JPH0346539A - Damping coefficient measuring instrument - Google Patents

Damping coefficient measuring instrument

Info

Publication number
JPH0346539A
JPH0346539A JP18178089A JP18178089A JPH0346539A JP H0346539 A JPH0346539 A JP H0346539A JP 18178089 A JP18178089 A JP 18178089A JP 18178089 A JP18178089 A JP 18178089A JP H0346539 A JPH0346539 A JP H0346539A
Authority
JP
Japan
Prior art keywords
support
vibration
support shaft
damping
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18178089A
Other languages
Japanese (ja)
Inventor
Haruhisa Takatani
高谷 晴久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON NOBEL KK
TAKAYA ENG KK
Original Assignee
NIPPON NOBEL KK
TAKAYA ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON NOBEL KK, TAKAYA ENG KK filed Critical NIPPON NOBEL KK
Priority to JP18178089A priority Critical patent/JPH0346539A/en
Publication of JPH0346539A publication Critical patent/JPH0346539A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To calculate the viscous resistance of a substance which gets out of shape easily such as yogurt by giving forced rotational vibration to a container in which an object to be measured is contained, taking out its damping process by an electric signal and deriving a damping factor of the vibration. CONSTITUTION:By a supporting arm 13 of a support 12 erected on a base 11 of an instructing device 10, a supporting shaft 22 is supported, and an object placing base 20 becomes freely rotatable. In this state, a container in which an object to be measured is contained is placed on its object placing plate 21 and fixed so that its position is not shifted. Subsequently, the whole object placing base 20 is rotated by a prescribed angle against a plate spring 33 of a turning energizing device, and brought to free vibration therefrom. In such a way, the vibration becomes damping vibration, and its amplitude or turning period is detected by a detector 40. Next, when a damping coefficient of its detection value is brought to data processing by a microcomputer, etc., a viscous resistance of the object to be measured is calculated.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、減衰係数測定器に関し、特にヨーグルト等の
半固形状物、半流動体状物の粘性抵抗の測定に適するも
のに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an attenuation coefficient measuring device, and particularly to one suitable for measuring the viscous resistance of semi-solid or semi-liquid materials such as yogurt.

[従来の技術及び発明が解決すべき問題点]従来の減衰
係数測定器、例えば粘性抵抗を計測するための機器、即
ち粘度計には、細管粘度計、回転粘度計、振動粘度計等
4種々ある。
[Prior art and problems to be solved by the invention] There are four types of conventional damping coefficient measuring instruments, for example, instruments for measuring viscous resistance, that is, viscometers, such as capillary viscometers, rotational viscometers, and vibrational viscometers. be.

しかしながら、これらの計測器はいずれも半固形状物、
半流動体状物、例えばヨーグルト、のように外力を加え
ると原形が崩れ易いものについては適当なものではなか
った。即ち、この種の物は細管現象を生じないため細管
粘度計は使用できず、回転粘度計は可動外筒と固定内筒
間に対象物を満たし、可動外筒に一定角速度の回転を与
えて粘性抵抗による偶力を計測しようとするため、内、
外筒と対象物の接触面で対象物が砕けて本来の粘性抵抗
によるものとは異なる偶力しか期待できず、更に振動粘
度計にあっては容器に収容した対象物内に振動子を入れ
て縦振動させ、その振動の減衰係数を計測しようとする
ため、振動子によって対象物を砕いてしまうことになり
、これも本来の粘性抵抗値を得ることは期待できないと
いうものであった。
However, these measuring instruments all measure semi-solid objects,
It is not suitable for semi-liquid materials, such as yogurt, which easily lose their original shape when external force is applied. In other words, a capillary viscometer cannot be used with this type of product because it does not produce a capillary phenomenon, whereas a rotational viscometer fills the space between a movable outer cylinder and a fixed inner cylinder with the object, and rotates the movable outer cylinder at a constant angular velocity. In order to measure the couple due to viscous resistance,
If the object breaks at the contact surface between the outer cylinder and the object, only a couple that is different from the original viscous resistance can be expected. In order to measure the damping coefficient of the vibration by vertically vibrating the object, the object would be crushed by the vibrator, and it was not possible to obtain the original viscous resistance value.

[問題点を解決するための手段] 本発明は、上記従来の問題点を解決しようとするもので
、容器内にヨーグルト等の半固形状物、半流動体状物を
収容し、この容器に強制回転振動を与えてその減衰過程
を電気的信号により取出して振動の減衰率を求め、これ
によって粘性抵抗を算出可能とするものである。
[Means for Solving the Problems] The present invention aims to solve the above-mentioned conventional problems, and includes storing a semi-solid or semi-liquid substance such as yogurt in a container, and Forced rotational vibration is applied, and the damping process is extracted using an electrical signal to determine the vibration damping rate, thereby making it possible to calculate the viscous resistance.

