JPH0347291B2 - - Google Patents

Info

Publication number
JPH0347291B2
JPH0347291B2 JP60195769A JP19576985A JPH0347291B2 JP H0347291 B2 JPH0347291 B2 JP H0347291B2 JP 60195769 A JP60195769 A JP 60195769A JP 19576985 A JP19576985 A JP 19576985A JP H0347291 B2 JPH0347291 B2 JP H0347291B2
Authority
JP
Japan
Prior art keywords
glass fiber
reinforced composite
polypropylene
parts
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60195769A
Other languages
Japanese (ja)
Other versions
JPS6257428A (en
Inventor
Kazuto Wakita
Kazuo Tsucha
Hiroshi Kojima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP19576985A priority Critical patent/JPS6257428A/en
Publication of JPS6257428A publication Critical patent/JPS6257428A/en
Publication of JPH0347291B2 publication Critical patent/JPH0347291B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、機械型打ちプレスで型打ち(スタン
ピング成形の一種)するのに適したガラス繊維強
化複合体に関するもので特に気密性、及び気密性
と難燃性が要求される分野の用途に用いられる。 〔従来の技術〕 従来、機械型打ちプレスで型打ちするのに適合
するガラス繊維強化複合体に供される樹脂として
は、優れた機械的諸物性、成形加工性及び安価で
あることから、結晶性ポリプロピリンが使用され
ている。 〔発明が解決しようとする問題点〕 結晶性ポリプロピレンをベースポリマーにして
複合したガラス繊維強化複合体は、機械型打ちプ
レスで型打ち加工すると、特に複雑な形状の部分
(例えば、リーブ部、コーナー部)の気密性が悪
く、かつ可燃であるという大きな欠点を有してい
る。 〔問題点を解決するための手段〕 本発明者らは、上述の点に鑑み、型打ち加工す
ることにより、特に複雑な形状部での気密性が良
好であるガラス繊維強化複合体、さらに気密性が
良好で難燃性の付与されたガラス繊維強化複合体
を提供すべく鋭意研究した結果、本発明を完成し
た。 すなわち、本発明は、マツト状のガラス繊維に
変性ポリプロピレンを含むポリプロピレン樹脂を
含浸せしめてなる機械型打ちプレス成形用ガラス
繊維強化複合体を提供するものである。 本発明において使用されるマツト状のガラス繊
維としては、ガラス長繊維(ストランド)が均一
に分散したストランドからなるマツトが使用さ
れ、均一なストランド分布を維持するためにマツ
トに充分な一体性あるいは保形性を付与したもの
が望ましい。この目的のためには、バーブ付針に
よつてマツトをニードルパンチングにおいて、バ
ーブ付針はただマツトを貫通しマツト中の繊維を
交絡させ、マツトをゆるく結合させ、決して強く
結合させることはない。このため機械型打ちプレ
ス型打ちする間にマツトのストランドは樹脂の流
れとともに自由に移動する。 本発明においては変形ポリプロピレンを含むポ
リプロピレン樹脂が使用される。 前記ポリプロピレン樹脂(結晶性ポリプロピレ
ン)とは、ポリプロピレンホモポリマー、結晶性
エチレン−プロピレンランダムコポリマー、結晶
性エチレン−プロピレンブロツクコポリマー、結
晶性エチレン−プロピレンランダム重合ポストエ
チレン−プロピレンブロツクコポリマー、及び結
晶性プロピレ−ブテンコポリマーの総称であり、
本発明の結晶性ポリプロピレンとしてはエチレン
含有量が0.1〜10重量%の結晶性エチレン−プロ
ピレンランダムコポリマーおよびトータルのエチ
レン含有量が1〜20重量%の結晶性エチレン−プ
ロピレンランダム重合ポストエチレン−プロピレ
ンブロツクコポリマーが物性および成形性の点か
ら好ましい。前記の結晶性ポリプロピレンは、メ
ルトフローレイトインデツクス(MFR)が0.5〜
100g/10分であるものが好ましい。 本発明における変性ポリプロピレンとは、上記
の結晶性ポリプロピレンを有機過酸化物等の触媒
の存在下に有機シラン化合物あるいは不飽和カル
ボン酸類などの変性剤によつ熱処理して得られる
ものの総称であり、特に有機シラン化合物で変性
したものが好ましい。前記の変性ポリプロピレン
は、変性剤のグラフト率が0.01〜10重量%、特に
0.1〜5重量%で、MFRが1〜150g/10分であ
るものが好ましい。 前記の変性剤としては、 ビニルトリエトキシシラン、メタアクリロイル
オキシトリメトキシシラン、γ−メタアクリロイ
ルオキシプロピルトリメトキシシラン、メタアク
リロイルオキシシクロヘキシルトリメトキシシラ
ン、γ−メタアクリロイルオキシプロピルトリア
セチルオキシシラン、メタアクリロイルオキシト
リエトキシシラン、γ−メタアクリロイルオキシ
プロピルトリエトキシシランなどの有機シラン化
合物、アクリル酸、無水マレイン酸、無水イタコ
ン酸、エンド−ビシクロ−〔2,2,1〕−5−ヘ
プテン−2,3−無水ジカルボン酸などの不飽和
カルボン酸および酸無水物、アクリルグリシジル
エーテル、2−メチル−アリルグリシジルエーテ
ル、、アクリル酸ナトリウム、メタアクリル酸ナ
トリウム、アクリル酸カルシウム、メタアクリル
酸カルシウム、アクリル酸マグネシウム、メタア
クリル酸マグネシウム、アクリル酸亜鉛、メタア
クリ酸亜鉛、アクリル酸アルミニアム、メタアク
リル酸アルミニウム、アクリル酸鉄()、メタ
アクリル酸鉄()などの(メタ)アクリル酸の
金属塩化合物、トリアリルシアヌレート、トリ
(2−メチルアリル)シアヌレート、1,3,5
−トリアクリロイルヘキサヒジロ−S−トリアジ
ン、1,3,5−トリアクリロイルヘキサヒドロ
−S−トリアジン、1,3,5−トリメタアクリ
ロイルヘキサヒドロ−S−トリアジン、4−アク
リロイルオキシフエノール、4−(アクリロイル
オキシメチル)フエノール、4−アクリロイルオ
キシベンジルアルコール、4−メタアクリロイル
オキシフエノール、4−メタアクリロイルオキシ
ベンジルアルコール、4−(メタアクリロイルオ
キシメチル)ベンジルアルールなどが挙げられ
る。これらのうちでも、有機シラン化合物が好ま
しい。前記の変性剤は、1種のみ使用してもよく
2種以上を混合して使用してもよい。 さらに前記の有機過酸化物としては、1分半減
期温度が約160〜260℃の温度となるようなものが
好ましく、そのようなものとしては、例えば第三
ブチルパーオキシイソプロピルカーボネート、ジ
第三ブチルジパーオキシフタレート、第三ブチル
パーオキシアセテート、2,5−ジメチル−2,
5−ジ(第三ブチルパーオキシ)ヘキサン、2,
5−ジメチル−2,5−ジ(第三ブチルパーオキ
シ)ヘキシン−3,第三ブチルパーオキシラウレ
ート、第三ブチルパーオキシマレイツクアシツ
ド、第三ブチルパーオキシベンゾエート、メチル
エチルケトンパーオキシサイド、ジクミルパーオ
キシサイド、シクロヘキサノンパーオキサイド、
第三ブチルクミルパーオキサイド、2,5−ジメ
チルヘキサン2,5−ジハイドロパーオキサイド
などが挙げられる。これらの有機過酸化物は、1
種のみ使用してもよく、2種以上を混合して使用
してもよい。 前記のポリオレフイン樹脂と変性剤と有機過酸
化物との配合割合は、希望する変性ポリオレフイ
ンのMFRなどによつて変化するが、一般的には、
ポリオレフイン樹脂100重量部に対して、変性剤
が0.01〜10重量部、特に0.1〜5重量部、有機過
