであつて、挾圧工具が被加工物を仮保持で
きる程度の中間的な油圧力をも発生しうる新規な
増圧器を提供しようとするものである。
(Problems to be Solved by the Present Invention) The present invention solves the above-mentioned drawbacks of conventional pressure intensifiers, namely, the pressure generated by the pressure intensifier can only be selected in two ways: high pressure and almost zero pressure. This was developed in view of the drawback that a clamping tool cannot temporarily hold a workpiece, and provides a new pressure intensifier that can generate intermediate hydraulic pressure to the extent that a clamping tool can temporarily hold a workpiece. This is what I am trying to do.

(問題点を解決するための手段) 本考案の増圧器は、上述の問題点を解決するた
め、上記既述の従来の増圧器Aにおける油圧制御
装置Dに、低圧油圧シリンダBの伸長動作側圧油
室2に連なる油路9、縮小動作側圧油室3に連な
る油路10、高圧油路12およびタンク油路14
を互に接続した状態に切換制御できる機能を付加
したものであり、油圧制御装置Dが四つの接続状
態を備えているところに特徴がある。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the pressure intensifier of the present invention has an extension operation side pressure of the low-pressure hydraulic cylinder B added to the hydraulic control device D in the conventional pressure intensifier A described above. An oil passage 9 connected to the oil chamber 2, an oil passage 10 connected to the reduction operation side pressure oil chamber 3, a high pressure oil passage 12, and a tank oil passage 14.
The hydraulic control device D is characterized in that it has four connection states.