本発明を実施例に対応する第1図ないし第7図を参照し
て説明すると、支持装置10は、基盤11上に立設した
支柱12に支持アーム13゜13を水平に固設し、該支
持アーム13に上下−対のピボット状軸受24.24を
設けてなる。また載物台20は、測定対象物を収容した
容器50を載せるための戴物板21下面の中心を支軸2
2で支承してなり、支軸22は上記支持アーム13を挿
通させる開孔23,23を有し、この開孔23内に上下
一対のピボットピン14.14を突出させて備え、ピボ
ットピン14.14を上記ピボット状軸受24.24に
夫々支持させ、回転時の摩擦による制動を極力小さくし
て回転自在としである。回動付勢装置30は板ばね33
を備え、この板ばね33の中央部を上記支軸22の下端
に固定し、両端部分の近傍を位置可変としたローラ36
・・・で挟んで支持してあり、板ばね33両端の支持位
置を可変させて上記支軸22に対し種々の減衰回転振動
を付勢できるようになっている。更に検出器40は、支
軸22の回転振幅若しくは回動周期を検出、出力するよ
うになっている。
The present invention will be described with reference to FIGS. 1 to 7, which correspond to embodiments. The support device 10 includes support arms 13 and 13 fixed horizontally to columns 12 erected on a base 11. The support arm 13 is provided with a pair of upper and lower pivot bearings 24,24. In addition, the stage 20 has a support shaft 2 with the center of the lower surface of the stage plate 21 on which the container 50 containing the object to be measured is placed.
The support shaft 22 has openings 23, 23 through which the support arm 13 is inserted, and a pair of upper and lower pivot pins 14, 14 protrudes into the openings 23. .14 are respectively supported by the pivot-shaped bearings 24 and 24, and are able to rotate freely with minimal braking due to friction during rotation. The rotational biasing device 30 is a leaf spring 33
A roller 36 is provided with a center portion of the plate spring 33 fixed to the lower end of the support shaft 22, and a roller 36 whose position is variable near both end portions.
..., and by changing the support positions of both ends of the leaf spring 33, it is possible to apply various damped rotational vibrations to the support shaft 22. Furthermore, the detector 40 detects and outputs the rotation amplitude or rotation period of the support shaft 22.

ここで、本発明の原理を第7図ないし第10図により説
明する。
Here, the principle of the present invention will be explained with reference to FIGS. 7 to 10.

第7図中Jは慣性体1の慣性能率(Kg−cm・s”)
、Cはダッシュボット2による慣性体1の回転動に対す
る粘性抵抗係数k (Kg−cm/ rad /S )
は、ばね3のばね定数(Kg−cm/ rad )であ
り、これらにより回転運動の代表例を1自由度で示せば
、 Jd”θ/dt”+Cdθ/dt十にθ= M (t)
・・・(1)となる。
In Fig. 7, J is the inertia coefficient of the inertial body 1 (Kg-cm・s”)
, C is the viscous resistance coefficient k (Kg-cm/rad/S) for the rotational movement of the inertial body 1 by the dashbot 2
is the spring constant (Kg-cm/rad) of the spring 3, and if we show a typical example of rotational motion with one degree of freedom, then Jd"θ/dt"+Cdθ/dt+θ=M(t)
...(1).

この式(1)の右辺をOとおいた減衰自由振動式J(d
”θ/ dt2) +C(dθ/dt)十にθ=Oの一
般解は、次のように与えられる。即ち、θ= Cr e
 ”’ + Cg e ”t−(21但しCI、C2は
任意の常数であり、S3、S2は方程式 %式% の解である。即ち、 SI□ =−(CI 2J)±(CI 2J)2− (k/ J
)ここで、S+、tが実数であるか複素数であるかによ
って(2)式の形が異なるが、 (CI 2J)< (k/ J) のときは、減衰振動となる。即ち、 12 =−(C/2Jl±j(k/ J) −(C/2J)”
となり虚数を含むから解にはe J tが含まれ、e 
’  = cos  a + j sin  aの関係
より、 θ = e−(C/2”t(Cr・cos q t+cz si
n q t)但し q= (k/ J) −(CI 2J)”CI’=CI
 +C2、C2’=j  (CI −C2)となる。
The damped free vibration equation J(d
”θ/dt2) +C(dθ/dt)The general solution for θ=O is given as follows: θ=Cr e
"' + Cg e "t-(21 However, CI and C2 are arbitrary constants, and S3 and S2 are the solutions of the equation % formula %. That is, SI□ = - (CI 2J) ± (CI 2J) 2 - (k/J
) Here, the form of equation (2) differs depending on whether S+ and t are real numbers or complex numbers, but when (CI 2J) < (k/J), it is a damped oscillation. That is, 12 = -(C/2Jl±j(k/J) -(C/2J)"
Since it includes imaginary numbers, the solution includes e J t, and e
From the relationship ' = cos a + j sin a, θ = e-(C/2''t(Cr・cos q t+cz si
n q t) However, q= (k/ J) - (CI 2J)"CI'=CI
+C2, C2'=j (CI - C2).