酸化物が0.01〜5重量部、特に0.1〜2重量部の
範囲が好ましい。 また、変性剤と有機過酸化物との配合割合は、
変性剤100重量部に対し、有機過酸化物が5〜80
重量部の範囲が好ましい。 この発明で用いる変性ポリプロピレンは、例え
ばポリプロピレン樹脂と変性剤と有機過酸化物と
からそれ自体公知の方法によつて、好適には、有
機過酸化物が分解しない条件下で公知の適当な混
合方法を適用してポリプロピレン樹脂と変性剤と
有機過酸化物とを混合し、得られた混合物をポリ
プロピレン樹脂が溶融するが、分解しない温度、
好ましくは、約180〜260℃、特に220〜250℃の温
度に加熱反応させることによつて得られる。最も
簡便な加熱処理操作は、前記混合物を前記温度で
2〜5分間程度押出機内で溶融加熱することであ
る。 以上のようにして得られた変性ポリプロピレン
は、MFRが1〜150g/10分、特に10〜150g/
10分のものが好ましい。 変性ポリプロピレンは前記結晶性ポリプロピレ
ンと混合して用いることが好ましい。ポリプロピ
レン樹脂中の変性ポリプロピレンの割合は5重量
%以上、特に10〜70重量%が好ましい。 本発明において使用するポリプロピレン樹脂に
は、難燃剤を配合することが好ましい。 前記難燃剤としては、臭素系芳香族難燃剤、例
えばデカブロムジフエニルエーテル、ビス(3,
5−ジブロモ−4−ジブロモプロポキシフエニ
ル)スルホン、ビス(ペンタブロモフエノキシ)
エタンなどと三酸化アンチモンとの混合系、ポリ
リン酸の塩例えばポリリン酸と塩基性窒素化合物
のような塩基との塩、例えばカルバミルポリリン
酸アンモンのメラミン塩が好適に使用される。前
記難燃剤の配合量は、ポリプロピレン樹脂100重
量部に対して、臭素系芳香族難燃剤が1〜100重
量部、三酸化アンチモンが0.5〜50重量部が好ま
しく、他方ポリリン酸と塩基との塩が10〜200重
量部が好ましい。また、前記の難燃剤の一部また
は全部を他の難燃剤、例えば、1,3,5−トリ
アジン、トリスフエノキシ−S−トリアジン化合
物などの置換S−トリアジン化合物、ベンジルグ
アナミン、グアナミンとアルデヒドとの反応生成
物、メラミン、1,3,6−トリス(4,6−ジ
アミノ−1,3,5−トリアジン−2)ヘキサン
などが挙げられる。また、本発明のポリプロピレ
ン樹脂には無機充填剤を配合することができる。
前記の無機充填剤としては、炭酸カルシウム、
(重質炭酸カルシウム、軽質炭酸カルシウム)、タ
ルク、水酸化マグネシウム、焼成クレー、カオリ
ンクレー、ケイ石粉、ケイソウ土、水酸化アルミ
ニウム、硫酸バリウム、硫酸カルシウムなどが挙
げられる。無機充填剤は、ポリプロピレン樹脂
100重量部に対して50重量部以下の配合量とする
のが好ましい。 本発明において前期のマツト状のガラス繊維と
ポリプロピレン樹脂との割合は、ガラス繊維10〜
60重量%、特に20〜50重量%とポリプロピレン樹
脂90〜40重量%、特に80〜50重量%が好ましい。 本発明のガラス繊維強化複合体は、前記のガラ
ス長繊維(ストランド)からなるマツト構造体
に、前記の変性ポリプロピレンを含むポリプロピ
レン樹脂を浸みこませ、その後必要であれば、こ
の構造体を圧縮し、冷却固化してシート状樹脂含
浸物として得られる。そのためにはマツトと樹脂
の層とを重ね合わせて積層し熱と圧力を加えたの
ち冷却する。マツトおよび樹脂の層を複数としこ
れを適宜に組み合わせてもよく、また溶融した樹
脂層を用い上記操作を連続的に行うこともでき
る。このようにして得られるシート状樹脂含浸物
であるガラス繊維強化複合体を必要に応じて切断
して所望の大きさのシート状のガラス繊維強化複
合体を製造する。 本発明のガラス繊維強化複合体を機械型打ちプ
レスで型打ちすることによつて、剛性及び熱変形
温度が高いことは勿論のこと、さらに複雑な形状
の部分でも気密性の良好な成形品を得ることがで
きる。機械型打ちプレスで型打ちするには、例え
ば所定の大きさに切断されたシートを樹脂が溶融
するような温度まで予熱し(このときシートはそ
の中の繊維すなわちストランドの弾性回復のため
に予熱前の厚さの数倍にふくれ上る)このふくれ
上つた含浸物をそのまま、または好ましくは2枚
以上重ね合わせて、冷却されている金型に導入し
て型打ちプレスを行う。 本発明のガラス繊維強化複合体を機械型打ちプ
レスで型打ちすることによつていろいろなガラス
繊維強化樹脂成形品を製造することができる。 以下、本発明を実施例を挙げて説明する。 〔実施例〕 以下に各例において使用したポリマーを示す。 A:所定量の公知の酸化防止剤を添加した
MFR2.0g/10分、エチレン含有量4%(重量
%、以下同じ)の結晶性エチレン−プロピレン
ランダムコポリマー B:所定量の公知の酸化防止剤を添加した
MFR9.0g/10分、トータルのエチレン含有量
が5.5%の結晶性エチレン−プロピレンランダ
ム重合ポストエチレン−プロピレンブロツクコ
ポリマー C:Bにγ−メタアクリロキシプロピルトリメト
キシシランおよびt−ブチルパーオシキベンゾ
エートを、B100部(重量部、以下同じ)に対
して各々0.5部/0.25部添加し、220℃で熱処理
して得たMFR50g/10分の変性ポリプロピレ
ン D:Aに無水マレイン酸、t−ブチルパーオキシ
ベンゾエートを、A100部に対して各々0.5部/
0.25部を添加し、220℃で熱処理して得た
MFR60g/10分の変性ポリプロピレン E:Bに難燃剤としてビス(3,5−ジブロモ−
4−ジブロモプロポキシフエニル)スルフオン
および難燃助剤として三酸化アンチモンを、
B100部に対して各々12部/6部配合し、溶融
混練して得たハロゲン系難燃ポリプロピレン F:Bに難燃剤としてカルバミルポリリン酸アン
モンのメラミン塩〔丸菱油化工業(株)、ノンネン
R604−10〕を、B100部に対して100部配合し、
溶融混練して得たノンハロゲン系難燃ポリプロ
ピレン 実験1〜12 表面処理したガラス繊維連続ストランド(平均
径23μ)を、うずまき状に重ね合わせたマツト
を、約1cm2当り合計で22本の針の割合でニードル
パンチングして得たガラスマツト(目付量900
g/cm2)の2枚と、これらの2枚のガラスマツト
の間に押出機から供給される溶融ポリマー(以下
メルト用という)と、あらかじめ厚さ0.5mmのシ
ート状に成形したポリマー(以下オーバーレイ用
とする)を、交互に積層し、加圧下(2Kg/cm2
に加熱(250℃)、冷却(20℃)し、ついでカツタ
ーで切断し、ガラス繊維強化複合体(300×300×
0.37cm)の平板を得た。 この平板を適当な大きさに切断し、赤外線加熱
炉で210℃に加熱後、油圧プレスにセツトされた
金型上にチヤージして半円筒型の成形品を加圧成
形した。 成形条件:型締力6000トン 型締冷却時間90秒 型温60℃ 次に、下記の条件で成形品の気密テストを行な
つた。 すなわち、半円筒型の成形体2ケをパツキンを
介して組付けして気密容器状となし、その内部に
1.5Kg/cm2の空気圧を加えつつこれを水槽中に没
入させ、内部加圧空気の漏洩の有無を気密容器の
表面への気泡の付着の有無を目視検査することに
よつて判定した。 強化複合体中のポリプロピレン成分(PP)と
ガラス繊維(GF)と、場合により配合した無機
充填剤(タルク)との割合(重量比)と、オーバ
ーレイポリマーおよびメルトポリマーの種類、及
び気密結果を複雑な形状の部分となだらかな曲面
の部分とで評価した結果をまとめて表1に示す。 気密結果については、○:良好、×:やや不良、
××:不良、×××:きわめて不良として評価し
た。
