JPH0347216Y2 - - Google Patents

Info

Publication number
JPH0347216Y2
JPH0347216Y2 JP6012984U JP6012984U JPH0347216Y2 JP H0347216 Y2 JPH0347216 Y2 JP H0347216Y2 JP 6012984 U JP6012984 U JP 6012984U JP 6012984 U JP6012984 U JP 6012984U JP H0347216 Y2 JPH0347216 Y2 JP H0347216Y2
Authority
JP
Japan
Prior art keywords
wire
overhead
lightning
aluminum
overhead ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6012984U
Other languages
Japanese (ja)
Other versions
JPS60172231U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6012984U priority Critical patent/JPS60172231U/en
Publication of JPS60172231U publication Critical patent/JPS60172231U/en
Application granted granted Critical
Publication of JPH0347216Y2 publication Critical patent/JPH0347216Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

(考案の技術分野) 本考案は架空地線の改良に係り、直撃雷による
架空地線の素線切れを防止し更には、低風音化、
難着雪化を図りうる場合に有用な耐雷電線に関す
る。 (考案の技術的背景とその問題点) 一般に、架空送電線においては、電力源への直
撃雷を防止するための架空地線が支持物の最上部
に架線されており、この架空地線で直撃雷を受け
止め雷電流を支持物を介して大地に流す構成とし
ている。 従来、架空地線としては、例えば鋼心上にアル
ミ線を撚合せてなる鋼心アルミ撚線が知られてい
る。ところで、近時、架空地線に素線切れが発生
しており、最近になつてその原因は、直撃雷によ
るアーク溶断であることが判明しつつある。従つ
て直撃雷によつて架空地線のアルミ線に素線切れ
が発生すれば、架空地線の機能上、電気的特性、
機械的特性の低下をきたし、場合によつては非常
に大きな雷電流によつて電線全体がアーク溶断す
るという重大な事故にもなりかねない恐れがあ
る。 このため、その全長を多区間に区分した鋼心ア
ルミより線等より成る架空線外周に、各区間毎に
螺旋状にあらかじめ成形された金属体よりなる溶
損体を前記架空線の全外周面を覆うごとくそれぞ
れ巻装密着してなる耐雷電線が提供されている。 ここで、上記耐雷電線の構成および効果につい
て説明する。 第1図において、この耐雷電線は、架空地線1
等より成る架空線と、この外周に設けられた溶損
層2とで主に構成されている。 架空地線1は、鋼線を撚合せた鋼心3と、この
外周に撚合せた断面梯形の複数本のアルミ線4を
円筒状に撚合せてなるアルミ導電層5とで構成さ
れている。 次に、溶損層2を設ける理由について述べる。 本考案者等の雷模擬アーク試験によれば、溶断
による素線切れは、インパルス波形の電流のみで
は発生することがなく、インパルス電流に続く直
流電流により発生することが判明している。 下表は、アルミ線系および鋼線系の試料(3.5
mmの単線に引張荷重の20%の張力が印加されてい
る)に直撃雷を模擬したインパルス電流および直
流電流を印加した場合の溶断の有無を試験した結
果を示すものであるが、この試験効果によると、
インパルス電流のみではいずれの試料も表面に若
干溶けた痕跡が認められる程度であり、溶断する
のは直流電流によることが解る。 一方、直流電流で溶断するのはアルミ線系のみ
であり、その試料の相違(アルミ、アルミ合金、
メツキの有無)による有異差がなく、全て溶断す
る。 これに対して鋼線系は、溶損はするものの溶断
にまで至ることはない。これは溶損エネルギー等
の調査結果からみてアルミ線系が溶断するのはそ
の溶融点が低いことによるものと思われる。
(Technical Field of the Invention) The present invention relates to the improvement of overhead ground wires, which prevents wire breakage of overhead ground wires due to direct lightning strikes, reduces wind noise,
This invention relates to lightning-resistant electric wires that are useful in cases where it is possible to prevent snow from accreting. (Technical background of the idea and its problems) Generally, in overhead power transmission lines, an overhead ground wire is installed at the top of the support to prevent direct lightning strikes to the power source. It is designed to catch direct lightning strikes and send lightning current to the ground via supports. Conventionally, as an overhead ground wire, for example, a steel core aluminum stranded wire formed by twisting aluminum wires on a steel core is known. Incidentally, wire breaks have recently occurred in overhead ground wires, and it has recently become clear that the cause of the breakage is arc fusing caused by direct lightning strikes. Therefore, if a wire breakage occurs in the aluminum wire of an overhead ground wire due to a direct lightning strike, the functional and electrical characteristics of the overhead ground wire may be affected.
This may lead to a decrease in mechanical properties, and in some cases, a very large lightning current may cause arc-fusion of the entire wire, which could lead to a serious accident. For this reason, on the outer periphery of an overhead wire made of a steel-core aluminum stranded wire whose entire length is divided into multiple sections, a melting body made of a metal body formed in advance in a spiral shape is attached to the entire outer periphery of the overhead wire for each section. Lightning-resistant electric wires are provided in which the wires are wrapped closely together so as to cover the wires. Here, the structure and effects of the above-mentioned lightning-resistant electric wire will be explained. In Figure 1, this lightning-proof wire is the overhead ground wire 1.
The wire is mainly composed of an overhead wire made of wires, etc., and a erosion layer 2 provided on the outer periphery of the wire. The overhead ground wire 1 is composed of a steel core 3 made of twisted steel wires, and an aluminum conductive layer 5 made of a plurality of twisted aluminum wires 4 having a trapezoidal cross section twisted around the outer periphery of the steel core 3 into a cylindrical shape. . Next, the reason for providing the erosion layer 2 will be described. According to the lightning simulation arc test carried out by the present inventors, it has been found that strand breakage due to fusing does not occur due to impulse waveform current alone, but occurs due to direct current following the impulse current. The table below shows aluminum wire and steel wire samples (3.5
This shows the results of a test to see if there would be fusing when an impulse current and direct current simulating a direct lightning strike were applied to a single wire (with a tension of 20% of the tensile load applied to the wire), and the effect of this test was according to,
With only impulse current, only traces of melting were observed on the surface of all the samples, indicating that direct current was responsible for the melting. On the other hand, only aluminum wire systems can be fused with direct current, and the samples differ (aluminum, aluminum alloy,
There is no difference depending on the presence or absence of plating, and all of them are fused. On the other hand, steel wires are subject to melting loss, but do not break out. This seems to be due to the fact that the aluminum wire system melts due to its low melting point, based on the results of investigations into melting damage energy and the like.