この解は、減少する指数曲線と調和振動曲線の組合せで
、第9図に示すように、6− I C/ @ J l 
’  と−〇−1c/!Jl t  の間を減少しつつ
振動する減衰振動となる。
This solution is a combination of a decreasing exponential curve and a harmonic vibration curve, and as shown in Figure 9, 6- I C/ @ J l
' and-〇-1c/! This is a damped oscillation that oscillates while decreasing between Jl t .

なお、(CI 2J)” > (k/ J)のときは、
S+、S−は共に負の実数であるから、e1te821
いずれも減少する指数曲線となる。また(CI 2J)
” = (k/ J)のときは、S、、52=−(C/
2J)となり実数の等根でやはり無周期である。
In addition, when (CI 2J)” > (k/J),
Since both S+ and S- are negative real numbers, e1te821
Both represent a decreasing exponential curve. Also (CI 2J)
” = (k/J), then S,,52=-(C/
2J), which is an equal root of real numbers and is also non-periodic.

但しこれより少し減衰が小さくても振動となるから、振
動と無周期の境界の状態として、(C/ 2J)  2
 =  (k/  m)=ω。
However, even if the damping is a little smaller than this, it will result in vibration, so as a state at the boundary between vibration and no period, (C/ 2J) 2
= (k/m)=ω.

にある状態の臨界減衰定数ccは、 C,=2Jω。The critical damping constant cc for the state is C,=2Jω.

となる(ω。は共振周波数)。(ω is the resonant frequency).

第8図のような減衰自由振動状態において、相つぐ振動
の振幅比をとり、第n番目の振幅をan、それから1周
期(T=2π/q)後の第n+1番目の振幅をa n 
41 とすれば、an / an++ =e (C/ 
2J) T:= 6 + C/JQI =const。
In the damped free vibration state as shown in Fig. 8, take the amplitude ratio of successive vibrations, the nth amplitude is an, and the n+1st amplitude after one period (T=2π/q) is a n.
41, an / an++ = e (C/
2J) T:=6+C/JQI=const.

となり、どの振動の山をとっても一定の値である。即ち
、振幅は等比数列的に減じていることになる。
Therefore, it is a constant value no matter which peak of vibration is taken. In other words, the amplitude decreases in a geometric progression.

この比の対数をとると δ=log  (a、 / an++ ) =xC/ 
Jqとなる。
Taking the logarithm of this ratio, δ=log(a,/an++) =xC/
It becomes Jq.

このδ、即ち対数減衰率を本発明に係る減衰係数測定器
は、計測データよりδを求め、これにより粘性抵抗係数
Cを算出させ得るようにするもので、 C−(δJ/ π) ・ q= (δJ/ π) ・ (k/  J)  −(c/ 2
J)  2よりCを求めると、 C=2δJk/  (4π2+δ2) となる。
The damping coefficient measuring device according to the present invention calculates this δ, that is, the logarithmic damping rate, from the measurement data, and thereby calculates the viscous drag coefficient C, as follows: C-(δJ/π) ・q = (δJ/π) ・(k/J) −(c/2
J) When calculating C from 2, it becomes C=2δJk/ (4π2+δ2).

従って載物板21上に何も載せていない状態及び載物板
21上に容器50を載せた状態での慣性能率J。とJl
、ばね定数kを共通の既知のものとでき、且つ摩擦によ
る回転振動への影響を極力小さくして、支軸22の揺動
回転を検出器40で検出し、その検出値から対数減衰率
δを求めることによって上記二つの状態下における粘性
抵抗係数C8,C1が得られ、両値の差から容器50内
の対象物の粘性抵抗係数が算定される。
Therefore, the inertia rate J is when nothing is placed on the loading plate 21 and when the container 50 is placed on the loading plate 21. and Jl
, the spring constant k can be made common and known, and the influence of friction on rotational vibration can be minimized, the swinging rotation of the support shaft 22 is detected by the detector 40, and the logarithmic damping rate δ is determined from the detected value. By determining , the viscous drag coefficients C8 and C1 under the above two conditions are obtained, and the viscous drag coefficient of the object in the container 50 is calculated from the difference between the two values.