(作用) 本考案の増圧器は、その油圧制御装置Dが、 低圧シリンダBの伸長動作側圧油室2に連な
る油路9および縮小動作側圧油室3に連なる油
路10を、高圧油路12およびタンク油路14
から遮断した状態、 高圧油路12と低圧油圧シリンダBの伸長動
作側圧油室2に連なる油路9を接続すると共
に、低圧シリンダBの縮小動作側圧油室3に連
なる油路10とタンク油路14を接続した状
態、 高圧油路12と低圧油圧シリンダBの縮小動
作側圧油室3に連なる油路10を接続すると共
に、低圧油圧シリンダBの伸長動作側圧油室2
に連なる油路9とタンク油路14を接続した状
態、 低圧シリンダBの伸長動作側圧油室2に連な
る油路9、縮小動作側圧油室3に連なる油路1
0、高圧油路12およびタンク油路14を互に
接続した状態、 の四つの状態に切換制御できるようにしているの
で、上記〜の切換状態を選択することにより
従来の増圧器と同様に機能させることができるも
のであるが、油圧制御装置Dを上記の切換状態
とすることで増圧器の発生圧力を中間的な圧力
(増圧器の発生圧力により駆動される挾圧工具が
被加工物を仮保持できる程度の圧力)とすること
ができるものである。すなわち、油圧制御装置D
を上記の切換状態とすると、低圧シリンダBの
伸長動作側圧油室2、縮小動作側圧油室3、高圧
油路12およびタンク油路14は互に接続され、
この状態において油圧発生装置11の発生圧油は
高圧油路12、油圧制御装置Dおよびタンク油路
14を経てタンク13に還流しているのである
が、タンク油路14の前段の油圧は、当該タンク
油路14のもつ管路抵抗によつて数Kg/cm2〜十数
Kg/cm2の圧力となつている。上記の接続状態で
は、この圧力が低圧シリンダBの伸長動作側圧油
室2並びに縮小動作側圧油室3に同時に作用し、
その結果低圧シリンダBは、伸長動作側圧油室2
と縮小動作側圧油室3の受圧面積の差に、この圧
力(数Kg/cm2〜十数Kg/cm2の圧力)を剰じた出力
で以つて伸長駆動される。そして、この伸長駆動
に伴つて増圧器の小径ピストン6が動き増圧室7
に圧油が発生する。この発生圧力は、低圧シリン
ダBがタンク油路14の管路抵抗に帰因して生ず
る低圧で伸長駆動されること、および低圧シリン
ダBがいわゆる差動シリンダとして伸長駆動され
ることから、前記中間的な油圧力となることは容
易に理解できるであろう。
(Function) In the pressure booster of the present invention, the hydraulic control device D connects the oil passage 9 connected to the extension operation side pressure oil chamber 2 and the oil passage 10 connected to the contraction operation side pressure oil chamber 3 of the low pressure cylinder B to the high pressure oil passage 12. and tank oil line 14
The high pressure oil passage 12 and the oil passage 9 connected to the extension operation side pressure oil chamber 2 of the low pressure hydraulic cylinder B are connected, and the oil passage 10 and the tank oil passage connected to the contraction operation side pressure oil chamber 3 of the low pressure cylinder B are connected. 14 is connected, the high pressure oil passage 12 is connected to the oil passage 10 which is connected to the contraction operation side pressure oil chamber 3 of the low pressure hydraulic cylinder B, and the extension operation side pressure oil chamber 2 of the low pressure hydraulic cylinder B is connected.
A state in which the oil passage 9 connected to the tank oil passage 14 is connected to the oil passage 9 connected to the extension operation side pressure oil chamber 2 of the low pressure cylinder B, and the oil passage 1 connected to the contraction operation side pressure oil chamber 3.
0, a state in which the high pressure oil line 12 and tank oil line 14 are connected to each other, and the state in which the high pressure oil line 12 and tank oil line 14 are connected to each other. However, by setting the hydraulic control device D to the above-mentioned switching state, the pressure generated by the pressure intensifier can be changed to an intermediate pressure (the clamping tool driven by the pressure generated by the pressure intensifier presses the workpiece). (pressure that can be temporarily held). That is, the hydraulic control device D
When set to the above switching state, the extension operation side pressure oil chamber 2, the contraction operation side pressure oil chamber 3, the high pressure oil passage 12, and the tank oil passage 14 of the low pressure cylinder B are connected to each other,
In this state, the pressure oil generated by the oil pressure generator 11 is returned to the tank 13 via the high pressure oil path 12, the oil pressure control device D, and the tank oil path 14, but the oil pressure in the previous stage of the tank oil path 14 is Depending on the pipe resistance of the tank oil line 14, it may range from several kg/cm 2 to several dozen.
The pressure is Kg/ cm2 . In the above connected state, this pressure acts simultaneously on the extension operation side pressure oil chamber 2 and the contraction operation side pressure oil chamber 3 of the low pressure cylinder B,
As a result, the low pressure cylinder B has the extension operation side pressure oil chamber 2
The expansion drive is performed using an output obtained by adding this pressure (a pressure of several kg/cm 2 to several tens of kg/cm 2 ) to the difference between the pressure receiving area of the compression side pressure oil chamber 3 and the pressure receiving area of the contraction operation side pressure oil chamber 3 . Then, along with this extension drive, the small diameter piston 6 of the pressure intensifier moves and the pressure intensifier chamber 7
Pressure oil is generated. This generated pressure is caused by the fact that the low pressure cylinder B is driven to extend due to the low pressure caused by the pipe resistance of the tank oil line 14, and that the low pressure cylinder B is driven to extend as a so-called differential cylinder. It is easy to understand that this is a hydraulic pressure.

