JPH0347188Y2 - - Google Patents
Info
- Publication number
- JPH0347188Y2 JPH0347188Y2 JP1986012591U JP1259186U JPH0347188Y2 JP H0347188 Y2 JPH0347188 Y2 JP H0347188Y2 JP 1986012591 U JP1986012591 U JP 1986012591U JP 1259186 U JP1259186 U JP 1259186U JP H0347188 Y2 JPH0347188 Y2 JP H0347188Y2
- Authority
- JP
- Japan
- Prior art keywords
- evaporator
- temperature
- blower
- detection means
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005057 refrigeration Methods 0.000 claims description 19
- 238000001514 detection method Methods 0.000 claims description 15
- 238000010257 thawing Methods 0.000 claims description 12
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 238000007664 blowing Methods 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Landscapes
- Defrosting Systems (AREA)
- Removal Of Water From Condensation And Defrosting (AREA)
Description
【考案の詳細な説明】 (産業上の利用分野) この考案は、冷凍装置の除霜装置に関する。[Detailed explanation of the idea] (Industrial application field) This invention relates to a defrosting device for a refrigeration system.
(従来の技術)
従来、この種の装置として、例えば、実公昭57
−14089号公報に示されるように、蒸発器出口の
配管の温度を検出し、該検出温度が所定値以下と
なつた場合、蒸発器入口側の配管途中に設けられ
た電磁弁を閉成して蒸発器の作動を停止し、蒸発
器の除霜を行なうようにしたものが公知となつて
いる。この場合の除霜はもつぱら蒸発器本体の作
動停止に伴う温度上昇のみに依存しているだけで
あり、除霜時間が長くなるという欠点があり、こ
れを解決すべく圧縮機の停止後であつても送風機
を回転させておく例(実公昭50−6042号公報)が
ある。(Prior art) Conventionally, as this type of device, for example,
As shown in Publication No. 14089, the temperature of the piping at the evaporator outlet is detected, and when the detected temperature falls below a predetermined value, the solenoid valve installed in the middle of the piping on the evaporator inlet side is closed. There is a known method in which the operation of the evaporator is stopped and the evaporator is defrosted. Defrosting in this case relies solely on the temperature rise that occurs when the evaporator stops operating, which has the disadvantage of prolonging the defrosting time. There is an example (Japanese Utility Model Publication No. 50-6042) in which the blower is kept rotating even in the event of a problem.
(考案が解決しようとする問題点)
しかし、除霜した水滴が付着したままなかなか
取り除けない欠点を有していた。(Problem to be solved by the invention) However, the defrosted water droplets remained attached and had a drawback that they were difficult to remove.
そこで、この考案は蒸発器除霜のみならず付着
の水滴を一掃できる冷房、冷凍装置を提供するこ
とを課題とする。 Therefore, the object of this invention is to provide a cooling/refrigeration device that can not only defrost the evaporator but also wipe away attached water droplets.
(問題点を解決するための手段)
しかして、この考案の要旨とするところは、圧
縮機及び蒸発器を含む冷凍サイクルと、前記蒸発
器に空気を送風する送風機とを具備する冷凍装置
の除霜装置にあつて、前記蒸発器の着霜を検出す
る着霜検出手段と、前記蒸発器の温度を検出する
温度検出手段と、前記着霜検出手段及び温度検出
手段の出力信号に応じて前記圧縮機と送風機の作
動を制御する制御手段とを具備し、該制御手段
は、前記着霜検出手段によつて前記蒸発器の着霜
が検出された場合前記送風機を作動させつつ、前
記圧縮機の作動を停止し、その後温度検出手段に
よつて第1の所定温度が検出された場合前記送風
機の作動を停止し、さらにその後温度検出手段に
よつて前記第1の所定温度より高い第2の所定温
度が検出された場合前記圧縮機及び送風機を再び
作動させる冷凍装置の除霜装置にある。(Means for Solving the Problems) Therefore, the gist of this invention is to remove a refrigeration system that includes a refrigeration cycle including a compressor and an evaporator, and a blower that blows air to the evaporator. The frosting device includes a frost detection means for detecting frost formation on the evaporator, a temperature detection means for detecting the temperature of the evaporator, and a frost detection means for detecting frost formation on the evaporator; A control means for controlling the operation of a compressor and an air blower is provided, and the control means operates the air blower while operating the air blower when frost formation on the evaporator is detected by the frost formation detection means. If a first predetermined temperature is detected by the temperature detection means, the operation of the blower is stopped, and then the temperature detection means detects a second predetermined temperature higher than the first predetermined temperature. The defrosting device of the refrigeration system operates the compressor and the blower again when a predetermined temperature is detected.