[Industrial Application Field] The present invention relates to a glass fiber reinforced composite material suitable for stamping with a mechanical stamping press (a type of stamping molding), and particularly requires airtightness, airtightness, and flame retardancy. It is used for applications in various fields. [Prior Art] Conventionally, crystalline resins have been used as resins for glass fiber reinforced composites that are suitable for stamping with a mechanical stamping press because of their excellent mechanical properties, moldability, and low cost. Polypropyline is used. [Problems to be Solved by the Invention] When a glass fiber reinforced composite made of crystalline polypropylene as a base polymer is stamped using a mechanical stamping press, parts with particularly complex shapes (e.g. ribs, corners, etc.) It has the major drawbacks of poor airtightness and flammability. [Means for Solving the Problems] In view of the above-mentioned points, the present inventors have developed a glass fiber-reinforced composite that has good airtightness, especially in complex-shaped parts, by stamping, and has also developed an airtightness. The present invention was completed as a result of extensive research aimed at providing a glass fiber reinforced composite with good properties and flame retardancy. That is, the present invention provides a glass fiber-reinforced composite for mechanical press molding, which is made by impregnating mat-like glass fibers with a polypropylene resin containing modified polypropylene. The mat-shaped glass fiber used in the present invention is a mat consisting of strands in which long glass fibers (strands) are uniformly dispersed, and the mat has sufficient integrity or preservation to maintain a uniform strand distribution. It is desirable to have a shape. For this purpose, in needle punching the mat with a barbed needle, the barbed needle simply passes through the mat and entangles the fibers in the mat, binding the mat loosely and never strongly. This allows the pine strands to move freely with the flow of resin during stamping in a mechanical stamping press. In the present invention, polypropylene resin including modified polypropylene is used. The polypropylene resin (crystalline polypropylene) includes polypropylene homopolymer, crystalline ethylene-propylene random copolymer, crystalline ethylene-propylene block copolymer, crystalline ethylene-propylene random polymerization post ethylene-propylene block copolymer, and crystalline propylene It is a general term for butene copolymers.
The crystalline polypropylene of the present invention includes a crystalline ethylene-propylene random copolymer having an ethylene content of 0.1 to 10% by weight and a crystalline ethylene-propylene random polymerized post ethylene-propylene block having a total ethylene content of 1 to 20% by weight. Copolymers are preferred from the viewpoint of physical properties and moldability. The crystalline polypropylene mentioned above has a melt flow rate index (MFR) of 0.5 to
Preferably, the rate is 100g/10 minutes. The modified polypropylene in the present invention is a general term for those obtained by heat treating the above-mentioned crystalline polypropylene with a modifier such as an organic silane compound or unsaturated carboxylic acid in the presence of a catalyst such as an organic peroxide. Particularly preferred are those modified with an organic silane compound. The above-mentioned modified polypropylene has a grafting rate of the modifier of 0.01 to 10% by weight, especially
