JPS6123456B2 - - Google Patents

Info

Publication number
JPS6123456B2
JPS6123456B2 JP53104090A JP10409078A JPS6123456B2 JP S6123456 B2 JPS6123456 B2 JP S6123456B2 JP 53104090 A JP53104090 A JP 53104090A JP 10409078 A JP10409078 A JP 10409078A JP S6123456 B2 JPS6123456 B2 JP S6123456B2
Authority
JP
Japan
Prior art keywords
temperature
defrosting
heat exchanger
air
outside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53104090A
Other languages
Japanese (ja)
Other versions
JPS5531254A (en
Inventor
Kohei Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP10409078A priority Critical patent/JPS5531254A/en
Publication of JPS5531254A publication Critical patent/JPS5531254A/en
Publication of JPS6123456B2 publication Critical patent/JPS6123456B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はヒートポンプ式冷凍機の除霜方法に関
し、ヒートポンプ運転時の熱源となる屋外の空気
熱交換器周辺での氷層の生長を防止することを主
な目的とする。
[Detailed Description of the Invention] The present invention relates to a defrosting method for a heat pump type refrigerator, and its main purpose is to prevent the growth of an ice layer around an outdoor air heat exchanger that is a heat source during heat pump operation. .

一般に、空気を熱源とするヒートポンプは、屋
外に設置された空気熱交換器により低温の外気か
ら暖房用の熱を得るため、該熱交換器の温度0℃
以下になつて着霜を生じる場合が少なくない。
Generally, heat pumps that use air as a heat source obtain heat for heating from low-temperature outside air using an air heat exchanger installed outdoors, so the temperature of the heat exchanger is 0°C.
There are many cases where frost formation occurs when the temperature is lower than that.

しかし、熱交換器の表面に霜が付着すると空気
熱交換器から汲み上げられる熱量が減るため、で
きる限り着霜のない状態でヒートポンプ運転をす
るのが好ましい。このために、実開昭51−154454
号公報には第3図に一点鎖線で示すように、外気
温度が所定温度(6℃)以上の場合は蒸発器の温
度のみで除霜を開始し、外気温度が所定度(6
℃)よりも低い場合は外気温度と蒸発器の温度に
関連して除霜を開始する霜取装置が提示されてい
る。しかしながら、外気温度が6℃より幾分低い
2℃乃至6℃の場合は空気熱交換器の一部に偏つ
て着霜するために斯る提示の霜取装置では完全な
除霜ができない上に、除霜時の水滴が空気熱交換
器に接しない状態で氷層として残り空気熱交換器
からの暖房熱の汲み上げを妨げる欠点も解決でき
ないものであつた。
However, if frost adheres to the surface of the heat exchanger, the amount of heat pumped up from the air heat exchanger will decrease, so it is preferable to operate the heat pump in a frost-free state as much as possible. For this purpose, Utsukai Showa 51-154454
As shown by the dashed line in Figure 3, the publication states that when the outside air temperature is above a predetermined temperature (6°C), defrosting is started using only the evaporator temperature;
A defrost device is proposed which starts defrosting in relation to the outside air temperature and the evaporator temperature if the temperature is lower than 0.3 °C. However, when the outside air temperature is between 2°C and 6°C, which is slightly lower than 6°C, frost builds up unevenly on a part of the air heat exchanger, so the proposed defroster cannot defrost completely. However, the drawback that water droplets during defrosting remain as an ice layer without contacting the air heat exchanger and prevent heating heat from being pumped from the air heat exchanger cannot be solved.

斯る点に鑑みなされた本発明を以下に図面に従
い説明すると、第1図は空気熱源式ヒートポンプ
の基本的構成図であり、1は冷媒圧縮機、2は屋
外に設置された空気熱交換器、3は屋内の冷暖房
用の熱交換器、4は膨張弁であり、これらは、冷
房、暖房、除霜の各運転状態に応じて冷媒流方向
を実線矢視(ヒートポンプ暖房時)、点線矢視
(ヒートポンプ中の除霜時および冷房時)方向に
切替える四方弁5を介して気密に接続されて空気
熱源ヒートポンプの冷凍サイクルを構成してお
り、ヒートポンプ暖房時には空気熱交換器2は蒸
発器、屋内の冷暖房用熱交換器3は凝縮器として
働らくよう、また、冷房時には、空気熱交換器2
は凝縮器、屋内の熱交換器3は蒸発器として働ら
くようにしている。
The present invention, which was made in view of these points, will be explained below with reference to the drawings. Fig. 1 is a basic configuration diagram of an air heat source type heat pump, where 1 is a refrigerant compressor and 2 is an air heat exchanger installed outdoors. , 3 is a heat exchanger for indoor air conditioning and heating, and 4 is an expansion valve, and the refrigerant flow direction is indicated by the solid line arrow (during heat pump heating) or the dotted line arrow, depending on the operating status of cooling, heating, and defrosting. The air heat exchanger 2 is air-tightly connected via a four-way valve 5 that switches between two directions (during defrosting and cooling in the heat pump) to configure the refrigeration cycle of the air source heat pump. The indoor heating and cooling heat exchanger 3 works as a condenser, and during cooling, the air heat exchanger 2
is made to work as a condenser, and the indoor heat exchanger 3 works as an evaporator.

