JPH0346652B2 - - Google Patents

Info

Publication number
JPH0346652B2
JPH0346652B2 JP57011698A JP1169882A JPH0346652B2 JP H0346652 B2 JPH0346652 B2 JP H0346652B2 JP 57011698 A JP57011698 A JP 57011698A JP 1169882 A JP1169882 A JP 1169882A JP H0346652 B2 JPH0346652 B2 JP H0346652B2
Authority
JP
Japan
Prior art keywords
intake
intake passage
primary
swirl
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57011698A
Other languages
Japanese (ja)
Other versions
JPS58131312A (en
Inventor
Yasuyuki Sugiura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Co Ltd
Original Assignee
Suzuki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Co Ltd filed Critical Suzuki Co Ltd
Priority to JP57011698A priority Critical patent/JPS58131312A/en
Publication of JPS58131312A publication Critical patent/JPS58131312A/en
Publication of JPH0346652B2 publication Critical patent/JPH0346652B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • F02B31/08Movable means, e.g. butterfly valves having multiple air inlets, i.e. having main and auxiliary intake passages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】 この発明は多気筒内燃機関の吸気装置に係り、
特に低負荷用1次吸気通路および高負荷用2次吸
気通路の断面積を気筒数に応じて所定のものに設
定することにより、1次側吸気により生起される
スワールを強大なものにするとともに、2次側リ
ーク吸気の流入速度を高めて前記スワールを強化
させ、低・中負荷域を中心とした燃焼性の改善を
図つた内燃機関の吸気装置に関する。
[Detailed Description of the Invention] This invention relates to an intake system for a multi-cylinder internal combustion engine,
In particular, by setting the cross-sectional area of the primary intake passage for low loads and the secondary intake passage for high loads to a predetermined value depending on the number of cylinders, the swirl generated by the primary side intake air can be made stronger. The present invention relates to an intake system for an internal combustion engine that increases the inflow speed of secondary leak intake air to strengthen the swirl and improve combustibility mainly in low and medium load ranges.

低負荷用1次吸気通路と高負荷用2次吸気通路
とを有する複式吸気内燃機関は、機関出力の改善
を図るために用いられている。
A dual intake internal combustion engine having a primary intake passage for low loads and a secondary intake passage for high loads is used to improve engine output.

しかし、この複式吸気機関を多気筒機関にする
と、低・中負荷域において、閉弁中の一の気筒に
連通する1次吸気通路から2次吸気通路に吸気が
逆流して2次側集合部に達し、開弁動作中の他の
気筒の2次吸気通路から該燃焼室内に吸気が流入
してしまうという、いわゆる吸気の2次側リーク
減少が生じ、このため、吸気速度が落ち、スワー
ルの強化を妨げる不都合がある。
However, when this multiple intake engine is made into a multi-cylinder engine, in low to medium load ranges, the intake air flows backward from the primary intake passage communicating with the closed cylinder to the secondary intake passage, causing the intake air to flow back into the secondary intake passage. , and the intake air flows into the combustion chamber from the secondary intake passage of the other cylinder during the valve opening operation, resulting in a so-called secondary intake leak reduction, which reduces the intake speed and increases the swirl. There are inconveniences that hinder reinforcement.

そのため、従来は、2次吸気通路に逆止弁を設
け、また、2次吸気通路の夫々に絞り弁を設ける
等して、2次側リーク現象を防止せんとしてい
た。しかし、逆止弁を設けると吸気抵抗が増大し
て好ましくなく、また2次吸気通路の夫々に絞り
弁を設ける方式では、構造がきわめて複雑なもの
となる欠点があつた。
Therefore, conventionally, attempts have been made to prevent the secondary side leak phenomenon by providing a check valve in the secondary intake passage and providing a throttle valve in each of the secondary intake passages. However, providing a check valve is undesirable because it increases intake resistance, and the system in which a throttle valve is provided in each secondary intake passage has the disadvantage that the structure becomes extremely complicated.