(作用)
したがつて、除霜のため圧縮機の作動が停止し
た後にも送風機が作動し続けるので除霜をより一
層早める一方、除霜後圧縮機を再び作動させる直
前に送風機を一旦停止した後圧縮機と同時に作動
させて蒸発器に付着した水滴を一掃するので、こ
のため上記課題を達成できるものである。(Function) Therefore, even after the compressor stops operating for defrosting, the blower continues to operate, further speeding up defrosting, while the blower is temporarily stopped immediately before restarting the compressor after defrosting. Since it is operated simultaneously with the post-compressor to wipe out water droplets adhering to the evaporator, the above-mentioned problem can be achieved.
(実施例)
以下、この考案の実施例を図面により説明す
る。(Example) Hereinafter, an example of this invention will be described with reference to the drawings.
第3図において1は、冷凍サイクルで、圧縮機
2、蒸発器3及び他の図示されない凝縮器等が配
管結合されて構成されているものである。4は前
記蒸発器3に空気を送風する送風機で、該送風機
4と前記蒸発器3はダクトケース5に内設されて
いる。6は差圧スイツチで例えばダイヤフラム方
式で構成されるものである。ケーシング7内はダ
イヤフラム8によつて第1及び第2の室7a,7
bの2つに分割されており、前記第1の室7a内
は基準圧に設定される一方、第2の室7b内は前
記ダクトケース5において、前記送風機4と蒸発
器3との間に連通している。また、前記第1の室
7a内では第1及び第2の接点9a,9bが対向
してそれぞれ前記ケーシング7、ダイヤフラム8
に設けられており、常閉接点9を形成している。
そして前記第2の室7bの圧力即ち、前記蒸発器
3の風上側の空気圧が第1の室7aの基準以上と
なつた場合、前記第1及び第2の接点9a,9b
は開成されるようになつている。 In FIG. 3, reference numeral 1 denotes a refrigeration cycle, which includes a compressor 2, an evaporator 3, and other condensers (not shown) connected through piping. Reference numeral 4 denotes a blower for blowing air to the evaporator 3, and the blower 4 and the evaporator 3 are installed inside the duct case 5. Reference numeral 6 denotes a differential pressure switch, which is constructed by, for example, a diaphragm type. The inside of the casing 7 is divided into first and second chambers 7a and 7 by a diaphragm 8.
The inside of the first chamber 7a is set to the standard pressure, while the inside of the second chamber 7b is between the blower 4 and the evaporator 3 in the duct case 5. It's communicating. Further, in the first chamber 7a, the first and second contacts 9a and 9b are opposed to each other, and the casing 7 and the diaphragm 8 are connected to each other.
, and forms a normally closed contact 9.
When the pressure in the second chamber 7b, that is, the air pressure on the windward side of the evaporator 3, exceeds the reference level in the first chamber 7a, the first and second contacts 9a, 9b
is becoming more developed.
10はサーモスタツトで、前記蒸発器3の蒸発
フイン(図示せず)の温度を検出して2つの所定
温度で開閉成信号を出力するものである。前記2
つの所定温度は、本実施例においては、0℃(第
1の所定温度)及び+5℃(第2の所定温度)に
設定されている。 A thermostat 10 detects the temperature of an evaporation fin (not shown) of the evaporator 3 and outputs an opening/closing signal at two predetermined temperatures. Said 2
In this embodiment, the two predetermined temperatures are set to 0° C. (first predetermined temperature) and +5° C. (second predetermined temperature).
11は制御回路で、前記差圧スイツチ6及びサ
ーモスタツト10の出力信号に応じて前記圧縮機
2及び送風機4の作動を制御するものである。こ
の制御回路11の具体例が第1図に示されてい
る。 A control circuit 11 controls the operation of the compressor 2 and the blower 4 in accordance with the output signals of the differential pressure switch 6 and thermostat 10. A specific example of this control circuit 11 is shown in FIG.
第1図において、12aは圧縮機2の駆動を断
続する電磁クラツチ12の励磁コイルで、第1の
リレー13の第1の常開接点13aに直列接続さ
れた上電源(図示せず)に並列接続されている。 In FIG. 1, reference numeral 12a denotes an excitation coil for the electromagnetic clutch 12 that connects and disconnects the drive of the compressor 2, and is parallel to an upper power source (not shown) connected in series to the first normally open contact 13a of the first relay 13. It is connected.
送風機4には前記第1のリレー13の第2の常
開接点13bと第2のリレー14の常開接点14
aとの並列回路が直列接続されて電源に並列接続
されている。 The blower 4 has a second normally open contact 13b of the first relay 13 and a normally open contact 14 of the second relay 14.