又、空気熱交換器2には送風機6および空気熱
交換器温度の検出センサ7が取り付けられ、該検
出センサからの入力および空気熱交換器2の設置
されている場所の外気温度の検出センサ8からの
入力をもとに、ヒートポンプ運転時に作動する除
霜制御器9が四方弁5の切替えをする。
Further, a blower 6 and a sensor 7 for detecting the air heat exchanger temperature are attached to the air heat exchanger 2, and input from the sensor and a sensor 8 for detecting the outside air temperature at the location where the air heat exchanger 2 is installed are provided. The defrosting controller 9, which operates during heat pump operation, switches the four-way valve 5 based on the input from the four-way valve 5.

第2図はこのような除霜制御器の一実施回路例
であり、7,8は第1図に示した熱交換器温度の
検出センサーおよび外気温度の検出センサーであ
り、PTCサーミスタ、NTCサーミスタ等の温度
−電気量変換素子が用いられ、直流電源からの母
線10,10′に接続されている。11は母線1
0,10′からの入力端子12,12′を有し、熱
交換器温度の検出センサー7と外気温度の検出セ
ンサー8との中点Tからの入力をもとに、第3図
のAおよびBのような特性の出力を出す除霜開始
用スイツチング回路、13は、同じく入力端子1
4,14′を有し、検出センサー7,8の中点T
からの入力をもとに第3図のCのような特性の出
力を出す除霜解除用のスイツチング回路、15は
除霜解除用スイツチング回路13で作動されるリ
レー16の接点17が閉じているときに、除霜開
始用スイツチング回路11の出力で作動されるリ
レー、18は該スイツチング回路11からのA,
B二つの出力端19,19′をリレー15側に切
替え接続するサーモスタツトであり、空気熱交換
器2が設置されている外気温度が2℃以下のとき
は出力側A19側、6℃以上のときは出力側B1
9′に作動するように設定され、2℃〜6℃の間
は、該サーモスタツト18のデイフアレンシヤル
として第3図の点線のよう出力でリレー15が作
動され、これにより四方弁5を切替え作動する。
Fig. 2 shows an example of a circuit for implementing such a defrosting controller, and 7 and 8 are the heat exchanger temperature detection sensor and the outside temperature detection sensor shown in Fig. 1. A temperature-to-electrical quantity conversion element such as the above is used, and is connected to bus bars 10, 10' from a DC power source. 11 is bus line 1
It has input terminals 12 and 12' from 0 and 10', and based on the input from the midpoint T between the heat exchanger temperature detection sensor 7 and the outside air temperature detection sensor 8, A and 10' in FIG. The defrosting start switching circuit 13 which outputs the output with characteristics like B is also connected to the input terminal 1.
4, 14', and the midpoint T of the detection sensors 7, 8
15 is a defrosting release switching circuit that outputs an output with characteristics as shown in FIG. At times, the relay 18 is activated by the output of the switching circuit 11 for starting defrosting.
This is a thermostat that switches and connects the two output ends 19 and 19' to the relay 15 side.When the outside air temperature where the air heat exchanger 2 is installed is below 2℃, the output side is connected to the A19 side, and when the temperature is above 6℃ When output side B1
9', and between 2°C and 6°C, the relay 15 is activated as a differential for the thermostat 18 with an output as shown by the dotted line in FIG. Switching works.

尚、このサーモスタツト18は機械的な別体サ
ーモでもよいが、配線長が長くなるときは外気温
度の検出センサー8の入力をもとに、適当なスイ
ツチング回路を作動させて同様に端子19,1
9′の切替えをするようにしてもよい。
The thermostat 18 may be a separate mechanical thermostat, but if the wiring length is long, an appropriate switching circuit is activated based on the input from the outside temperature detection sensor 8, and the terminals 19, 1
9' may also be switched.