そこで、この発明の目的は、1次吸気通路を比
較的大径とし、1次側吸気流量を比較的大とし、
旋回性の高いこの1次側吸気により強大なスワー
ルを生起させるとともに、この反面、比較的細径
となつた2次吸気通路により2次側リーク吸気の
流速を高め、両者併せてより強力なスワールの生
成を果さんとするものである。
Therefore, an object of the present invention is to make the primary intake passage relatively large in diameter, to make the primary side intake flow rate relatively large,
This primary side intake air with high swirling properties creates a powerful swirl, and on the other hand, the relatively small diameter secondary intake passage increases the flow velocity of the secondary side leak intake air, and together they create a stronger swirl. The purpose is to generate

つまり、単一吸気弁直上流箇所において合流す
る低負荷用1次吸気通路と高負荷用2次吸気通路
とを有する多気筒複式内燃機関において燃焼室内
においてスワールを生じさせるべく2次側リーク
吸気を偏向させる突出壁を高負荷用2次吸気通路
内で且つ吸気弁近傍に設け、該突出壁の上流側の
一側面に沿つて1次側吸気が流出し燃焼室に前記
スワールと同方向のスワールを生起すべく低負荷
用1次吸気通路を開口させて設け、低負荷用1次
吸気通路の断面積S1と高負荷用2次吸気通路の断
面積S2間に、(n−1)S1>S2たる関係を持たせ
ることにより、低・中負荷域を中心とした燃焼性
の改善を図つた内燃機関の吸気装置を実現するに
ある。
In other words, in a multi-cylinder compound internal combustion engine that has a low-load primary intake passage and a high-load secondary intake passage that merge at a point immediately upstream of a single intake valve, the secondary side leak intake air is used to create a swirl in the combustion chamber. A protruding wall for deflection is provided in the high-load secondary intake passage and near the intake valve, and the primary intake air flows out along one side on the upstream side of the protruding wall, creating a swirl in the same direction as the swirl in the combustion chamber. The primary intake passage for low loads is opened and provided, and between the cross-sectional area S1 of the primary intake passage for low loads and the cross-sectional area S2 of the secondary intake passages for high loads, (n-1) is provided. By establishing the relationship S 1 >S 2 , it is possible to realize an intake system for an internal combustion engine that improves combustibility mainly in low and medium load ranges.

以下図面に基づいてこの発明の実施例を詳細か
つ具体的に説明する。
Embodiments of the present invention will be described in detail and specifically below based on the drawings.

第1図において、2はシリンダブロツク、4は
気筒、6はピストン、8は排気マニホルド、10
はシリンダヘツド、12は排気弁、14は燃焼
室、16は吸気ポート、そして18は吸気弁であ
る。
In Fig. 1, 2 is a cylinder block, 4 is a cylinder, 6 is a piston, 8 is an exhaust manifold, and 10 is a cylinder block.
12 is a cylinder head, 12 is an exhaust valve, 14 is a combustion chamber, 16 is an intake port, and 18 is an intake valve.

多気筒内燃機関、例えば、第2図に示すような
4気筒内燃機関において、気化器20より連なる
1次側および2次側吸気マニホルド22,24を
夫々その1次側集合部22a,2次側集合部4a
より4方向に分岐し、各気筒4に開口終端させて
設ける。これにより、気筒4毎に低負荷用1次吸
気通路26と高負荷用2次吸気通路28とを夫々
形成し、第3図に示す如く、これら吸気通路2
6,28を吸気ポート16を開閉する単一の吸気
弁18直上流箇所で合流させる。
In a multi-cylinder internal combustion engine, for example, a four-cylinder internal combustion engine as shown in FIG. Gathering section 4a
It branches into four directions, and each cylinder 4 is provided with an open end. As a result, a low-load primary intake passage 26 and a high-load secondary intake passage 28 are formed for each cylinder 4, and as shown in FIG.
6 and 28 are joined at a location immediately upstream of a single intake valve 18 that opens and closes the intake port 16.