It is preferable that the amount is 0.1 to 5% by weight and the MFR is 1 to 150 g/10 minutes. The modifiers include vinyltriethoxysilane, methacryloyloxytrimethoxysilane, γ-methacryloyloxypropyltrimethoxysilane, methacryloyloxycyclohexyltrimethoxysilane, γ-methacryloyloxypropyltriacetyloxysilane, methacryloyl Organic silane compounds such as oxytriethoxysilane and γ-methacryloyloxypropyltriethoxysilane, acrylic acid, maleic anhydride, itaconic anhydride, endo-bicyclo-[2,2,1]-5-heptene-2,3 - unsaturated carboxylic acids and acid anhydrides such as dicarboxylic anhydride, acrylic glycidyl ether, 2-methyl-allyl glycidyl ether, sodium acrylate, sodium methacrylate, calcium acrylate, calcium methacrylate, magnesium acrylate, Metal salt compounds of (meth)acrylic acid such as magnesium methacrylate, zinc acrylate, zinc methacrylate, aluminum acrylate, aluminum methacrylate, iron acrylate (), iron methacrylate (), triallyl cyanurate , tri(2-methylallyl) cyanurate, 1,3,5
-Triacryloylhexahydro-S-triazine, 1,3,5-triacryloylhexahydro-S-triazine, 1,3,5-trimethacryloylhexahydro-S-triazine, 4-acryloyloxyphenol, 4- Examples include (acryloyloxymethyl)phenol, 4-acryloyloxybenzyl alcohol, 4-methacryloyloxyphenol, 4-methacryloyloxybenzyl alcohol, and 4-(methacryloyloxymethyl)benzyl allure. Among these, organic silane compounds are preferred. The above-mentioned modifiers may be used alone or in combination of two or more. Furthermore, the organic peroxide mentioned above is preferably one having a 1-minute half-life temperature of about 160 to 260°C, such as tert-butylperoxyisopropyl carbonate, di-tert-butylperoxyisopropyl carbonate, etc. Butyl diperoxyphthalate, tert-butyl peroxyacetate, 2,5-dimethyl-2,
5-di(tert-butylperoxy)hexane, 2,
5-dimethyl-2,5-di(tert-butylperoxy)hexyne-3, tert-butyl peroxylaurate, tert-butyl peroxymale acid, tert-butyl peroxybenzoate, methyl ethyl ketone peroxide, dicumyl peroxide, cyclohexanone peroxide,
Examples include tert-butylcumyl peroxide, 2,5-dimethylhexane 2,5-dihydroperoxide, and the like. These organic peroxides are 1
Only the seeds may be used, or two or more types may be used in combination. The blending ratio of the polyolefin resin, modifier, and organic peroxide described above varies depending on the desired MFR of the modified polyolefin, but in general,
Preferably, the modifier is in the range of 0.01 to 10 parts by weight, particularly 0.1 to 5 parts by weight, and the organic peroxide is in the range of 0.01 to 5 parts by weight, particularly 0.1 to 2 parts by weight, based on 100 parts by weight of the polyolefin resin. In addition, the blending ratio of the modifier and organic peroxide is
5 to 80 parts of organic peroxide per 100 parts by weight of modifier
Parts by weight ranges are preferred. The modified polypropylene used in the present invention can be prepared, for example, by mixing a polypropylene resin, a modifier, and an organic peroxide by a method known per se, preferably by a suitable known mixing method under conditions in which the organic peroxide does not decompose. The polypropylene resin, the modifier, and the organic peroxide are mixed by applying a temperature at which the polypropylene resin melts but does not decompose.
Preferably, it is obtained by heating the reaction at a temperature of about 180 to 260°C, particularly 220 to 250°C. The simplest heat treatment operation is to melt and heat the mixture in an extruder at the above temperature for about 2 to 5 minutes. The modified polypropylene obtained as described above has an MFR of 1 to 150 g/10 minutes, particularly 10 to 150 g/10 minutes.
