JPH0347686B2 - - Google Patents

Info

Publication number
JPH0347686B2
JPH0347686B2 JP59088788A JP8878884A JPH0347686B2 JP H0347686 B2 JPH0347686 B2 JP H0347686B2 JP 59088788 A JP59088788 A JP 59088788A JP 8878884 A JP8878884 A JP 8878884A JP H0347686 B2 JPH0347686 B2 JP H0347686B2
Authority
JP
Japan
Prior art keywords
measured
roller
guide roller
movable frame
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59088788A
Other languages
Japanese (ja)
Other versions
JPS60233510A (en
Inventor
Hayato Doi
Kazuo Sumino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Industry Co Ltd
Original Assignee
Hitachi Zosen Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Industry Co Ltd filed Critical Hitachi Zosen Industry Co Ltd
Priority to JP8878884A priority Critical patent/JPS60233510A/en
Publication of JPS60233510A publication Critical patent/JPS60233510A/en
Publication of JPH0347686B2 publication Critical patent/JPH0347686B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/02Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness
    • G01B5/06Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness for measuring thickness
    • G01B5/068Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness for measuring thickness of objects while moving

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、例えばプラスチツク製のシートやフ
イルムなどの被測定物を流しながら、その厚みの
測定を行なう流動する被測定物の厚み測定装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a device for measuring the thickness of a flowing object to be measured, such as a plastic sheet or film, which measures the thickness of the object while flowing the object. be.

従来例の構成とその問題点 従来、例えばプラスチツク製のシートやフイル
ムなどの被測定物を流し(移動させ)ながら測定
するのに、接触式と非接触式とがあり、それぞれ
特徴がある。この内、接触式の場合は、安価で被
測定物の物性による影響を受けにくいことが特徴
である。その測定方法は、流れる被測定物の下面
と上面とを一対のローラではさみ込み、これらロ
ーラ間の距離を電気的または機械的に測定し表示
するものである。しかしながら、ローラが被測定
物に直接接触しているため、このローラをそのま
ま横移動させると該被測定物に傷が付く問題があ
る。そのため接触式では被測定物の巾方向での厚
み測定は行なえなかつた。一方、放射線やβ線を
使用する非接触式の場合は巾方向の厚み測定も可
能であるが、この場合にはさみ込みでないことか
ら被測定物の波打ちなどに対処するために複雑な
制御構成が必要であることから高価となり、また
放射線などにより人体に悪影響を及ぼすものも少
なくない。したがつて厚み測定として一般的に行
なわれているのは、部分的にサンプルを取り出し
てマイクロメータなどで測定する方法である。し
かしこの方法は被測定物の流れを止めることにな
り、また常時測定できない欠点があり、さらに人
手によるため省力化に貢献していなかつた。
Conventional Structures and Problems Conventionally, there are contact and non-contact methods for measuring objects to be measured, such as plastic sheets and films, while flowing (moving) them, each with its own characteristics. Among these, the contact type is characterized by being inexpensive and not easily affected by the physical properties of the object to be measured. The measuring method involves sandwiching the lower and upper surfaces of a flowing object between a pair of rollers, and electrically or mechanically measuring and displaying the distance between these rollers. However, since the roller is in direct contact with the object to be measured, there is a problem in that the object to be measured will be damaged if the roller is moved laterally. Therefore, the contact type cannot measure the thickness of the object to be measured in the width direction. On the other hand, in the case of a non-contact method that uses radiation or β-rays, it is also possible to measure the thickness in the width direction, but in this case, since there is no pinching, a complicated control configuration is required to deal with waving of the measured object. Because they are necessary, they are expensive, and many have harmful effects on the human body due to radiation. Therefore, the commonly used method for thickness measurement is to take out a portion of the sample and measure it with a micrometer or the like. However, this method has the disadvantage that it stops the flow of the object to be measured, cannot be measured all the time, and also does not contribute to labor savings because it requires manual labor.

発明の目的 本発明の目的とするところは、被測定物の流れ
方向ならびに巾方向の厚み測定を、該被測定物を
傷付けることなく連続的に行なえる流動する被測
定物の厚み測定装置を提供する点にある。
OBJECT OF THE INVENTION An object of the present invention is to provide a thickness measuring device for a flowing workpiece that can continuously measure the thickness of the workpiece in the flow direction and width direction without damaging the workpiece. It is in the point of doing.