しかして、この合流点近傍には、突出壁30
(第3図参照)を隆起させて設け、2次側リーク
吸気を偏向させて燃焼室14内において矢印31
の如きスワールを生起するように構成する。ま
た、この突出壁30の上流側の一側面30aに沿
つて、2次吸気通路28内壁に凹溝32を形成す
る。この凹溝32には、1次吸気通路26を臨ま
せて気筒4、(4−3)の接線方向に開口終端さ
せて形成するとともに、好ましくはシリンダヘツ
ド10のデツキ面10aに対してできるだけ平行
にこの1次吸気通路26を形成する。これによ
り、1次側吸気に2次側リーク吸気のスワールと
同方向であつて、かつ強力で圧潰しにくいスワー
ルを生起させて燃焼性の改善を果させ得る。
However, in the vicinity of this confluence, there is a protruding wall 30.
(see Fig. 3) is provided in a raised manner to deflect the secondary side leak intake air into the combustion chamber 14 as indicated by the arrow 31.
It is configured to generate a swirl like this. Further, a groove 32 is formed in the inner wall of the secondary intake passage 28 along one side surface 30a on the upstream side of the protruding wall 30. This concave groove 32 is formed with an open end facing the primary intake passage 26 in the tangential direction of the cylinder 4, (4-3), and is preferably parallel to the deck surface 10a of the cylinder head 10 as much as possible. This primary intake passage 26 is formed. Thereby, it is possible to generate a swirl in the primary intake that is in the same direction as the swirl of the secondary leak intake and that is strong and difficult to crush, thereby improving combustibility.

そして、1次側吸気により生成されるスワール
をより強大なものとすべく、所定範囲において可
能な限り1次吸気通路26の通路断面積を大とす
る。つまり、1次吸気通路26の断面積S1を2次
吸気通路28の断面積S2よりも小に形成するとと
もに、気筒数をnとした場合に、1次吸気通路2
6の断面積S1と2次吸気通路28の断面積S2
に、(n−1)S1>S2たる関係を成立させて各吸
気通路26,28を形成する。すなわち、図に示
すような4気筒内燃機関つまり気筒数nが4のと
きは、3S1>S2なる関係を形成するように各吸気
通路26,28の断面積S1,S2を設定する。
In order to make the swirl generated by the primary intake air stronger, the cross-sectional area of the primary intake passage 26 is made as large as possible within a predetermined range. In other words, the cross-sectional area S 1 of the primary intake passage 26 is made smaller than the cross-sectional area S 2 of the secondary intake passage 28, and when the number of cylinders is n, the primary intake passage 2
The intake passages 26 and 28 are formed by establishing the relationship (n-1)S 1 >S 2 between the cross-sectional area S 1 of the secondary intake passage 28 and the cross-sectional area S 2 of the secondary intake passage 28 . That is, in a four-cylinder internal combustion engine as shown in the figure, that is, when the number of cylinders n is 4, the cross-sectional areas S 1 and S 2 of each intake passage 26 and 28 are set so as to form the relationship 3S 1 > S 2 . .

これによつて、1次側吸気流量が大となり、そ
の質量が大となることから、スワールが強大とな
り消滅し難いものとなる。また、反面2次吸気通
路28は比較的細径となるので、2次側リーク吸
気が高流速にて流出され、また突出壁30の働き
にもより、強力なスワールが生起されるべく構成
したものである。
As a result, the primary side intake air flow rate becomes large and its mass becomes large, so that the swirl becomes strong and difficult to disappear. On the other hand, since the secondary intake passage 28 has a relatively small diameter, the secondary side leak intake air flows out at a high flow velocity, and the projecting wall 30 works to generate a strong swirl. It is something.

次に作用について説明する。 Next, the effect will be explained.

低・中負荷域においては、2次側吸気が1次吸
気通路26を経て燃焼室14に流入する。この1
次吸気通路26は、(n−1)S1>S2からなる比
較的大面積S1であるが故に、大量の1次側吸気が
運ばれ、1次側故の強力な旋回成分と相俟つて、
燃焼室14内に強力なスワールが生起される。
In the low/medium load range, secondary intake air flows into the combustion chamber 14 via the primary intake passage 26. This one
Since the secondary intake passage 26 has a relatively large area S1 consisting of (n-1) S1 > S2 , a large amount of primary side intake air is carried, and it interacts with the strong swirling component due to the primary side. Standing down,
A strong swirl is generated within the combustion chamber 14.