Preferably 10 minutes. It is preferable to use the modified polypropylene in combination with the crystalline polypropylene. The proportion of modified polypropylene in the polypropylene resin is preferably 5% by weight or more, particularly 10 to 70% by weight. It is preferable to blend a flame retardant into the polypropylene resin used in the present invention. Examples of the flame retardant include brominated aromatic flame retardants such as decabrom diphenyl ether, bis(3,
5-dibromo-4-dibromopropoxyphenyl) sulfone, bis(pentabromophenoxy)
A mixed system of ethane or the like and antimony trioxide, a salt of polyphosphoric acid, for example a salt of polyphosphoric acid and a base such as a basic nitrogen compound, for example a melamine salt of ammonium carbamyl polyphosphate are preferably used. The blending amount of the flame retardant is preferably 1 to 100 parts by weight of the brominated aromatic flame retardant and 0.5 to 50 parts by weight of antimony trioxide, and the salt of polyphosphoric acid and a base is preferably 1 to 100 parts by weight, based on 100 parts by weight of the polypropylene resin. is preferably 10 to 200 parts by weight. Alternatively, some or all of the above flame retardants may be replaced with other flame retardants, such as substituted S-triazine compounds such as 1,3,5-triazine and trisphenoxy-S-triazine compounds, benzylguanamine, and reaction of guanamine and aldehyde. products, melamine, 1,3,6-tris(4,6-diamino-1,3,5-triazine-2)hexane, and the like. Furthermore, an inorganic filler can be added to the polypropylene resin of the present invention.
As the inorganic filler, calcium carbonate,
(heavy calcium carbonate, light calcium carbonate), talc, magnesium hydroxide, calcined clay, kaolin clay, silica powder, diatomaceous earth, aluminum hydroxide, barium sulfate, calcium sulfate, etc. Inorganic filler is polypropylene resin
It is preferable that the amount is 50 parts by weight or less per 100 parts by weight. In the present invention, the ratio of the pine-like glass fiber in the first half to the polypropylene resin is 10 to 10.
60% by weight, especially 20-50% by weight and polypropylene resin 90-40% by weight, especially 80-50% by weight are preferred. The glass fiber reinforced composite of the present invention is produced by impregnating a polypropylene resin containing the modified polypropylene into a mat structure made of the long glass fibers (strands) described above, and then compressing this structure if necessary. It is obtained as a sheet-like resin-impregnated product by cooling and solidifying. To do this, layers of pine and resin are stacked one on top of the other, heat and pressure are applied, and then cooled. A plurality of mat and resin layers may be used and combined as appropriate, or the above operations may be performed continuously using a molten resin layer. The sheet-shaped resin-impregnated glass fiber-reinforced composite thus obtained is cut as necessary to produce a sheet-shaped glass fiber-reinforced composite of a desired size. By stamping the glass fiber reinforced composite of the present invention using a mechanical stamping press, not only does it have high rigidity and heat distortion temperature, but it can also be molded with good airtightness even in parts with complex shapes. Obtainable. To stamp with a mechanical stamping press, for example, a sheet cut to size is preheated to a temperature that melts the resin (at this time the sheet is preheated to restore the elasticity of the fibers or strands within it). This swollen impregnated material (swells up to several times its previous thickness) is introduced into a cooled mold either as it is, or preferably in two or more layers, and subjected to a stamping press. By stamping the glass fiber reinforced composite of the present invention using a mechanical stamping press, various glass fiber reinforced resin molded products can be manufactured. Hereinafter, the present invention will be explained by giving examples. [Example] Polymers used in each example are shown below. A: A predetermined amount of known antioxidant was added.