【表】 以上の実験結果から、鋼心アルミ撚線系の架空
地線においては、継続時間の長い直撃雷があつた
場合溶断する可能性が高いが、アルミそのものの
溶融点が鋼線系に比較して低いことから、アルミ
自身を溶融点の高い耐アーク性のものにすること
は不可能に近い。 そこでこの耐雷電線においては、架空地線の外
表面に溶損層を形成し直撃雷があつた場合は、溶
損層のみを溶断させ、本体たる内部の架空地線に
ついては、初期の電気的特性および機械的特性を
永久的に維持せんとしている。 溶損層2は、第2図に示すように、その全長を
多区間7に区分した架空地線1外周にプレフオー
ムされたアルミ合金線等の金属体よりなる溶損体
6を架空地線1の全外周面を覆うごとく巻装密着
することにより形成されている。 なお、溶損体6の断面は、アルミ線と同様に梯
形とされている。これは、耐雷電線が通常の架空
地線と比較した場合、その構成上、余分な溶損層
を有しているので、それだけ外形を縮小させる必
要があるからである。すなわち、外形が増大する
とそれだけ架空地線が重くなり、これに比例して
支持物の機械的強度を増大させなければならず、
従つてこのままでは既存の支持物を使用できなく
なるからである。 溶損層2は、例えば架空地線を架線した後、自
走式の宙乗機で単長が3〜5m程度の溶損体6を
各区間毎に巻回装着することにより形成される。 なお、この溶損層は、工場においてあらかじめ
架空地線外周に形成しておいてもよい。各区間毎
に溶損層2を設けるようにしたのは、アーク溶断
時に溶損体6が数本溶断した場合、簡単にその部
分の取り換えを容易にするためであり、また最外
層たる溶損層2に架線時の張力を分担させないた
めである。すなわち、仮りに溶損層2に張力が分
担されている状態で直撃雷によるアーク溶断で溶
損体6が数本断線すると、架線時の張力が全部架
空地線に移行することになり、ついには架空地線
が断線するからである。 なお、溶損体6の内周面すなわち架空地線1と
接する面は、架空地線1と電気的に接続するた
め、架空地線の外形に相当する曲率半径で形成さ
れている。 (従来の耐雷電線の欠点) ところで、かかる構成の耐雷電線においては、
溶損層2は、例えば架空地線を架線した後、自走
式の宙乗機で単長が3〜5m程度の溶損体6を各
区間毎に巻回装置することにより、あるいは工場
において予め、架空地線外周に巻回装着すること
により形成される。 しかしながら、前者においては、架線工法上そ
の形成に難点があり、また後者においては、架線
時における延線車あるいは金車通過中に溶損体が
剥離する懸念がある。 またかかる電線に低風音や難着雪の機能をもた
せる場合、耐雷電線の外周面にスパイラルロツド
を取り付けたり、リングを装着したりすることが
行なわれている。 しかしながら、かかる付属品を耐雷電線の架線
終了後に取り付けることは煩雑であるという難点
があつた。 (考案の目的) 本考案は、このような点に着目してなされたも
ので、製造上および架線工法上有利でかつ架線終
了後に上記付属品を取り付ける必要のない耐雷電
線を提供せんとするものである。 (考案の概要) 本考案においては、架空線外周に、導電性金属
線条よりなる溶損体を、前記架空線の全外周を覆
うごとくかつ架空線を構成する最外層のアルミ線
のより方向と略同一方向に巻装密着し、かつ溶損
体の外表面の一部に突条を形成することにより前
記目的を達成している。 (考案の実施例) 以下、本考案を一実施例の図面に基づいて説明
する。 第1図および第3図と同一部分に同一番号を付
し、第4図において、架空地線1等よりなる架空
線の外周に、溶損層2′を架空線の全外周面を覆
うごとく巻装密着する点は従来構成の耐雷電線と
同一である。 本考案においては、溶損層2′を多区間に区分
しないで設ける点、溶損体6′のより方向を架空
線を構成する最外層のアルミ線4のより方向と略
同一にする点、および溶損体6′の外表面の一部
に約4〜5mm程度の突起を有する突条8を1条形
成する点が従来構成の耐雷電線と相違する。 すなわち、本考案に係る耐雷電線においては、
溶損層2′が、連続する導電性金属線条よりなる
溶損体6′を、架空線の全外周を覆うごとくかつ
架空線を構成する最外層のアルミ線4のより方向
と略同一方向に巻装密着することにより形成され
ている。 アルミ線4と同種の材料で形成される溶損体
6′の断面形状は、第3図に示されるようにアル
ミ線4と共に梯形とされ、溶損体6の内周面すな
わち架空地線1と接する面は、架空地線1と電気
的に接続するため、架空地線の外形に相当する曲
率半径で形成される。 本考案において、溶損体6′のより方向を架空
線を構成する最外層のアルミ線と同一方向にした
のは架空線と溶損体との電気的接触面積を多くす
るためである。これは、最外層のアルミ線のより
方向と溶損体とのより方向が反対にされている
と、両者の接触が線接触となり、両者の電気的接
続が不完全となるからである。なお、本考案に係
る耐雷電線の架線においては、架空線にのみ張力
を分担させ、溶損層には張力が付与されないよう
にされる。 また、上記構成の耐雷電線に対する低風音化お
よび難着雪化の機能の付与は、一部の溶損体6′
の外表面に予め突条8を形成しておき、これを工
場において、他の溶損体6と共に同時に巻装密着
することによりなされる。 しかして、上記突条の存在により、カルマン渦
の発生を防止し、更には、耐雷電線に付着した雪
を円周方向へ回転させ、着雪の肥大を防止しうる
ことになる。 (考案の効果) 以上述べたように本考案においては、架空線外
周に導電性金属線条を、架空線の全外周を覆いか
つ最外層のアルミ線のより方向と同一方向に巻装
密着しているので、従来の耐雷電線に比し、その
製造が簡単でありまた架線するに際しても溶損体
を落下させることなく簡便に架線しうる。 また、耐雷電線を構成する溶損層の外表面の一
部に突条を形成しているので、直撃雷による架空
地線の素線切れを防止し、更には低風音およびび
難着雪の機能を有する耐雷電線を提供できる。 なお、前述の実施例においては、架空地線の外
周に溶損層を設けた場合についてのみ述べてある
が、本考案はこれに限定されず例えば、電力線の
外周に溶損層を設けてもよい。
[Table] From the above experimental results, an overhead ground wire made of steel-core aluminum stranded wire is likely to melt if a long-duration direct lightning strike hits it, but the melting point of the aluminum itself is higher than that of steel wire. Because of its relatively low melting point, it is almost impossible to make aluminum itself arc resistant with a high melting point. Therefore, in this lightning-resistant electric wire, a frayed layer is formed on the outer surface of the overhead ground wire, and when a direct lightning strike occurs, only the frayed layer is fused, and the overhead ground wire inside the main body is protected from the initial electrical damage. The properties and mechanical properties are intended to be maintained permanently. As shown in FIG. 2, the erosion layer 2 includes a erosion body 6 made of a metal body such as an aluminum alloy wire preformed on the outer periphery of the overhead ground wire 1 whose entire length is divided into multiple sections 7. It is formed by tightly wrapping the material so as to cover the entire outer peripheral surface of the material. Note that the cross section of the melted body 6 is trapezoidal like the aluminum wire. This is because, compared to a normal overhead ground wire, the lightning protection wire has an extra erosion layer due to its structure, so it is necessary to reduce its external size accordingly. In other words, as the external shape increases, the overhead ground wire becomes heavier, and the mechanical strength of the support must be increased in proportion to this.