また、例えば、第3の気筒4−3が吸入行程に
ある場合、前述の如く他の第1、2、4の気筒4
−1,2,4の1次吸気通路26−1,2,4内
の1次側吸気は、2次吸気通路28−1,2,4
を逆流して2次側集合部28aに達し、吸入行程
中の気筒4−3の2次吸気通路28−3に流入
し、2次側リーク現象が発生する。この2次側リ
ーク現象による2次側リーク吸気は、突出壁30
の案内作用により気筒接線方向に流入し、燃焼室
14内に1次側吸気と同方向のスワールを生じさ
せる。
Further, for example, when the third cylinder 4-3 is in the intake stroke, the other first, second, and fourth cylinders 4-3
- The primary side intake air in the primary intake passages 26-1, 2, 4 is the secondary intake passage 28-1, 2, 4.
flows backwards, reaches the secondary side gathering portion 28a, and flows into the secondary intake passage 28-3 of the cylinder 4-3 during the intake stroke, causing a secondary side leak phenomenon. The secondary side leak intake due to this secondary side leak phenomenon is caused by the protruding wall 30
Due to the guiding action of the air, the air flows in the tangential direction of the cylinder, creating a swirl in the combustion chamber 14 in the same direction as the primary side intake air.

そして、気筒数nにおける1次吸気通路26の
断面積S1と2次吸気通路28の断面積S2間に、
(n−1)S1>S2たる関係、つまり4気筒内燃機
関においては3S1>S2たる関係を成立せしめたの
で、吸気行程中の第3気筒4−3の2次吸気通路
8−3の断面積S2は、第1,2,4の気筒4−
1,2,4の3本の1次吸気通路26−1,2,
4の断面積S1の総和より小に形成されている。し
たがつて、比較的細い2次吸気通路28故に、2
次側リーク吸気の吸気流量が少なく、このため、
2次側吸気の方向性を撹乱することも無く、また
2次側リーク吸気は高流速にて燃焼室14−3に
流入するので、突出壁30にもより、2次側リー
ク吸気のスワールがいつそう強化される。
Then, between the cross-sectional area S1 of the primary intake passage 26 and the cross-sectional area S2 of the secondary intake passage 28 for the number of cylinders n,
(n-1) Since the relationship of S 1 > S 2 , that is, the relationship of 3S 1 > S 2 in a four-cylinder internal combustion engine, has been established, the secondary intake passage 8- of the third cylinder 4-3 during the intake stroke The cross-sectional area S 2 of 3 is the 1st, 2nd, and 4th cylinder 4-
Three primary intake passages 26-1, 2, 4,
The cross-sectional area of 4 is smaller than the sum of S1 . Therefore, since the secondary intake passage 28 is relatively narrow, the 2
The intake flow rate of the next side leak intake is small, and therefore,
Since the directionality of the secondary side intake air is not disturbed and the secondary side leak intake air flows into the combustion chamber 14-3 at a high flow velocity, the swirl of the secondary side leak intake air is prevented by the protruding wall 30. When will it be strengthened?

高負荷域においては、1次、2次吸気通路2
6,28により、1次側吸気と2次側吸気とが同
時に燃焼室14に流入するが、1次側吸気は、凹
溝32を経て燃焼室14に流入するので、1次側
吸気のスワールが2次側吸気により消勢されるお
それを防止し得る。また、2次側吸気は、2次吸
気通路28の断面積S2と垂直成分とにより、比較
的良好な充填効率を保持し、機関出力を損う不都
合がない。
In the high load range, the primary and secondary intake passages 2
6 and 28, the primary side intake air and the secondary side intake air flow into the combustion chamber 14 at the same time, but since the primary side intake air flows into the combustion chamber 14 through the groove 32, the swirl of the primary side intake air It is possible to prevent the possibility that the air is deenergized by the secondary side intake air. In addition, the secondary intake air maintains a relatively good filling efficiency due to the cross-sectional area S 2 of the secondary intake passage 28 and the vertical component, and there is no disadvantage of impairing the engine output.

なお、この発明は、前記実施例に限定されるも
のではなく、種々の改変が可能であることは勿論
である。ここでは、4気筒内燃機関で説明した
が、気筒数が2以上であれば、いずれの内燃機関
に対してもこの発明を適用することができる。ま
た、凹溝は、所望によつて設ける構成としても良
い。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and it goes without saying that various modifications can be made. Although a four-cylinder internal combustion engine has been described here, the present invention can be applied to any internal combustion engine as long as the number of cylinders is two or more. Further, the groove may be provided as desired.