Crystalline ethylene-propylene random copolymer B with MFR 2.0 g/10 minutes and ethylene content 4% (wt%, same hereinafter): A predetermined amount of known antioxidant was added.
MFR9.0g/10min, crystalline ethylene-propylene random polymerized post-ethylene-propylene block copolymer with total ethylene content of 5.5% C: γ-methacryloxypropyltrimethoxysilane and t-butyl peroxybenzoate are added to B. , 0.5 parts/0.25 parts, respectively, were added to 100 parts (by weight, same hereinafter) of B, and MFR 50 g/10 minutes was obtained by heat treatment at 220°C. Modified polypropylene D: Maleic anhydride and t-butyl peroxy were added to A. Benzoate, 0.5 parts each per 100 parts of A
Obtained by adding 0.25 parts and heat-treating at 220℃
MFR60g/10min Modified polypropylene E: Bis(3,5-dibromo-
4-dibromopropoxyphenyl) sulfone and antimony trioxide as a flame retardant aid,
Halogen-based flame-retardant polypropylene F obtained by blending 12 parts and 6 parts of each with 100 parts of B and melt-kneading: B and melamine salt of ammonium carbamyl polyphosphate as a flame retardant [Marubishi Yuka Kogyo Co., Ltd., Nonnen
Blending 100 parts of R604-10] to 100 parts of B,
Non-halogenated flame-retardant polypropylene obtained by melt-kneading Experiments 1 to 12 Surface-treated continuous glass fiber strands (average diameter 23 μm) were layered in a spiral pattern, with a total of 22 needles per approximately 1 cm2 . Glass pine obtained by needle punching (area weight 900
g/cm 2 ), a molten polymer (hereinafter referred to as melt polymer) supplied from an extruder between these two glass mats, and a polymer previously formed into a sheet with a thickness of 0.5 mm (hereinafter referred to as overlay polymer). (for use) were stacked alternately and under pressure (2Kg/cm 2 ).
Heated (250℃), cooled (20℃), then cut with a cutter to make a glass fiber reinforced composite (300×300×
A flat plate of 0.37 cm) was obtained. This flat plate was cut into an appropriate size, heated to 210°C in an infrared heating furnace, and then charged onto a mold set in a hydraulic press to pressure-form a semi-cylindrical molded product. Molding conditions: Mold clamping force 6000 tons Mold cooling time 90 seconds Mold temperature 60°C Next, the molded product was tested for airtightness under the following conditions. In other words, two semi-cylindrical molded bodies are assembled via a gasket to form an airtight container, and inside the
This was immersed in a water tank while applying an air pressure of 1.5 Kg/cm 2 , and the presence or absence of leakage of internal pressurized air was determined by visually inspecting the presence or absence of air bubbles adhering to the surface of the airtight container. The proportions (by weight) of the polypropylene component (PP) and glass fibers (GF) and optionally incorporated inorganic filler (talc) in the reinforced composite, as well as the type of overlay polymer and melt polymer, and the hermeticity results can be complicated. Table 1 summarizes the results of the evaluation of the curved portion and the gently curved portion. Regarding the airtightness results, ○: Good, ×: Slightly poor.
XX: Poor, XXX: Evaluated as extremely poor.