発明の構成 上記目的を達成するために本発明における流動
する被測定物の厚み測定装置は、被測定物を案内
するガイドローラの軸心に沿つて酸置されたガイ
ドレールに、可動枠を移動自在に案内すると共
に、この可動枠を前記ガイドレールに沿つて移動
させる横送り装置を設け、前記可動枠に、前記ガ
イドローラ軸心と平行に横軸を設けると共に、こ
の横軸に揺動体をその軸心と直交する平面内で揺
動自在に支持し、この揺動体にガイドローラに案
内される被測定物に接触可能な測定ローラおよび
この被測定物の厚みを測定する非接触式測定セン
サーを設け、且つ前記揺動体を前記ガイドローラ
の表面に対して接近離間方向で揺動させる作動装
置をを設けたことにあります。
Structure of the Invention In order to achieve the above object, the device for measuring the thickness of a flowing workpiece according to the present invention moves a movable frame to a guide rail placed along the axis of a guide roller that guides the workpiece. A traversing device is provided for freely guiding the movable frame and moving the movable frame along the guide rail, and the movable frame is provided with a horizontal axis parallel to the axis of the guide roller, and a rocking body is attached to the horizontal axis. A measurement roller supported swingably in a plane orthogonal to the axis thereof and capable of contacting the object to be measured guided by a guide roller on this oscillator, and a non-contact measurement sensor that measures the thickness of the object to be measured. and an actuating device for swinging the swinging body toward and away from the surface of the guide roller.

かかる構成によると、測定ローラをガイドロー
ラに接近させて被測定物をはさみ込むことによ
り、被測定物に波打ち現象などを生ぜしめない状
態で、非接触式測定センサーによる流れ方向の厚
さ測定を行なえ、また巾方向の厚さ測定は、作動
装置により揺動体を介して測定ローラならびに測
定センサーを離間動させたのち可動枠を巾方向に
移動させることにより、該被測定物を傷付けるこ
となく行なえる。
According to this configuration, by bringing the measurement roller close to the guide roller and sandwiching the object to be measured, thickness measurement in the machine direction can be performed using a non-contact measurement sensor without causing any undulating phenomenon on the object to be measured. Moreover, the thickness measurement in the width direction can be performed without damaging the object to be measured by moving the measuring roller and the measuring sensor apart via the oscillator using the actuating device and then moving the movable frame in the width direction. Ru.