(実施例) 第1図に基づいて本考案の増圧器の実施例を説
明する。本考案の増圧器は、既述の如く従来の増
圧器に比して油圧制御装置Dが相違するのみであ
るので、従来技術として説明し第3図で示した符
号およびその構成は、油圧制御装置Dの構造説明
およびそれに用いた符号18〜23を除き、以下
の説明においてそのまゝ援用する。第1図におい
て、油圧制御装置Dは、高圧油路12およびタン
ク油路14に接続された四方向三位置センターバ
イパスabポートオープン型の三位置油圧切換弁
25と、この三位置油圧切換弁のa,bポート、
低圧シリンダBの伸長動作側圧油室2に連なる油
路9および縮小動作側圧油室3に連なる油路10
間に介装され常時は油路9および10をブロツク
すると共に前記三位置油圧切換弁のabポートを
接続する位置にスプリングオフセツトされ操作
時(ソレノイド26に通電したとき)にaポート
を油路9に、bポートを油路10に夫々接続する
位置にもたらされる二位置油圧切換弁27で構
成されている。前記三位置油圧切換弁25は、そ
のソレノイド28に通電することによつて高圧油
路12をaポートに、タンク油路をbポートに
夫々接続する位置に切り換えられ、そのソレノイ
ド29に通電することによつて高圧油路12をb
ポートに、タンク油路14をaポートに夫々接続
する位置に切り換えられるようになつている。3
0,31および32は、油圧制御装置Dの制御ス
イツチである。制御スイツチ30は、これを接続
操作することによつて電路33を介して三位置油
圧切換弁25のソレノイド28へ通電すると共に
電路34を介して二位置油圧切換弁27のソレノ
イド26に通電するよう結線されている。制御ス
イツチ31は、これを接続操作することによつて
電路35を介して三位置油圧切換弁25のソレノ
イド29へ通電すると共に電路36を介して二位
置油圧切換弁27のソレノイド26へ通電するよ
う結線されている。制御スイツチ32は、これを
接続操作することによつて、電路37を介して二
位置油圧切換弁27のソレノイド26へ通電する
よう結線されている。38および39は、前記電
路34および36へ夫々装したダイオードであ
る。
(Example) An example of the pressure intensifier of the present invention will be described based on FIG. As mentioned above, the pressure intensifier of the present invention is different from the conventional pressure intensifier only in the hydraulic control device D. Therefore, the symbols and configurations explained as the prior art and shown in FIG. Except for the structural description of device D and the reference numerals 18 to 23 used therein, the same will be used in the following description. In FIG. 1, the hydraulic control device D includes a four-way three-position center bypass AB port open type three-position hydraulic switching valve 25 connected to the high-pressure oil passage 12 and the tank oil passage 14; a, b port,
An oil passage 9 connected to the extension operation side pressure oil chamber 2 and an oil passage 10 connected to the contraction operation side pressure oil chamber 3 of the low pressure cylinder B.
It is interposed in between and normally blocks oil passages 9 and 10, and has a spring offset at the position where the ab port of the three-position hydraulic switching valve is connected, so that when operated (when the solenoid 26 is energized), the a port is connected to the oil passage. 9 is comprised of two-position hydraulic switching valves 27 brought to positions connecting the b ports to the oil passages 10, respectively. The three-position hydraulic switching valve 25 is switched to a position where the high pressure oil passage 12 is connected to the a port and the tank oil passage is connected to the b port by energizing the solenoid 28, and the solenoid 29 is energized. The high pressure oil passage 12 is
The port can be switched to a position where the tank oil passage 14 is connected to the a port, respectively. 3
0, 31 and 32 are control switches of the hydraulic control device D. When the control switch 30 is connected, the solenoid 28 of the three-position hydraulic switching valve 25 is energized via the electric line 33, and the solenoid 26 of the two-position hydraulic switching valve 27 is energized via the electric line 34. wired. When the control switch 31 is connected, the solenoid 29 of the three-position hydraulic switching valve 25 is energized via the electrical line 35, and the solenoid 26 of the two-position hydraulic switching valve 27 is energized via the electrical line 36. wired. The control switch 32 is wired so that when the control switch 32 is connected, the solenoid 26 of the two-position hydraulic switching valve 27 is energized via an electric line 37. 38 and 39 are diodes connected to the electric circuits 34 and 36, respectively.

制御スイツチ30,31および32の何れをも
接続していない状態(第1図々示の状態)では、
制御装置Dは、低圧シリンダBの伸長動作側圧油
室2に連なる油路9および縮小動作側圧油室3に
連なる油路10を、高圧油路12およびタンク油
路14から遮断した状態にある。このため増圧器
Aは増圧機能しない。
When none of the control switches 30, 31 and 32 are connected (the state shown in Figure 1),
The control device D is in a state where the oil passage 9 connected to the extension operation side pressure oil chamber 2 and the oil passage 10 connected to the contraction operation side pressure oil chamber 3 of the low pressure cylinder B are cut off from the high pressure oil passage 12 and the tank oil passage 14. Therefore, the pressure intensifier A does not have a pressure increasing function.

制御スイツチ30を接続操作すると、油圧制御
装置Dは、高圧油路12と油路9を接続すると共
に、油路10とタンク油路14を接続した状態と
なる。このため増圧器Aは増圧機能する。
When the control switch 30 is connected, the hydraulic control device D connects the high pressure oil passage 12 and the oil passage 9, and also connects the oil passage 10 and the tank oil passage 14. Therefore, the pressure intensifier A functions to increase the pressure.