The parallel circuit with a is connected in series and connected in parallel to the power supply.
差圧スイツチ6の常閉接点9には第3のリレー
15の常開接点15aと第1のリレー13とが直
列接続された上電源に並列接続されている。前記
第2のリレー14にはサーモスタツト10の第2
の接点10bが直列接続された上電源に並列接続
されている。この第2の接点10bは常温におい
ては開成状態で、0℃以下で閉成状態となるもの
である。 The normally closed contact 9 of the differential pressure switch 6 is connected in parallel to a power source in which the normally open contact 15a of the third relay 15 and the first relay 13 are connected in series. The second relay 14 is connected to the second relay 14 of the thermostat 10.
The contacts 10b are connected in parallel to the upper power supply connected in series. This second contact 10b is in an open state at room temperature and is in a closed state at 0° C. or lower.
前記第3のリレー15には、サーモスタツト1
0の第1の接点10aと第1のリレー13の第3
の常開接点13cが並列接続されたものが直列接
続された上電源に並列接続されている。前記第1
の接点10aは常温においては閉成状態で+5℃
以下で開成状態となるものである。 The third relay 15 includes a thermostat 1
0's first contact 10a and the third of the first relay 13
The normally open contacts 13c are connected in parallel to the upper power supply connected in series. Said first
Contact 10a is closed at room temperature +5℃
It will be in the open state as follows.
しかして、上記構成において、図2を基にその
作用を説明すれば、時刻t0で装置に電源を印加し
たとする。装置起動時は差圧スイツチ6の常閉接
点9は閉成状態である。また、サーモスタツト1
0の第1の接点10aは常温故に閉成状態、第2
の接点10bは開成状態である。したがつて、第
1のリレー13の第1及び第2の常開接点13
a,13bが閉成状態となる。この結果、電磁ク
ラツチ12の励磁コイル12aが励磁され、圧縮
機2が作動すると共に、送風機4も作動を開始
し、冷凍サイクル1が作動状態となる。 In the above configuration, the operation will be explained based on FIG. 2. It is assumed that power is applied to the device at time t0 . When the device is started, the normally closed contact 9 of the differential pressure switch 6 is in a closed state. Also, thermostat 1
The first contact 10a of 0 is in the closed state due to room temperature, and the second
The contact 10b is in an open state. Therefore, the first and second normally open contacts 13 of the first relay 13
a and 13b are in a closed state. As a result, the excitation coil 12a of the electromagnetic clutch 12 is excited, the compressor 2 is operated, and the blower 4 also starts operating, so that the refrigeration cycle 1 is put into operation.
冷凍サイクル1の作動と共に蒸発器3の温度は
次第に低下してゆく(第2図a参照)。蒸発器3
の温度低下に伴なつて該蒸発器3には次第に着霜
し、送風空気に対する抵抗となるので、蒸発器3
の風上側の空気圧は徐々に増加してゆく。そし
て、この空気圧が所定値以上となると差圧スイツ
チ6の常閉接点9は開成状態となる(第2図時間
t1参照)。この時、蒸発器温度は−2〜−3℃付
近となるよう、前記差圧スイツチ6は調整されて
いる。この結果、第1のリレー13は非励磁とな
つて第1の常開接点13a及び第2の常開接点1
3bが開成されるので圧縮機3は停止状態とな
る。しかし、送風機4には第2のリレー14の常
開接点14aを介して電源が印加されるので、該
送風機4はなおも作動を続ける。 As the refrigeration cycle 1 operates, the temperature of the evaporator 3 gradually decreases (see FIG. 2a). Evaporator 3
As the temperature of the evaporator 3 decreases, frost gradually forms on the evaporator 3, creating resistance to the blown air.
The air pressure on the windward side gradually increases. When this air pressure exceeds a predetermined value, the normally closed contact 9 of the differential pressure switch 6 becomes open (see Figure 2).
(see t1 ). At this time, the differential pressure switch 6 is adjusted so that the evaporator temperature is around -2 to -3°C. As a result, the first relay 13 becomes de-energized and the first normally open contact 13a and the second normally open contact 1
3b is opened, the compressor 3 is in a stopped state. However, since power is applied to the blower 4 via the normally open contact 14a of the second relay 14, the blower 4 still continues to operate.