以上の説明からも明らかなように、この発明は
燃焼室内においてスワールを生じさせるべく2次
側リーク吸気を偏向させる突出壁を高負荷用2次
吸気通路内で且つ吸気弁近傍に設け、気筒数nに
おける低負荷用1次吸気通路の断面積S1と高負荷
用2次吸気通路の断面積S2との関係を(n−1)
S1>S2としたので、旋回性の高い1次側吸気を大
量に導入することができ、強大なスワールを生成
し得るし、2次側リーク吸気を高速流にて流入さ
せて突出壁によつて生起されるスワールをより強
化し得るとともに、2次側吸気のスワールをも強
化助長させ、低・中負荷域を中心とした燃焼性を
改善し得る効果がある。
As is clear from the above description, the present invention provides a protruding wall that deflects the secondary side leak intake air in order to generate a swirl in the combustion chamber, in the high-load secondary intake passage and near the intake valve. The relationship between the cross-sectional area S 1 of the primary intake passage for low loads and the cross-sectional area S 2 of the secondary intake passage for high loads at n is (n-1)
Since S 1 > S 2 , it is possible to introduce a large amount of primary side intake air with high swirling properties and generate a powerful swirl, and also to make the secondary side leak intake air flow in at high speed and close the protruding wall. This has the effect of further strengthening the swirl generated by the engine, and also strengthening and promoting the swirl of the secondary side intake air, thereby improving combustibility mainly in the low and medium load ranges.

また、突出壁の上流側の一側面に沿つて1次側
吸気が流入し、燃焼室に前記スワールと同方向の
スワールを生起すべく低負荷用1次吸気通路を開
口させて設けたので、1次側吸気および2次側リ
ーク吸気に同一方向のスワールを生起させ、1次
側吸気のスワールが2次側リーク吸気により妨げ
られるおそれを防止し得る。
In addition, the primary intake passage for low load is opened and provided so that the primary intake air flows along one side of the upstream side of the protruding wall and generates a swirl in the same direction as the swirl in the combustion chamber. By causing the primary side intake air and the secondary side leak intake air to swirl in the same direction, it is possible to prevent the swirl of the primary side intake air from being obstructed by the secondary side leak intake air.

さらに、この強大なスワールによつて、混合気
性状を改善して燃焼速度を高め、希薄限界や
EGR限界を改善し、排気の清浄化および運転性
の向上を図ることができ、さらに燃費の改善をも
果し得る。
Furthermore, this powerful swirl improves the air-fuel mixture properties, increases the combustion rate, and reduces the lean limit.
It is possible to improve the EGR limit, purify the exhaust gas, improve drivability, and even improve fuel efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例に係る内燃機関の吸
気装置を示す縦断面図、第2図は第1図の平面
図、第3図は第2図の第3気筒を示す拡大平面図
である。 図において、4は気筒、14は燃焼室、16は
吸気ポート、18は吸気弁、26は低負荷用1次
吸気通路、28は高負荷用2次吸気通路、30は
突出壁、S1は低負荷用1次吸気通路の断面積、S2
は高負荷用2次吸気通路の断面積、nは気筒数で
ある。
FIG. 1 is a longitudinal sectional view showing an intake system for an internal combustion engine according to an embodiment of the present invention, FIG. 2 is a plan view of FIG. 1, and FIG. 3 is an enlarged plan view showing the third cylinder of FIG. be. In the figure, 4 is a cylinder, 14 is a combustion chamber, 16 is an intake port, 18 is an intake valve, 26 is a primary intake passage for low load, 28 is a secondary intake passage for high load, 30 is a protruding wall, and S 1 is Cross-sectional area of the primary intake passage for low loads, S 2
is the cross-sectional area of the high-load secondary intake passage, and n is the number of cylinders.