Therefore, the existing support cannot be used as it is. The erosion layer 2 is formed, for example, by connecting an overhead ground wire and then winding and attaching an erosion body 6 having a unit length of about 3 to 5 m in each section using a self-propelled spacecraft. Note that this erosion layer may be formed in advance on the outer periphery of the overhead ground wire in a factory. The reason why the melting layer 2 is provided in each section is to make it easy to replace the melted body 6 when several melted bodies 6 are cut off during arc melting. This is to prevent layer 2 from sharing the tension during the overhead wire. In other words, if several of the melted bodies 6 are broken due to arc melting caused by a direct lightning strike while the tension is shared in the melted layer 2, all the tension on the overhead wires will be transferred to the overhead ground wire, and finally This is because the overhead ground wire is disconnected. The inner peripheral surface of the melted body 6, that is, the surface in contact with the overhead ground wire 1, is formed with a radius of curvature corresponding to the outer shape of the overhead ground wire in order to be electrically connected to the overhead ground wire 1. (Disadvantages of conventional lightning-resistant wires) By the way, in lightning-resistant wires with this configuration,
The erosion layer 2 can be formed, for example, by installing an overhead ground wire and winding the erosion body 6 with a unit length of about 3 to 5 m in each section using a self-propelled spacecraft, or in a factory. It is formed by winding it around the outer circumference of the overhead ground wire in advance. However, in the former method, there are difficulties in forming the wire due to the overhead wire construction method, and in the latter method, there is a concern that the welded body may peel off during the passage of the wire rolling car or metal wheel during the overhead wire construction. In addition, in order to provide such electric wire with functions such as low wind noise and resistance to snow accumulation, a spiral rod or a ring is attached to the outer circumferential surface of the lightning-proof electric wire. However, there has been a problem in that it is complicated to attach such accessories after the lightning-resistant electric wire has been installed. (Purpose of the invention) The present invention was made with attention to these points, and aims to provide a lightning-resistant electric wire that is advantageous in manufacturing and overhead wiring construction methods and does not require the attachment of the above-mentioned accessories after the wiring is completed. It is. (Summary of the invention) In the invention, a melting body made of conductive metal wire is placed on the outer periphery of the overhead wire so as to cover the entire outer periphery of the overhead wire and in the twist direction of the outermost layer of aluminum wire constituting the overhead wire. The above object is achieved by winding the melting body closely in substantially the same direction as the melting body, and by forming protrusions on a part of the outer surface of the melted body. (Embodiment of the invention) Hereinafter, the invention will be explained based on the drawings of one embodiment. The same numbers are given to the same parts as in Figures 1 and 3, and in Figure 4, a melting layer 2' is attached to the outer periphery of the overhead wire consisting of the overhead ground wire 1 etc. so as to cover the entire outer peripheral surface of the overhead wire. The point that the winding is tightly wound is the same as that of the conventional lightning-resistant electric wire. In the present invention, the fusing layer 2' is provided without being divided into multiple sections, the twisting direction of the fusing body 6' is approximately the same as the twisting direction of the outermost aluminum wire 4 constituting the overhead wire, It is different from the conventional lightning-proof electric wire in that a single protrusion 8 having a protrusion of about 4 to 5 mm is formed on a part of the outer surface of the melted body 6'. That is, in the lightning-resistant electric wire according to the present invention,