制御スイツチ31を接続操作すると、油圧制御
装置Dは高圧油路12と油路10を接続すると共
に、油路9とタンク油路14を接続した状態とな
る。このため、低圧シリンダBが縮小し増圧器A
は抜圧工程となる。
When the control switch 31 is operated to connect, the hydraulic control device D connects the high pressure oil passage 12 and the oil passage 10, and also connects the oil passage 9 and the tank oil passage 14. Therefore, the low pressure cylinder B shrinks and the pressure intensifier A
is the depressurization process.

制御スイツチ32を接続操作すると、油圧制御
装置Dは、低圧油圧シリンダB12の伸長動作側
圧油室2に連なる油路9、縮小動作側圧油室3に
連なる油路10、高圧油路12およびタンク油路
14を互に接続した状態となる。この状態では、
油圧発生装置11の発生圧油は、高圧油路12、
油圧制御装置D、タンク油路14を経てタンク1
3に還流しており、タンク油路14の管路抵抗の
ためにタンク油路14の前段に数Kg/cm2〜十数
Kg/cm2の油圧が生じている。この油圧が低圧シリ
ンダBの伸長動作側圧油室2および縮小動作側圧
油室3に同時に作用するので、低圧シリンダBは
いわゆる差動シリンダとして伸長駆動され、増圧
器Aは、中間的な油圧を発生する。そして、この
発生油圧により挾圧工具16は、被加工物を仮保
持するのである。
When the control switch 32 is connected and operated, the hydraulic control device D controls the oil passage 9 connected to the extension operation side pressure oil chamber 2 of the low pressure hydraulic cylinder B12, the oil passage 10 connected to the contraction operation side pressure oil chamber 3, the high pressure oil passage 12, and the tank oil. The lines 14 are now connected to each other. In this state,
The pressure oil generated by the hydraulic pressure generator 11 is transmitted through a high pressure oil path 12,
Hydraulic control device D, tank 1 via tank oil path 14
3, and due to the pipe resistance of the tank oil line 14, a few kg/cm 2 to several dozen
A hydraulic pressure of Kg/ cm2 is generated. This oil pressure acts simultaneously on the extension side pressure oil chamber 2 and the contraction side pressure oil chamber 3 of the low pressure cylinder B, so the low pressure cylinder B is driven to extend as a so-called differential cylinder, and the pressure booster A generates an intermediate oil pressure. do. The clamping tool 16 temporarily holds the workpiece by this generated hydraulic pressure.

尚、上記実施例において、タンク油路14に、
可変抵抗弁(図示せず)を介装するようにし、こ
の可変抵抗弁を調節することで、増圧器の中間的
な油圧を増減調節しても良いこと勿論である。ま
た、上記実施例においては、油圧制御装置Dを、
電磁操作式の三位置油圧切換弁25と二位置油圧
切換弁27で構成したが、この油圧制御装置D
は、油路9、油路10、高圧油路12およびタン
ク油路14間の接続状態を、上記四つの接続状態
の間で切換制御できるものであれば良く、例え
ば、第2図に示す如き手動作操作式の四位置油圧
切換弁で代替しうること勿論である。
In addition, in the above embodiment, in the tank oil passage 14,
Of course, by interposing a variable resistance valve (not shown) and adjusting the variable resistance valve, the intermediate oil pressure of the pressure intensifier may be increased or decreased. Further, in the above embodiment, the hydraulic control device D is
This hydraulic control device D is composed of an electromagnetically operated three-position hydraulic switching valve 25 and a two-position hydraulic switching valve 27.
The connection state between the oil passage 9, the oil passage 10, the high pressure oil passage 12, and the tank oil passage 14 may be controlled to be switched between the above four connection states, for example, as shown in FIG. Of course, a manually operated four-position hydraulic switching valve can be used instead.