実施例と作用 以下に本発明の一実施例を図面に基づいて説明
する。1は本体枠で、左右一対の側板2と、これ
ら側板2間に配設した複数本のチヤンネル材3な
どから構成される。前記側板2間の下部には、ロ
ーラ軸4を介してガイドローラ5が配設され、こ
のガイドローラ5はガイドローラ軸心5Aの周り
に回転自在となる。前記側板2の中央部間には支
持板6が設けられ、この支持板6にガイドレール
7が取付けられる。8は被ガイド体9を介して前
記ガイドレール7に支持案内される可動枠で、前
記ガイドローラ5に対向してガイドローラ軸心5
Aに沿つて往復移動自在となる。10は前記可動
枠8を往復移動させる横送り装置で、両側板2に
取付けた複数個の案内輪体11と、一方の側板2
に取付けた駆動輪体12と、各輪体11,12間
に掛張した回動体13と、前記駆動輪体12にク
ラツチ14を介して連動するロータリーアクチユ
エータ15と、クラツチ切換用のシリンダ16と
からなり、前記回動体13を前記可動枠8に固定
している。前記可動枠8には、前記ガイドローラ
5に対して接近離間自在な測定ローラ17が取付
けられる。すなわち可動枠8には、前記ガイドロ
ーラ軸心5Aと平行な横軸18がブラケツト19
などを介して取付けられ、前記横軸18に取付け
た上下方向の揺動体20の先端に、横方向のロー
ラ軸21を介して前記測定ローラ17が取付けて
ある。22はバランスウエイトを示す。23は前
記揺動体20をガイドローラ5に対して揺動させ
ることにより、測定ローラ17をガイドローラ5
の表面に対して接近離間動させる作動装置で、前
記ガイドローラ軸心5Aに沿つて配設され且つ両
側板2に回転のみ自在に支持された角軸24と、
この角軸24に連動するロータリーアクチユエー
タ25と、前記角軸24にその長さ方向摺動のみ
自在に外嵌する偏心カム26と、この偏心カム2
6への外嵌部27を有する昇降板28と、この昇
降板28と前記揺動体20の中間部とを相対揺動
自在に連結するピン29とから構成される。前記
測定ローラ15に接近した位置に非接触式の測定
センサー30が配設され、この測定センサー30
は連結部材31を介して揺動体20に取付けられ
る。前記測定センサー30は、例えば高周波電圧
をかけると相手側(本実施例においてはガイドロ
ーラ5)に発生した渦電流の大きさを感知するこ
とによる渦電流式ギヤツプセンサーが使用され、
前記電流の大きさが距離によつて変わることを電
気的に取り出して変換器(アンプ)により厚みに
換算する。前記可動枠8には指針32が設けら
れ、この指針32が対応するように巾方向位置を
示す表示体33がチヤンネル機3の1本に取付け
られる。前記可動枠8側の巾方向の変更位置を検
出するために、該可動枠8の上部に検出センサー
34とアンプ35とが設けられ、また枠本体1側
に被検出部42が複数設けられる。これら被検出
部42は、複数個の取付け孔36と、これら取付
け孔36に着脱自在な被検出体37とからなり、
被検出体37の取付け数と取付け位置との組合わ
せ変化によつて段階的な被検出位置としている。
前記角軸24の正逆回転は、この角軸24に取付
けたストライカー38を夫々の近接スイツチ3
9,40で検出することにより行なわれる。41
はケーブルベアーを示す。43は例えばプラスチ
ツク製のシートやフイルムなどからなる被測定物
を示す。
Embodiment and Operation An embodiment of the present invention will be described below based on the drawings. Reference numeral 1 denotes a main body frame, which is composed of a pair of left and right side plates 2, a plurality of channel members 3 disposed between these side plates 2, and the like. A guide roller 5 is disposed at a lower portion between the side plates 2 via a roller shaft 4, and this guide roller 5 is rotatable around a guide roller axis 5A. A support plate 6 is provided between the center portions of the side plates 2, and a guide rail 7 is attached to this support plate 6. 8 is a movable frame that is supported and guided by the guide rail 7 via the guided body 9, and is arranged opposite to the guide roller 5 so that the guide roller axis 5
It can freely move back and forth along A. Reference numeral 10 denotes a cross-feeding device for reciprocating the movable frame 8, which includes a plurality of guide wheels 11 attached to both side plates 2 and one side plate 2.
A driving wheel body 12 attached to the wheel body 12, a rotating body 13 suspended between the wheel bodies 11 and 12, a rotary actuator 15 interlocked with the driving wheel body 12 via a clutch 14, and a cylinder for clutch switching. 16, and the rotating body 13 is fixed to the movable frame 8. A measuring roller 17 that can move toward and away from the guide roller 5 is attached to the movable frame 8 . That is, in the movable frame 8, a horizontal axis 18 parallel to the guide roller axis 5A is connected to a bracket 19.
The measuring roller 17 is attached to the tip of a vertically oscillating body 20 attached to the horizontal shaft 18 via a horizontal roller shaft 21 . 22 indicates a balance weight. 23 swings the swinging body 20 relative to the guide roller 5 to move the measurement roller 17 to the guide roller 5.
a square shaft 24 which is arranged along the guide roller axis 5A and is rotatably supported by both side plates 2;
A rotary actuator 25 that interlocks with this square shaft 24, an eccentric cam 26 that is externally fitted onto the square shaft 24 so that it can freely slide only in the longitudinal direction, and this eccentric cam 2.
6, and a pin 29 that connects the elevator plate 28 and the intermediate portion of the rocking body 20 such that they can swing relative to each other. A non-contact measurement sensor 30 is disposed at a position close to the measurement roller 15, and this measurement sensor 30
is attached to the rocking body 20 via the connecting member 31. The measurement sensor 30 is, for example, an eddy current type gap sensor that senses the magnitude of an eddy current generated on the other side (in this embodiment, the guide roller 5) when a high frequency voltage is applied.
The fact that the magnitude of the current changes with distance is electrically extracted and converted into thickness using a converter (amplifier). A pointer 32 is provided on the movable frame 8, and a display 33 indicating the position in the width direction is attached to one of the channel machines 3 so as to correspond to the pointer 32. In order to detect the changed position in the width direction on the movable frame 8 side, a detection sensor 34 and an amplifier 35 are provided on the upper part of the movable frame 8, and a plurality of detected parts 42 are provided on the frame main body 1 side. These detected parts 42 are made up of a plurality of mounting holes 36 and a detected body 37 that can be attached to and detached from these mounting holes 36,
By changing the combination of the number of mounted detection objects 37 and the mounting positions, the detected positions are set in stages.
The forward and reverse rotation of the square shaft 24 causes a striker 38 attached to the square shaft 24 to be connected to each proximity switch 3.
This is done by detecting at 9 and 40. 41
indicates a cable carrier. Reference numeral 43 indicates an object to be measured made of, for example, a plastic sheet or film.