The erosion layer 2' covers the entire outer periphery of the overhead wire and twists the erosion body 6' made of a continuous conductive metal wire in substantially the same direction as the twisting direction of the outermost aluminum wire 4 constituting the overhead wire. It is formed by winding it tightly. The cross-sectional shape of the melting body 6' formed of the same material as the aluminum wire 4 is trapezoidal with the aluminum wire 4, as shown in FIG. The surface in contact with is electrically connected to the overhead ground wire 1, so it is formed with a radius of curvature corresponding to the outer shape of the overhead ground wire. In the present invention, the twisting direction of the melting body 6' is made to be the same as that of the outermost aluminum wire constituting the overhead wire in order to increase the electrical contact area between the overhead wire and the melting body. This is because if the twisting direction of the outermost layer aluminum wire is opposite to the twisting direction of the melted body, the contact between the two will be a line contact, and the electrical connection between the two will be incomplete. In addition, in the overhead wire of the lightning-resistant electric wire according to the present invention, the tension is shared only with the overhead wire, and the tension is not applied to the erosion layer. In addition, the ability to reduce wind noise and prevent snow accretion to the lightning-resistant wire with the above structure is achieved by adding a part of the melting body 6′.
A protrusion 8 is formed in advance on the outer surface of the welding body 8, and this is simultaneously wound and tightly attached together with other fusing bodies 6 in a factory. Therefore, the presence of the protrusions prevents the occurrence of Karman vortices, and furthermore, it is possible to rotate the snow adhering to the lightning protection wire in the circumferential direction, thereby preventing the accumulation of snow from increasing. (Effects of the invention) As described above, in the invention, a conductive metal wire is tightly wound around the outer periphery of the overhead wire, covering the entire periphery of the overhead wire and in the same direction as the twisting direction of the outermost layer of aluminum wire. Therefore, it is easier to manufacture than conventional lightning-proof electric wires, and the wire can be easily installed without dropping the melted body. In addition, a protrusion is formed on a part of the outer surface of the erosion layer that makes up the lightning-resistant wire, which prevents the wires of the overhead ground wire from breaking due to direct lightning strikes, and also reduces wind noise and prevents snow buildup. It is possible to provide a lightning-resistant electric wire with the following functions. In addition, in the above-mentioned embodiment, only the case where the erosion layer is provided on the outer periphery of the overhead ground wire is described, but the present invention is not limited to this, and for example, even if the erosion layer is provided on the outer periphery of the power line. good.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の耐雷電線の横断面図、第2図
は、同側面図、第3図は、溶損体の端面図、第4
図は本考案の耐雷電線の横断面図、第5図は同側
面図である。 1……架空地線、2,2′……溶損層、6,
6′……溶損体、7……区間、8……突条。
Fig. 1 is a cross-sectional view of a conventional lightning-proof wire, Fig. 2 is a side view of the same, Fig. 3 is an end view of a melted body, and Fig. 4 is a cross-sectional view of a conventional lightning-proof wire.
The figure is a cross-sectional view of the lightning-resistant electric wire of the present invention, and FIG. 5 is a side view of the same. 1... Overhead ground wire, 2, 2'... Erosion layer, 6,
6'...Erosion body, 7...Section, 8...Protrusion.