Claims (1)

【特許請求の範囲】[Claims] 1 単一吸気弁直上流箇所において合流する低負
荷用1次吸気通路と高負荷用2次吸気通路とを有
する多気筒複式内燃機関において、燃焼室内にお
いてスワールを生じさせるべく2次側リーク吸気
を偏向させる突出壁を高負荷用2次吸気通路内で
且つ吸気弁近傍に設け、該突出壁の上流側の一側
面に沿つて1次側吸気が流出し燃焼室に前記スワ
ールと同方向のスワールを生起すべく低負荷用1
次吸気通路を開口させて設け、低負荷用1次吸気
通路の通路断面積S1と高負荷用2次吸気通路の通
路断面積S2との関係を、(n−1)S1>S2、但し
nは気筒数、としたことを特徴とする内燃機関の
吸気装置。
1. In a multi-cylinder compound internal combustion engine that has a low-load primary intake passage and a high-load secondary intake passage that merge at a point immediately upstream of a single intake valve, the secondary side leak intake air is used to create a swirl in the combustion chamber. A protruding wall for deflection is provided in the high-load secondary intake passage and near the intake valve, and the primary intake air flows out along one side on the upstream side of the protruding wall, creating a swirl in the same direction as the swirl in the combustion chamber. 1 for low load to cause
The secondary intake passage is opened and the relationship between the passage cross-sectional area S 1 of the primary intake passage for low loads and the passage cross-sectional area S 2 of the secondary intake passage for high loads is expressed as (n-1) S 1 >S 2. An intake system for an internal combustion engine, characterized in that n is the number of cylinders.
JP57011698A 1982-01-29 1982-01-29 Suction device of internal-combustion engine Granted JPS58131312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57011698A JPS58131312A (en) 1982-01-29 1982-01-29 Suction device of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57011698A JPS58131312A (en) 1982-01-29 1982-01-29 Suction device of internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS58131312A JPS58131312A (en) 1983-08-05
JPH0346652B2 true JPH0346652B2 (en) 1991-07-16

Family

ID=11785252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57011698A Granted JPS58131312A (en) 1982-01-29 1982-01-29 Suction device of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58131312A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213922A (en) * 1983-05-19 1984-12-03 Nissan Motor Co Ltd Air suction device for internal-combustion engine
CN106523212B (en) * 2016-11-05 2019-06-25 大连理工大学 A kind of diesel engine auxiliary branch air intake duct

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523333A (en) * 1978-08-02 1980-02-19 Mazda Motor Corp Method of forming suction port of double intake system
JPS5543102A (en) * 1978-08-31 1980-03-26 Agency Of Ind Science & Technol Colloidal fuel and its preparation
JPS5569740A (en) * 1978-11-20 1980-05-26 Mazda Motor Corp Formation of suction port in composite suction device
JPS5750512U (en) * 1980-09-08 1982-03-23

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523333A (en) * 1978-08-02 1980-02-19 Mazda Motor Corp Method of forming suction port of double intake system
JPS5543102A (en) * 1978-08-31 1980-03-26 Agency Of Ind Science & Technol Colloidal fuel and its preparation
JPS5569740A (en) * 1978-11-20 1980-05-26 Mazda Motor Corp Formation of suction port in composite suction device
JPS5750512U (en) * 1980-09-08 1982-03-23

Also Published As

Publication number Publication date
JPS58131312A (en) 1983-08-05

Similar Documents

Publication Publication Date Title
US4481922A (en) Intake port structure for internal combustion engines
JPH02176116A (en) Combustion chamber for internal combustion engine
JP2628138B2 (en) Intake port structure for internal combustion engine
JPH048606B2 (en)
JPS6232328B2 (en)
JPH0346652B2 (en)
JPH0745817B2 (en) Direct injection multi-cylinder diesel engine
US4744342A (en) Intake port structure for an internal combustion engine
JPH10231729A (en) Intake device for internal combustion engine
JP3014802B2 (en) Engine intake structure
JP2501556Y2 (en) Internal combustion engine intake system
JP2524124Y2 (en) 4-stroke engine intake passage
JPH0253608B2 (en)
JPS6313392Y2 (en)
JPH0465232B2 (en)
JP2717960B2 (en) Engine combustion chamber
JPS5840261Y2 (en) Engine combustion chamber structure
JPH0320502Y2 (en)
JP2668106B2 (en) Intake passage structure of internal combustion engine
JPH077544Y2 (en) Engine combustion chamber structure
JPS6226590Y2 (en)
JP2563943B2 (en) Engine combustion chamber structure
JPS597539Y2 (en) Double intake internal combustion engine
JPH0481522A (en) Intake device of engine
JPH0324834Y2 (en)