(本考案の効果) 以上の如く構成し作用する本考案の増圧器は、
従来の増圧器における油圧制御装置Dに、低圧油
圧シリンダBの伸長動作側圧油室に連なる油路
9、縮小動作側圧油室に連なる油路10、高圧油
路12およびタンク油路14を互に接続する切換
状態を付加するのみで、増圧器に中間的な油圧を
発生させることができこの増圧器により駆動され
る挾圧工具等により被加工物を仮保持できるとい
う効果を有するものである。
(Effects of the present invention) The pressure booster of the present invention configured and operated as described above has the following features:
In the hydraulic control device D of the conventional pressure intensifier, the oil passage 9 connected to the extension operation side pressure oil chamber of the low pressure hydraulic cylinder B, the oil passage 10 connected to the contraction operation side pressure oil chamber, the high pressure oil passage 12, and the tank oil passage 14 are connected to each other. By simply adding a switching state to connect, an intermediate hydraulic pressure can be generated in the pressure intensifier, and the workpiece can be temporarily held by a clamping tool or the like driven by the pressure intensifier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本考案の増圧器の一実施例の説明
図、第2図は同他の実施例の要部説明図、第3図
は従来の増圧器の説明図である。 A:増圧器、B;低圧シリンダ、C:高圧シリ
ンダ、D;油圧制御装置、1;大径シリンダ、
4;大径ピストン、2;伸長動作側圧油室、3:
縮小動作側圧油室、5;ピストンロツド、6;ピ
ストン、8;小径シリンダ、9;低圧シリンダの
伸長動作側圧油室に連なる油路、10;縮小動作
側圧油室に連なる油路、12;高圧油路、14;
タンク油路。
FIG. 1 is an explanatory diagram of one embodiment of the pressure intensifier of the present invention, FIG. 2 is an explanatory diagram of the main part of another embodiment, and FIG. 3 is an explanatory diagram of a conventional pressure intensifier. A: Pressure booster, B: Low pressure cylinder, C: High pressure cylinder, D: Hydraulic control device, 1: Large diameter cylinder,
4: Large diameter piston, 2: Extension operation side pressure oil chamber, 3:
Reduction operation side pressure oil chamber, 5: Piston rod, 6: Piston, 8: Small diameter cylinder, 9: Oil passage connected to the extension operation side pressure oil chamber of the low pressure cylinder, 10; Oil passage connected to the reduction operation side pressure oil chamber, 12: High pressure oil Road, 14;
Tank oil line.

Claims (1)

【実用新案登録請求の範囲】 大径シリンダ、この大径シリンダ内に油密摺動
自在に嵌挿された大径シリンダ内を伸長動作側圧
油室と縮小動作側圧油室に区画する大径ピストン
およびその基端を前記大径ピストンに固着され前
記縮小動作側圧油室を通つてその先端を大径シリ
ンダ外へ延出したピストンロツドとからなる低圧
シリンダ、前記低圧シリンダのピストンロツド先
端部に形成したピストンとこのピストンを油密摺
動自在に受容する小径シリンダとからなる高圧シ
リンダ、および、前記低圧シリンダの伸長動作側
圧油室に連なる油路、前記低圧油圧シリンダの縮
小動作側圧油室に連なる油路、油圧発生装置に連
なる高圧油路およびタンクに連なるタンク油路の
間に介装された油圧制御装置を備えてなる増圧器
であつて、前記油圧制御装置は少なくとも、 低圧シリンダの伸長動作側圧油室に連なる油
路および縮小動作側圧油室に連なる油路を、高
圧油路およびタンク油路から遮断した状態、 高圧油路と低圧油圧シリンダの伸長動作側圧
油室に連なる油路を接続すると共に、低圧シリ
ンダの縮小動作側圧油室に連なる油路とタンク
油路を接続した状態、 高圧油路と低圧油圧シリンダの縮小動作側圧
油室に連なる油路を接続すると共に、低圧油圧
シリンダの伸長動作側圧油室に連なる油路とタ
ンク路を接続した状態、 低圧油圧シリンダの伸長動作側圧油室に連な
る油路、縮小動作側圧油室に連なる油路、高圧
油路およびタンク油路を互いに接続した状態の
四つの状態に切換制御できるよう構成してある
ことを特徴とする増圧器。
[Scope of Claim for Utility Model Registration] A large-diameter cylinder, a large-diameter piston that is slidably fitted in the large-diameter cylinder in an oil-tight manner and divides the inside of the large-diameter cylinder into an extension-side pressure oil chamber and a contraction-side pressure oil chamber. and a piston rod whose base end is fixed to the large-diameter piston and whose tip extends outside the large-diameter cylinder through the reduction operation side pressure oil chamber, a piston formed at the tip of the piston rod of the low-pressure cylinder. and a small-diameter cylinder that receives the piston in an oil-tight and slidable manner, an oil passage connected to an extension operation side pressure oil chamber of the low pressure cylinder, and an oil passage connected to a contraction operation side pressure oil chamber of the low pressure hydraulic cylinder. , a pressure intensifier comprising a hydraulic control device interposed between a high-pressure oil path connected to a hydraulic pressure generating device and a tank oil path connected to a tank, the hydraulic control device at least controlling pressure oil on the extension operation side of a low-pressure cylinder. The oil passage leading to the chamber and the oil passage leading to the contraction side pressure oil chamber are cut off from the high pressure oil passage and the tank oil passage, and the high pressure oil passage and the oil passage leading to the extension side pressure oil chamber of the low pressure hydraulic cylinder are connected. , the state in which the oil passage leading to the compression side pressure oil chamber of the low pressure cylinder is connected to the tank oil passage, the state in which the high pressure oil passage and the oil passage leading to the contraction side pressure oil chamber of the low pressure hydraulic cylinder are connected, and the extension operation of the low pressure hydraulic cylinder The oil passage connected to the side pressure oil chamber and the tank passage are connected, the oil passage connected to the extension side pressure oil chamber of the low pressure hydraulic cylinder, the oil passage connected to the contraction side pressure oil chamber, the high pressure oil passage and the tank oil passage are connected to each other. 1. A pressure intensifier characterized by being configured to be able to control switching between four states.
JP9005684U 1984-06-15 1984-06-15 pressure booster Granted JPS616003U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9005684U JPS616003U (en) 1984-06-15 1984-06-15 pressure booster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9005684U JPS616003U (en) 1984-06-15 1984-06-15 pressure booster