斯る構成を一例として第3図のような除霜運転
特性を持たせた本発明の除霜方法においては、ヒ
ートポンプ運転時に蒸発器として屋外の空気から
暖房用の熱を汲み上げている空気熱交換器に霜や
氷が付着した場合、該空気熱交換器(蒸発器)の
設置されている外気温度2乃至6℃以下のとき
は、特性Aに従つた蒸発器温度以下で除霜を行な
うようにリレー15によつて四方弁5が切替り、
冷媒が第1図の点線矢視のように流される一方、
外気温度が2乃至6℃以上のときは、特性Bに従
つた蒸発器温度以下で除霜を行なうように四方弁
5が切替えられ、各外気温度条件下での除霜開始
温度と除霜解除温度との温度差DA,DBは、Aの
特性、Bの特性のいずれのときも、外気温度の2
℃乃至6℃のときの温度差を外気温度2℃以下又
は6℃以上のときの温度差よりも小さくなるよう
に設定できる。
Taking such a configuration as an example, in the defrosting method of the present invention having the defrosting operation characteristics as shown in FIG. 3, an air heat exchanger pumps heat for heating from outdoor air as an evaporator during heat pump operation. If frost or ice adheres to the container, if the outside air temperature where the air heat exchanger (evaporator) is installed is below 2 to 6 degrees Celsius, defrost it at a temperature below the evaporator temperature according to characteristic A. The four-way valve 5 is switched by the relay 15,
While the refrigerant flows as shown by the dotted line arrow in Figure 1,
When the outside air temperature is 2 to 6°C or higher, the four-way valve 5 is switched to perform defrosting at a temperature below the evaporator temperature according to characteristic B, and the defrosting start temperature and defrosting release are determined under each outside air temperature condition. The temperature difference D A and D B is 2 of the outside temperature for both characteristics A and B.
The temperature difference when the temperature is between 6°C and 6°C can be set to be smaller than the temperature difference when the outside air temperature is 2°C or lower or 6°C or higher.

尚、特性A,B,Cは必ずしも直線でなく曲線
でも構わない。
Note that the characteristics A, B, and C may not necessarily be straight lines but may be curved lines.

このような本発明の除霜方法においては、外気
温度が2℃以下の場合、蒸発器の風上側に付着す
る霜で蒸発器の温度が急激に下る傾向があるの
で、温度差DAを、外気温が低い側で大きくなる
ように設定しても除霜開始の誤作動がおこるおそ
れはなく、また、頻繁な除霜の開始、解除もな
い、従来と同様な除霜ができる。
In the defrosting method of the present invention, when the outside air temperature is 2°C or less, the temperature of the evaporator tends to drop rapidly due to frost adhering to the windward side of the evaporator, so the temperature difference D A is Even if the temperature is set to be higher when the outside temperature is lower, there is no risk of malfunctioning when defrosting starts, and defrosting can be performed in the same way as conventional defrosting without frequent starting and canceling of defrosting.

又、外気温度が6℃以上の場合、通常は、蒸発
器を通る外気の温度が〜0℃以下に下ることもな
いので、理論的には除霜の必要がないが、実際の
運転中には空気熱交換器の一部に偏つて氷が生成
し、このために膨張弁が絞られて蒸発器温度が極
度に低下することがあり、本発明の方法では、斯
る特殊な条件下になつたと検知されたときにはじ
めて除霜が開始されるよう温度差DBを大きくと
り、通常は除霜が行なわないようにする一方、一
旦除霜が開始されたときは、確実に氷層の除去が
なされるようにし、誤動作による除霜が開始され
ないようにしている。
Also, when the outside air temperature is 6℃ or higher, the temperature of the outside air passing through the evaporator will not drop below ~0℃, so there is no need for defrosting in theory, but during actual operation, defrosting is not necessary. Under such special conditions, the method of the present invention can generate ice in a portion of the air heat exchanger, which may throttle the expansion valve and cause the evaporator temperature to drop extremely. The temperature difference D B is set large so that defrosting is started only when summer is detected, and defrosting is not normally performed, but once defrosting is started, it is ensured that the ice layer is This ensures that the defrost is removed and that defrosting is not started due to malfunction.