【表】 実施例1〜5、比較例1〜2はガスバーナー照
射で可燃であつたが、実施例6〜7はガスバーナ
ー照射後、自消し、難燃効果があつた。 〔発明の効果〕 上述のように、本発明によれば型打ち加工する
ことにより複雑な形状部での気密性が良好である
ガラス繊維強化成形品を与える強化複合体を得る
ことができる。
[Table] Examples 1 to 5 and Comparative Examples 1 to 2 were flammable when irradiated with a gas burner, but Examples 6 and 7 were self-extinguishing and had a flame retardant effect after irradiation with a gas burner. [Effects of the Invention] As described above, according to the present invention, by stamping, it is possible to obtain a reinforced composite that provides a glass fiber-reinforced molded product with good airtightness in complex-shaped parts.

Claims (1)

【特許請求の範囲】 1 マツト状のガラス繊維に変性ポリプロピレン
を含むポリプロピレン樹脂を含浸せしめてなる機
械型打ちプレス成形用ガラス繊維強化複合体。 2 変性ポリプロピレンが結晶性ポリプロピレン
を有機シラン化合物あるいは不飽和カルボン酸類
化合物で変性したポリマーである特許請求の範囲
第1項記載のガラス繊維強化複合体。 3 ポリプロピレン樹脂に難燃剤が配合されてい
ることを特徴とする特許請求の範囲第1項記載の
ガラス繊維強化複合体。 4 難燃剤が臭素系芳香族難燃剤と三酸化アンチ
モンとからなることを特徴とする特許請求の範囲
第3項記載のガラス繊維強化複合体。 5 難燃剤がポリリン酸と塩基性窒素化合物との
塩からなることを特徴とする特許請求の範囲第3
項記載のガラス繊維強化複合体。
[Scope of Claims] 1. A glass fiber-reinforced composite for mechanical press molding, which is made by impregnating pine-like glass fibers with a polypropylene resin containing modified polypropylene. 2. The glass fiber reinforced composite according to claim 1, wherein the modified polypropylene is a polymer obtained by modifying crystalline polypropylene with an organic silane compound or an unsaturated carboxylic acid compound. 3. The glass fiber reinforced composite according to claim 1, wherein a flame retardant is blended with the polypropylene resin. 4. The glass fiber reinforced composite according to claim 3, wherein the flame retardant comprises a brominated aromatic flame retardant and antimony trioxide. 5. Claim 3, characterized in that the flame retardant consists of a salt of polyphosphoric acid and a basic nitrogen compound.
Glass fiber-reinforced composite as described in .
JP19576985A 1985-09-06 1985-09-06 Glass-fiber reinforced composite meterial Granted JPS6257428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19576985A JPS6257428A (en) 1985-09-06 1985-09-06 Glass-fiber reinforced composite meterial