ここで、前記常開接点14aは、蒸発器温度が
0℃となつた時サーモスタツト10の第2の接点
10bが閉成し、第2のリレー14を励磁するこ
とによつて閉成されるものである。前記圧縮機2
の作動停止によつて、蒸発器温度は徐々に上昇し
てゆき再び0℃となつた時、前記サーモスタツト
10の第2の接点10bの開成により第2のリレ
ー14は非励磁となる。このため、前記送風機4
は電源を断たれて作動を停止する(第2図時間
t2)。その後、蒸発器温度は更に上昇し、5℃と
なつたところで(第2図時間t3)、サーモスタツ
ト10の第1の接点10aが閉成し、差圧スイツ
チ6はリセツト状態となり再び常閉接点9を閉成
して第1のリレー13及び第3のリレー15が作
動するので、圧縮機2及び送風機4が再び作動を
開始して前述のような作動が繰り返される。ま
た、この時間2からt3間において送風はなく霜は
全く氷解して比較的大きな水滴に生長して蒸発器
3に付着しているのが、前記送風機4の再起動に
より一掃される。 Here, the normally open contact 14a is closed when the second contact 10b of the thermostat 10 is closed when the evaporator temperature reaches 0° C., and the second relay 14 is energized. It is something. The compressor 2
As the operation of the thermostat 10 is stopped, the evaporator temperature gradually rises and when it reaches 0 DEG C. again, the second relay 14 is de-energized by opening the second contact 10b of the thermostat 10. For this reason, the blower 4
The power is cut off and the operation stops (Fig. 2 Time
t2 ). Thereafter, the evaporator temperature further increases, and when it reaches 5°C (time t3 in Figure 2), the first contact 10a of the thermostat 10 closes, and the differential pressure switch 6 becomes reset and becomes normally closed again. Since the contact 9 is closed and the first relay 13 and the third relay 15 are operated, the compressor 2 and the blower 4 start operating again, and the above-described operation is repeated. Further, during this period from time 2 to t3 , no air is blown, and the frost completely melts and grows into relatively large water droplets attached to the evaporator 3, which are wiped away by restarting the blower 4.
尚、本実施例においては、送風機の停止する温
度0℃、装置を再起動する温度を5℃としたが、
サーモスタツト10の設定温度を変えれば、他の
温度にすることは容易である。 In this example, the temperature at which the blower stops is 0°C, and the temperature at which the device is restarted is 5°C.
By changing the set temperature of the thermostat 10, it is easy to set the temperature to another value.
(考案の効果)
以上述べたように、この考案によれば、蒸発器
の着霜を検出して圧縮機を停止した後の送風機の
作動を確保して、除霜時間を短縮と、圧縮機停止
直後の冷凍能力の低下を防ぐと共に、圧縮機を再
作動させる前に送風機の作動を停止し、圧縮機の
再起動で氷解によつて蒸発器に付着する水滴を一
掃することができ、このため水滴付着により着霜
を早めることがなくなり、効率の良い冷凍運転が
できるという効果を奏するものである。(Effects of the invention) As described above, according to this invention, it is possible to ensure the operation of the blower after the compressor is stopped by detecting frost on the evaporator, shorten the defrosting time, and In addition to preventing a drop in refrigeration capacity immediately after a shutdown, the blower operation is stopped before restarting the compressor, and when the compressor is restarted, water droplets that adhere to the evaporator due to ice melting can be wiped out. Therefore, frost formation is not accelerated due to adhesion of water droplets, and efficient refrigeration operation is possible.
第1図はこの考案に係る冷凍装置の制御回路の
実施例を示す回路図、第2図aは同上の冷凍装置
の蒸発器の温度特性を示す特性線図、第2図bは
同上の冷凍装置の作動を示すタイムチヤート、第
3図は同上の冷凍装置の制御装置の概略図であ
る。
2……圧縮機、3……蒸発器、4……送風機、
6……差圧スイツチ、10……サーモスタツト、
12……電磁クラツチ。
Fig. 1 is a circuit diagram showing an embodiment of the control circuit of the refrigeration system according to the invention, Fig. 2a is a characteristic diagram showing the temperature characteristics of the evaporator of the refrigeration system above, and Fig. 2b is a diagram showing the temperature characteristics of the evaporator of the refrigeration system above. FIG. 3 is a time chart showing the operation of the device, and is a schematic diagram of the control device of the above-mentioned refrigeration device. 2...Compressor, 3...Evaporator, 4...Blower,
6... Differential pressure switch, 10... Thermostat,
12...Electromagnetic clutch.