次に上記実施例の作用について説明する。第1
図、第2図においては、下降した測定ローラ17
とガイドローラ5とにより被測定物43をはさみ
込んでおり、両ローラ17,5の表面間の距離を
測定センサー30で測定することにより被測定物
43の厚みを測定し得る。これによつて、指針3
2が示す〔16ポイント〕において、流れている被
測定物43の流れ方向の厚み測定を連続的に行な
える。別のポイントでの厚み測定を行なう場合、
先ずロータリーアクチユエータ25により角軸2
4を180度回転させる。すると偏心カム26と外
嵌部27との関係によりその偏心量に相応して昇
降板28が上昇し、そしてピン29を介して揺動
体20を横軸18の周りに上方揺動させて被測定
物43から測定ローラ17を離間させると共に測
定センサー30も離間させる。次いでクラツチ1
4を閉にしてロータリーアクチユエータ15を所
定量だけ一方に回転駆動する。その回転量は回動
体13を介して可動枠8に伝えられ、この可動枠
8を1ポイント分(定ピツチ)だけ一方に移動さ
せる。なお複数ポイント移動させるときには、そ
の後にクラツチ14を開にしてロータリーアクチ
ユエーター15を他方に回転(戻し回転)させ、
そしてクラツチ14を閉にして一方に回転させ、
これを繰り返すことによつてその回数分だけ移動
し得る。なおクラツチ14の開閉のタイミングを
逆にすることによつて、逆方向に移動させ得る。
所定のポイントに移動させたのち、前述とは逆操
作により測定ローラ17を下降させてガイドロー
ラ5との間で被測定物43をはさみ込むことによ
り、当該ポイントでの厚み測定を連続して行なえ
る。これにより巾方向の測定を連続して行なえる
ことになる。
Next, the operation of the above embodiment will be explained. 1st
In FIG. 2, the measuring roller 17 is lowered.
The object to be measured 43 is sandwiched between the rollers 17 and the guide rollers 5, and the thickness of the object to be measured 43 can be measured by measuring the distance between the surfaces of both rollers 17 and 5 with the measurement sensor 30. With this, Guideline 3
At [16 points] indicated by 2, the thickness of the flowing object 43 in the flow direction can be continuously measured. If you want to measure the thickness at another point,
First, the rotary actuator 25 rotates the square shaft 2.
Rotate 4 180 degrees. Then, due to the relationship between the eccentric cam 26 and the external fitting part 27, the elevating plate 28 rises in accordance with the amount of eccentricity, and the oscillating body 20 is oscillated upward around the horizontal axis 18 via the pin 29 to move the object to be measured. The measuring roller 17 is separated from the object 43, and the measuring sensor 30 is also separated. Next, clutch 1
4 is closed, and the rotary actuator 15 is rotated in one direction by a predetermined amount. The amount of rotation is transmitted to the movable frame 8 via the rotating body 13, and the movable frame 8 is moved to one side by one point (fixed pitch). When moving multiple points, open the clutch 14 and rotate the rotary actuator 15 in the other direction (return rotation).
Then, close the clutch 14 and rotate it to one side,
By repeating this, you can move the number of times. Note that by reversing the timing of opening and closing of the clutch 14, movement in the opposite direction can be achieved.
After moving to a predetermined point, the measuring roller 17 is lowered by the reverse operation to the above, and the object to be measured 43 is sandwiched between it and the guide roller 5, so that the thickness measurement at the point can be continuously performed. Ru. This allows continuous measurements in the width direction.

横送り装置10による横送りは無段階に且つ任
意の位置で停止し得るようにしてもよいが、上記
実施例のように横送り装置10による送りを定ピ
ツチ送りに構成したときには、巾方向の測定点が
決まることから、被測定物43の厚みコントロー
ル用データとして容易に取り出せる。
The cross-feeding by the cross-feeding device 10 may be made stepless and can be stopped at any position, but when the feed by the cross-feeding device 10 is configured to be fixed pitch feed as in the above embodiment, the width direction Since the measurement point is determined, it can be easily taken out as data for controlling the thickness of the object to be measured 43.