更に又、外気温度が2℃乃至6℃のときは、除
霜開始温度を除霜解除温度に近づけることによ
り、外気温度が2℃以下あるいは6℃以上である
ときよりも除霜の頻度を多くし、蒸発器への着霜
の初期の段階で除霜が行なえるようにしている。
これにより、蒸発器での着霜が霜というよい、む
しろ、凝縮水が氷結した氷層として成長し易い斯
る外気温度条件下での不充分な除霜、例えば、除
霜サイクル終了後に蒸発器に接しない状態で氷層
が離脱するだけで氷層の融解がなされず、ヒート
ポンプの熱の汲み上げをする屋外熱交換器への空
気の流通を妨げるような氷層の残存を除去し難い
という従来の此の種の除霜方法の欠点を解決し、
各外気温度条件下に適した除霜を行なつて効率の
良いヒートポンプ運転を可能にするものである。
Furthermore, when the outside temperature is between 2°C and 6°C, defrosting can be performed more frequently than when the outside temperature is below 2°C or above 6°C by bringing the defrosting start temperature closer to the defrosting release temperature. This makes it possible to defrost the evaporator at the initial stage of frost formation.
As a result, frost formation on the evaporator is not just frost, but rather, the condensed water tends to grow as an ice layer.Insufficient defrosting under such outside temperature conditions, e.g. Conventionally, the ice layer simply detaches without contacting the heat pump, and the ice layer does not melt, making it difficult to remove the remaining ice layer that obstructs the flow of air to the outdoor heat exchanger that pumps heat from the heat pump. Solving the drawbacks of this type of defrosting method,
This enables efficient heat pump operation by performing defrosting that is appropriate for each outside temperature condition.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は空気熱源式ヒートポンプの基本的回路
構成図、第2図は本発明方法を実施した除霜制御
器の一例を示す電気回路図、第3図は本発明方法
による除霜運転の特性と、従来装置による除霜運
転の特性とを示す図である。 2…空気熱交換器、7…熱交換器温度の検出セ
ンサー、8…外気温検出センサー。
Fig. 1 is a basic circuit configuration diagram of an air source heat pump, Fig. 2 is an electric circuit diagram showing an example of a defrosting controller implementing the method of the present invention, and Fig. 3 is a characteristic of defrosting operation according to the method of the present invention. FIG. 3 is a diagram showing the characteristics of defrosting operation by a conventional device. 2... Air heat exchanger, 7... Heat exchanger temperature detection sensor, 8... Outside temperature detection sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 熱源としての空気熱交換器が設置されている
場所の外気温度に従つて空気熱交換器側の除霜開
始の設定温度および除霜解除の設定温度を変える
ようにしたヒートポンプ式冷凍機において、外気
温度が2℃乃至6℃のとき除霜開始の設定温度と
除霜解除の設定温度との温度差を、外気温度が2
℃以下又は6℃以上のときよりも小さくなるよう
に設定したヒートポンプ式冷凍機の除霜方法。
1. In a heat pump type refrigerator in which the set temperature for starting defrosting and the set temperature for defrosting release on the air heat exchanger side are changed according to the outside temperature of the place where the air heat exchanger as a heat source is installed, When the outside air temperature is between 2℃ and 6℃, the temperature difference between the set temperature to start defrosting and the set temperature to release defrost is calculated as follows:
A defrosting method for a heat pump refrigerator that is set to be smaller than when the temperature is below ℃ or above 6℃.
JP10409078A 1978-08-23 1978-08-23 Defrosting system of heat pump type refrigerator Granted JPS5531254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10409078A JPS5531254A (en) 1978-08-23 1978-08-23 Defrosting system of heat pump type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10409078A JPS5531254A (en) 1978-08-23 1978-08-23 Defrosting system of heat pump type refrigerator

Publications (2)

Publication Number Publication Date
JPS5531254A JPS5531254A (en) 1980-03-05
JPS6123456B2 true JPS6123456B2 (en) 1986-06-05

Family

ID=14371420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10409078A Granted JPS5531254A (en) 1978-08-23 1978-08-23 Defrosting system of heat pump type refrigerator

Country Status (1)

Country Link
JP (1) JPS5531254A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163875A (en) * 1982-03-23 1983-09-28 Mitsubishi Heavy Ind Ltd Hydraulic change over valve for reciprocating hydraulic cylinder
JPS58152836U (en) * 1982-04-06 1983-10-13 株式会社クボタ Reaping machine operating structure
JPS6158433U (en) * 1984-09-19 1986-04-19

Also Published As

Publication number Publication date
JPS5531254A (en) 1980-03-05

Similar Documents

Publication Publication Date Title
US3918268A (en) Heat pump with frost-free outdoor coil
KR920000124B1 (en) Refrigerating circuit device
US4439995A (en) Air conditioning heat pump system having an initial frost monitoring control means
JPH06281201A (en) Air conditioner
JPH109725A (en) Air conditioner
JPS6123456B2 (en)
CN110762746B (en) Air conditioner and defrosting control method thereof
JPH0278844A (en) Air conditioner
JPH04356647A (en) Control device for air conditioner
JPH0718583B2 (en) Heat pump air conditioner
JPH02136637A (en) Heat pump type air conditioner
JPS613937A (en) Defrosting control device
JPS59200145A (en) Air conditioner
JP3072260U (en) Air conditioner defrost control device
JPH0248774Y2 (en)
JPH0319457B2 (en)
JPH0244140A (en) Heat pump type air conditioner
JPS5946438A (en) Defrosting operation control device for air conditioner
JPS62125244A (en) Air conditioner
KR100229651B1 (en) Defrosting method of cooling/heating separation type airconditioner
JPS6191439A (en) Defrosting control system of heat pump type air conditioner
JP2000104975A (en) Air conditioner
SU1742601A1 (en) Device for control of defrosting of air cooling unit
JPH04103943A (en) Defrosting controller for air conditioner
JPS5829794Y2 (en) Air conditioner operation control device