Claims (1)

【実用新案登録請求の範囲】 1 架空線外周に、導電性金属線条よりなる溶損
体を、前記架空線の全外周を覆うごとくかつ架
空線を構成する最外層のアルミ線のより方向と
略同一方向に巻装密着してなり、前記溶損体の
外表面の一部に突条が形成されていることを特
徴とする耐雷電線。 2 溶損体および架空線を構成する最外層のアル
ミ線の断面形状が梯形であることを特徴とする
実用新案登録請求の範囲第1項記載の耐雷電
線。
[Claims for Utility Model Registration] 1. A welding body made of conductive metal wire is placed on the outer periphery of the overhead wire so as to cover the entire outer periphery of the overhead wire and in the twist direction of the outermost layer of aluminum wire constituting the overhead wire. A lightning-proof electric wire, characterized in that the wires are tightly wound in substantially the same direction, and a protrusion is formed on a part of the outer surface of the melted body. 2. The lightning-resistant electric wire according to claim 1, wherein the cross-sectional shape of the outermost layer of aluminum wire constituting the melting body and the overhead wire is trapezoidal.
JP6012984U 1984-04-24 1984-04-24 lightning resistant wire Granted JPS60172231U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6012984U JPS60172231U (en) 1984-04-24 1984-04-24 lightning resistant wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6012984U JPS60172231U (en) 1984-04-24 1984-04-24 lightning resistant wire