発明の効果 以上のように本発明の構成によると、測定ロー
ラを被測定物に接触させて、非接触式の測定セン
サーを使用してガイドローラ表面と測定ローラと
の距離、すなわち被測定物の厚みを測定するよう
にしているので、下記のような効果を有する。
Effects of the Invention As described above, according to the configuration of the present invention, the measurement roller is brought into contact with the object to be measured, and the distance between the guide roller surface and the measurement roller is measured using a non-contact measurement sensor, that is, the distance of the object to be measured. Since the thickness is measured, the following effects are achieved.

被測定物に接触する測定ローラを介して非接
触式センサーで被測定物の厚みを測定している
ので、従来の放射線やβ線を使用する非接触式
センサーだけによる場合と異なり、被測定物の
波打ちなどに対処するための複雑な制御機構を
必要としないため、非常に安価になる。
The thickness of the object to be measured is measured using a non-contact sensor via a measuring roller that comes into contact with the object. Because it does not require a complicated control mechanism to deal with rippling, etc., it is extremely inexpensive.

被測定物に接触する測定ローラを介して厚み
測定を行うため、被測定物の物性に左右されず
に正確な測定を行うことができ、したがつて広
範囲な測定に応用することができる。
Since the thickness is measured via a measuring roller that comes into contact with the object to be measured, accurate measurement can be performed regardless of the physical properties of the object to be measured, and therefore it can be applied to a wide range of measurements.

測定ローラを離間させた状態で可動枠を移動
させることによつて、測定センサーを巾方向に
移動でき、その後に測定ローラを接当させるこ
とによつて、巾方向での厚み測定を行なうこと
ができ、測定ローラによる傷付けが生じないこ
とも相俟つて流れを止めることなく常時品質の
管理を行なうことができる。
By moving the movable frame with the measuring roller separated, the measuring sensor can be moved in the width direction, and then by bringing the measuring roller into contact with it, the thickness can be measured in the width direction. This combined with the fact that there is no damage caused by the measuring roller makes it possible to constantly control quality without stopping the flow.

既設の設備にも容易に取付けることができ
る。
It can be easily installed into existing equipment.

測定ローラを1個にしたため、測定点の厚み
がより正確である。
Since only one measuring roller is used, the thickness at the measuring point is more accurate.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示し、第1図は一部
切欠き正面図、第2図は縦断側面図、第3図は平
面図、第4図は要部の一部切欠き側面図、第5図
は同一部切欠き平面図である。 1…枠本体、5…ガイドローラ、5A…ガイド
ローラ軸心、7…ガイドレール、8…可動枠、9
…被ガイド体、10…横送り装置、13…回動
体、15…ロータリーアクチユエータ、17…測
定ローラ、20…揺動体、23…作動装置、24
…角軸、25…ロータリーアクチユエータ、28
…昇降板、30…測定センサー、32…指針、3
3…表示体、43…被測定物。
The drawings show one embodiment of the present invention, in which Fig. 1 is a partially cutaway front view, Fig. 2 is a longitudinal side view, Fig. 3 is a plan view, and Fig. 4 is a partially cutaway side view of the main part. , FIG. 5 is a partially cutaway plan view of the same. DESCRIPTION OF SYMBOLS 1... Frame body, 5... Guide roller, 5A... Guide roller axis, 7... Guide rail, 8... Movable frame, 9
...Guided body, 10...Transverse feed device, 13... Rotating body, 15... Rotary actuator, 17... Measuring roller, 20... Oscillating body, 23... Actuating device, 24
...Square shaft, 25...Rotary actuator, 28
... Lifting plate, 30... Measurement sensor, 32... Pointer, 3
3...Display object, 43...Measurement object.

Claims (1)