Publications (2)

Publication Number Publication Date
JPS616003U JPS616003U (en) 1986-01-14
JPH034801Y2 true JPH034801Y2 (en) 1991-02-07

Family

ID=30644703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9005684U Granted JPS616003U (en) 1984-06-15 1984-06-15 pressure booster

Country Status (1)

Country Link
JP (1) JPS616003U (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636322Y2 (en) * 1987-09-22 1994-09-21 株式会社アイチコーポレーション Hydraulic booster
KR100515965B1 (en) * 1997-12-26 2006-03-09 삼성테크윈 주식회사 Hydraulic system of airplane
JP6338629B2 (en) * 2016-09-09 2018-06-06 株式会社ムラタ溶研 Butt joining device for strip metal sheet

Also Published As

Publication number Publication date
JPS616003U (en) 1986-01-14

Similar Documents

Publication Publication Date Title
EP0466304A1 (en) Slug riveting method and apparatus with C-frame deflection compensation
US20130068090A1 (en) Hydraulic device for hydraulic cylinders
US4590763A (en) Method of supplying a normally continuous operating hydraulic actuator with hydraulic fluid, continuously and by controlled pulse, and a device for implementing said method
JPH034801Y2 (en)
GB1584384A (en) Method and apparatus for controlling a press plunger system
US6318234B1 (en) Line vent arrangement for electro-hydraulic circuit
EP0049034B1 (en) Hydraulic sequencing valve
US5558000A (en) High speed and high load cylinder device
US4004420A (en) Hydropneumatic pumping arrangement
CA2178985A1 (en) Method for controlling a pipe bending machine
JPH07269507A (en) Accelerating device for hydraulic cylinder
JPH0547192Y2 (en)
AU745484B2 (en) Pneumatic weld head with automatically adjusted pressure
JP2665556B2 (en) Fluid pressure clamp device with booster circuit
JP2001259852A (en) Varying device of pressuring force for spot welding gun
JPH07127601A (en) Intensifying circuit for oil pressure
RU1832163C (en) Pneumohydraulic three-stage pressure amplifier for hydraulic clamps of machine fixtures
JP2876371B2 (en) Spot welding equipment
USRE22099E (en) Power transmission
JPH0419210Y2 (en)
SU793724A1 (en) Drilling head
SU1333510A1 (en) Pneumatic and hydraulic drive for friction welding machine
JPH0545671Y2 (en)
JPS591803A (en) Cylinder controller
JPS6019840Y2 (en) Safety hydraulic control circuit for hydraulic press