Publications (2)

Publication Number Publication Date
JPS60172231U JPS60172231U (en) 1985-11-14
JPH0347216Y2 true JPH0347216Y2 (en) 1991-10-08

Family

ID=30587192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6012984U Granted JPS60172231U (en) 1984-04-24 1984-04-24 lightning resistant wire

Country Status (1)

Country Link
JP (1) JPS60172231U (en)

Also Published As

Publication number Publication date
JPS60172231U (en) 1985-11-14

Similar Documents

Publication Publication Date Title
JPH0347216Y2 (en)
JPH0347215Y2 (en)
JPH0239293Y2 (en)
JPH0141132Y2 (en)
CN210245125U (en) New energy automobile's high reliability, high durability's combination charging cable
JPS63119110A (en) Aerial cable
JPH0135571B2 (en)
CN219696096U (en) Overhead ice melting ground wire
CN219591148U (en) Ice and snow resistant and anti-freezing wire and cable
JPH08256425A (en) Clamp end of steel-core aluminum stranded cable and formation thereof
JPH0134498Y2 (en)
CN220439262U (en) Silica gel flat wire
CN216980887U (en) Flexible flat cable for new energy vehicle
JPS58355Y2 (en) Overhead transmission line jumper device
JPH02312107A (en) Thunder-proof wire
CN210506954U (en) Zero-rotation steel wire rope made of hot-melt filling material
JPH0112338Y2 (en)
JP2897883B2 (en) Lightning resistant overhead ground wire
JPH0317908A (en) Electric wire against damage by thunder
JP4035567B2 (en) Twin union wire for mounting reinforcement to prevent the fall of equipment or signs
JP2795530B2 (en) Overhead wire twist prevention device
JPH01133509A (en) Repairing of disconnected-section of aerial wire strand, and armor rod and sleeve
JPH11335987A (en) End processing for synthetic yarn core wire rope and synthetic yarn core wire rope with end socket
JPH0546168Y2 (en)
JP2670342B2 (en) Difficult snow ring