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19576985A JPS6257428A (en) 1985-09-06 1985-09-06 Glass-fiber reinforced composite meterial

Publications (2)

Publication Number Publication Date
JPS6257428A JPS6257428A (en) 1987-03-13
JPH0347291B2 true JPH0347291B2 (en) 1991-07-18

Family

ID=16346650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19576985A Granted JPS6257428A (en) 1985-09-06 1985-09-06 Glass-fiber reinforced composite meterial

Country Status (1)

Country Link
JP (1) JPS6257428A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02121768A (en) * 1988-10-31 1990-05-09 Kenji Kondo Jet type solder tank
EP0651003A1 (en) * 1993-10-29 1995-05-03 Azdel, Inc. Fiber reinforced functionalized polyolefin composites
CN1225498C (en) * 2000-12-22 2005-11-02 三星综合化学株式会社 Polypropylene resin composition having thermal resistance, high-rigidity and low warpage properties
WO2002051932A1 (en) * 2000-12-22 2002-07-04 Samsung General Chemicals Co., Ltd. Polyolefin resin composition used for car wheel covering
JP5533687B2 (en) * 2011-01-17 2014-06-25 三菱化学株式会社 Glass fiber sizing agent, glass fiber, and glass fiber reinforced polyolefin resin composition comprising emulsion
CN102936376B (en) * 2012-12-04 2015-07-15 上海日之升新技术发展有限公司 Environment-friendly flame-retardant glass fiber reinforced PP/PA610 (polypropylene/polyamide 610) alloy material with high CTI (comparative tracking index) value and high GWIT (glow-wire ignition temperature) value and preparation method thereof
CN110248799A (en) * 2017-05-02 2019-09-17 古河电气工业株式会社 Laminate comprising fiber-reinforced resin, fiber-reinforced composite resin material and their manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160481A (en) * 1980-05-16 1981-12-10 Kureha Chemical Ind Co Ltd Carbon fiber reinforced pipe made of polypropylene

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160481A (en) * 1980-05-16 1981-12-10 Kureha Chemical Ind Co Ltd Carbon fiber reinforced pipe made of polypropylene

Also Published As

Publication number Publication date
JPS6257428A (en) 1987-03-13

Similar Documents

Publication Publication Date Title
DE3032635C2 (en) Use of a composition of a propylene copolymer and polyethylene for the production of a crosslinked polyolefin foam
RU2113446C1 (en) Polyolefin composition
JP4276082B2 (en) Macrocellular soundproof foam containing particulate additives
JP2603884B2 (en) Flame retardant resin composition
RU2549877C1 (en) Epoxyvinylether resin-based binding agent and based on it fire-proof polymer composite material
JPH0347291B2 (en)
WO1992007022A1 (en) Process for the preparation of cellulosic fibre-reinforced thermoplastic composite materials
JPS6381187A (en) Thermosetting adhesive sheet
JPH0347651B2 (en)
DE69632259T2 (en) PREPARATION OF A POLYMER PRODUCT
JPH051229B2 (en)
JPH07173317A (en) Polypropylene-based and electron radiation-cross-linked foam excellent in moldability
JPH0228755B2 (en)
KR100385369B1 (en) incombustible polyolefin resinous composition
JPS632979B2 (en)
JPS6115887B2 (en)
WO2016170127A1 (en) Thermoplastic composite fiber materials based on styrol copolymers and method for production thereof
JPS6324012B2 (en)
JP2002348726A (en) Resin-reinforcing fiber and frp formed product using the same
JPS6011935B2 (en) Method for producing polyα-olefin resin foam
JPS60179428A (en) Polyolefin foam
JP3186801B2 (en) Crosslinked polyolefin foamed resin composition
DE2141270C3 (en) Impregnated plastic cell body
JPH0911400A (en) Laminated sheet
JPH03128943A (en) Thermoplastic composition and its production