Claims (1)
記蒸発器に空気を送風する送風機とを具備する
冷凍装置の除霜装置にあつて、前記蒸発器の着
霜を検出する着霜検出手段と、前記蒸発器の温
度を検出する温度検出手段と、前記着霜検出手
段及び温度検出手段の出力信号に応じて前記圧
縮機と送風機の作動を制御する制御手段とを具
備し、該制御手段は、前記着霜検出手段によつ
て前記蒸発器の着霜が検出された場合前記送風
機を作動させつつ、前記圧縮機の作動を停止
し、その後温度検出手段によつて第1の所定温
度が検出された場合前記送風機の作動を停止
し、さらにその後温度検出手段によつて前記第
1の所定の温度より高い第2の所定温度が検出
された場合前記圧縮機及び送風機を再び作動さ
せることを特徴とする冷凍装置の除霜装置。 2 着霜検出手段は差圧スイツチから構成される
ことを特徴とする実用新案登録請求の範囲第1
項記載の冷凍装置の除霜装置。 3 温度検出手段はサーモスタツトから構成され
ることを特徴とする実用新案登録請求の範囲第
1項及び第2項記載の冷凍装置の除霜装置。[Claims for Utility Model Registration] 1. A defrosting device for a refrigeration system comprising a refrigeration cycle including a compressor and an evaporator, and a blower for blowing air to the evaporator, A frost detection means for detecting the temperature of the evaporator, a temperature detection means for detecting the temperature of the evaporator, and a control means for controlling the operation of the compressor and the blower according to output signals of the frost detection means and the temperature detection means. The control means operates the blower and stops the operation of the compressor when frost formation on the evaporator is detected by the frost detection means, and then stops the operation of the compressor by the temperature detection means. If a first predetermined temperature is detected, the operation of the blower is stopped, and if a second predetermined temperature higher than the first predetermined temperature is subsequently detected by the temperature detection means, the compressor and the blower are stopped. A defrosting device for a refrigeration system, characterized in that it operates again. 2 Utility model registration claim 1 characterized in that the frost detection means is comprised of a differential pressure switch
A defrosting device for the refrigeration equipment described in Section 1. 3. A defrosting device for a refrigeration system as set forth in claims 1 and 2 of the utility model registration claim, wherein the temperature detection means is comprised of a thermostat.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1986012591U JPH0347188Y2 (en) | 1986-01-31 | 1986-01-31 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1986012591U JPH0347188Y2 (en) | 1986-01-31 | 1986-01-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62124479U JPS62124479U (en) | 1987-08-07 |
JPH0347188Y2 true JPH0347188Y2 (en) | 1991-10-07 |
Family
ID=30800863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1986012591U Expired JPH0347188Y2 (en) | 1986-01-31 | 1986-01-31 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0347188Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3983012B2 (en) * | 2001-05-11 | 2007-09-26 | 三洋電機株式会社 | refrigerator |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS506042U (en) * | 1973-05-17 | 1975-01-22 |
-
1986
- 1986-01-31 JP JP1986012591U patent/JPH0347188Y2/ja not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS506042U (en) * | 1973-05-17 | 1975-01-22 |
Also Published As
Publication number | Publication date |
---|---|
JPS62124479U (en) | 1987-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4949548A (en) | Process for controlling the operation of a refrigerating unit | |
JPH0347188Y2 (en) | ||
JPS6040774B2 (en) | Defrosting control method for heat pump air conditioner | |
JPH04356647A (en) | Control device for air conditioner | |
JPS62186157A (en) | Defrosting control unit of air conditioner | |
JPS5911813B2 (en) | How to operate a heat pump air conditioner | |
JPS613937A (en) | Defrosting control device | |
JPS61114042A (en) | Defrosting control device of air conditioner | |
JPS604058Y2 (en) | Defrosting circuit device for refrigeration equipment | |
JPS6191438A (en) | Method of controlling defrosting of heat pump type air conditioner | |
JPH0248774Y2 (en) | ||
JPS5829790Y2 (en) | Air conditioner control circuit | |
JPS5837Y2 (en) | Air-cooled heat pump type air conditioner | |
JP2582320B2 (en) | Operation stop device in environmental test equipment | |
JPS6123456B2 (en) | ||
JPS5920581Y2 (en) | Control circuit for heat pump air conditioner | |
JPS5913547Y2 (en) | Air conditioner control circuit | |
JPS61184350A (en) | Defrost method for air conditioner | |
JP2001280807A (en) | Refrigerator | |
JPH0113978Y2 (en) | ||
JPS6315714Y2 (en) | ||
SU1742601A1 (en) | Device for control of defrosting of air cooling unit | |
JPS5852416Y2 (en) | Heat pump air conditioning system | |
JP2000337753A (en) | Air conditioner | |
JPS5854611Y2 (en) | Refrigeration equipment operation control device |