【特許請求の範囲】[Claims] 1 被測定物を案内するガイドローラの軸心に沿
つて配置されたガイドレールに、可動枠を移動自
在に案内すると共に、この可動枠を前記ガイドレ
ールに沿つて移動させる横送り装置を設け、前記
可動枠に、前記ガイドローラ軸心と平行に横軸を
設けると共に、この横軸に揺動体をその軸心と直
交する平面内で揺動自在に支持し、この揺動体に
ガイドローラに案内される被測定物に接触可能な
測定ローラおよびこの被測定物の厚みを測定する
非接触式測定センサーを設け、且つ前記揺動体を
前記ガイドローラの表面に対して接近離間方向で
揺動させる作動装置を設けたことを特徴とする流
動する被測定物の厚み測定装置。
1. A guide rail disposed along the axis of a guide roller that guides the object to be measured is provided with a lateral feed device that movably guides the movable frame and moves the movable frame along the guide rail, The movable frame is provided with a horizontal axis parallel to the guide roller axis, and a swinging body is supported on the horizontal shaft so as to be swingable in a plane orthogonal to the axis, and the swinging body is guided to the guide roller. a measuring roller that can come into contact with an object to be measured and a non-contact measurement sensor that measures the thickness of the object to be measured; and an operation of swinging the rocking body in a direction toward and away from the surface of the guide roller. A thickness measuring device for a flowing object to be measured, characterized in that the device is provided with the device.
JP8878884A 1984-05-02 1984-05-02 Contact type thickness measuring instrument of flowing object to be measured Granted JPS60233510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8878884A JPS60233510A (en) 1984-05-02 1984-05-02 Contact type thickness measuring instrument of flowing object to be measured

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8878884A JPS60233510A (en) 1984-05-02 1984-05-02 Contact type thickness measuring instrument of flowing object to be measured

Publications (2)

Publication Number Publication Date
JPS60233510A JPS60233510A (en) 1985-11-20
JPH0347686B2 true JPH0347686B2 (en) 1991-07-22

Family

ID=13952575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8878884A Granted JPS60233510A (en) 1984-05-02 1984-05-02 Contact type thickness measuring instrument of flowing object to be measured

Country Status (1)

Country Link
JP (1) JPS60233510A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138606A (en) * 1979-04-16 1980-10-29 Toshiba Corp Measuring method of cross section shape correcting lateral deflection
JPS56133604A (en) * 1980-03-25 1981-10-19 Toshiba Corp Shape measuring device
JPS5724812A (en) * 1980-07-22 1982-02-09 Nippon Steel Corp Supporting device for measuring ends
JPS57173710A (en) * 1981-04-17 1982-10-26 Yokogawa Hokushin Electric Corp Profile display device
JPS58129202A (en) * 1982-01-28 1983-08-02 Toshiba Corp Device for measuring online roll profile

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127210U (en) * 1979-03-05 1980-09-09

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138606A (en) * 1979-04-16 1980-10-29 Toshiba Corp Measuring method of cross section shape correcting lateral deflection
JPS56133604A (en) * 1980-03-25 1981-10-19 Toshiba Corp Shape measuring device
JPS5724812A (en) * 1980-07-22 1982-02-09 Nippon Steel Corp Supporting device for measuring ends
JPS57173710A (en) * 1981-04-17 1982-10-26 Yokogawa Hokushin Electric Corp Profile display device
JPS58129202A (en) * 1982-01-28 1983-08-02 Toshiba Corp Device for measuring online roll profile

Also Published As

Publication number Publication date
JPS60233510A (en) 1985-11-20

Similar Documents

Publication Publication Date Title
JPH0376826A (en) Device to measure the thickness and non-uniformity of sliver of spinning preparation machine
US3546782A (en) Automotive wheel alining apparatus
SU810070A3 (en) Unit for measuring and control of adjustment of crystallizer and supporting rollers in continuous metal casting machine
US3676933A (en) Continuous thickness measurement of a moving plastic web
JP3876704B2 (en) Dimensional measuring device
JPH0347686B2 (en)
US2184035A (en) Strip width measuring device
US3247454A (en) Dielectric testing apparatus including a movable table following a predetermined path
JP2540095Y2 (en) Crankshaft runout measuring device
JP2579313Y2 (en) Sheet thickness measuring device
CN220872646U (en) Magnetic field detection sensitivity calibrating device
JPH04349962A (en) Device for adjusting roll gap
JPS587323Y2 (en) hardness test equipment
JPH0250823B2 (en)
JPS6349586B2 (en)
JP3254736B2 (en) Calendar roll profile measurement device
JPH0649373Y2 (en) Plate thickness detection mechanism
KR200334817Y1 (en) Defect width measuring device of strip edge
JPH04121346A (en) Two-sheet detecting device
JPH0720027A (en) Method and instrument for measuring young's modulus of grading machine
EP0037867A1 (en) Method of stress grading timber, and apparatus therefor
JPH0235364Y2 (en)
JP3080967B2 (en) Vehicle braking force test equipment
JPS5910561Y2 (en) Continuous film thickness measurement device
JPH062110U (en) Sheet-like member thickness measuring device