ここで、載物板21上に何も載せていない状態でのシス
テム全体の慣性能率J。及びばね定数に0は、以下のよ
うに、慣性能率J2が既知の付加質量を用いて算出する
Here, the inertia rate J of the entire system when nothing is placed on the loading plate 21. And the spring constant is calculated as follows using an additional mass with a known inertia factor J2.

即ち、一般に回転運動計の共振周波数ω。は、ω。=に
/J と表わされる。
That is, generally the resonant frequency ω of the rotational kinematics meter. Ha, ω. It is expressed as = ni/J.

付加質量のない状態の共振周波数ωn1は、ω、=に/
J。
The resonant frequency ωn1 with no added mass is ω,=/
J.

付加質量のある状態の共振周波数ω。2は、ω。2=に
/  (JO+J2 ) と表わされる。従って上記二式より ω。1′/ωn2” = (JO+J2)/ jo  
(3)となる。よって Jo =  (ω。、′/(ω、 −ω112” ) 
)  XJ2に=(ω、′・ω、、2”/ (ω、 −
ωna”l X J 2となる。
Resonant frequency ω with added mass. 2 is ω. 2=to/(JO+J2). Therefore, from the above two equations, ω. 1′/ωn2” = (JO+J2)/jo
(3) becomes. Therefore, Jo = (ω., ′/(ω, −ω112”)
) to XJ2 = (ω, ′・ω,, 2”/ (ω, −
ωna”l X J 2.

なお、載物台20の回動周期Tを測定し、T=2x/ 
q q= (k/ J)−(C/ 2J) 2=2π/Tよ
り、粘性抵抗係数Cを求めることもできる。即ち、これ
ら二つの式より、 C=2J(k/ J)−(2π/T)2となる。
In addition, the rotation period T of the stage 20 is measured, and T=2x/
The viscous drag coefficient C can also be determined from qq=(k/J)-(C/2J)2=2π/T. That is, from these two equations, C=2J(k/J)-(2π/T)2.

ここで、本発明の回動付勢装置3oは第7図のばね3に
代えて板ばね33を用い、第9図の系を構成としである
が、この系は左右対称の片持ちはり系からなるものと考
えられる。そこで一方の片持ちはり系を第10図に示す
ものと見てばね定数を考えると、板ばね33のばね定数
k。は、ko=F/X=3E工/43 となる。但しFは板ばね33の端に掛かる荷重(Kg/
cm”) 、 xはばね端のたわみ量(cm) 、Eは
ヤング率(Kg/cm2) 、Iは断面二次モーメント
(cm−31,Qは板ばねの長さである。
Here, the rotation biasing device 3o of the present invention uses a leaf spring 33 in place of the spring 3 shown in FIG. 7, and has the system shown in FIG. It is thought to consist of Therefore, considering the spring constant of one cantilever beam system as shown in FIG. 10, the spring constant of the leaf spring 33 is k. is ko=F/X=3E/43. However, F is the load applied to the end of the leaf spring 33 (Kg/
cm"), x is the amount of deflection of the spring end (cm), E is Young's modulus (Kg/cm2), I is the moment of inertia of area (cm-31, and Q is the length of the leaf spring.

本発明の場合板ばね33は支軸22のねじりトルクT 
(Kg−cm)により変形荷重を受け、荷重Fとねじり
トルクTとの関係は F=T/  (L/ 2)=2T/ Lであるから(L
は板ばね33の全長)、この系の場合には全体としての
ばね定数には、 K=2に となる。いずれにせよ、このばね定数に、に、ばばね長
り、flの3乗に反比例するので、ローラ36による支
持位置を可変させれば上述の関係の下に変化する。この
ためばね定数を可変することにより種々の試験状態を作
り出せる。
In the case of the present invention, the leaf spring 33 has a torsional torque T of the support shaft 22.
(Kg-cm), and the relationship between load F and torsion torque T is F=T/(L/2)=2T/L, so (L
is the total length of the leaf spring 33), and in the case of this system, the overall spring constant is K=2. In any case, since this spring constant is inversely proportional to the spring length and fl to the third power, if the support position by the roller 36 is varied, the above relationship will be satisfied. Therefore, various test conditions can be created by varying the spring constant.

勿論、上述の種々の状態の算定はマイクロコンピュータ
等を用いたデータ処理装置を用いれば容易に行なえる。
Of course, calculation of the various states described above can be easily performed using a data processing device using a microcomputer or the like.

[作用] 次に作用を説明する。載物板21上に測定対象物を収納
した容器50を載せて位置がずれぬよう固定し、載物台
20全体を回動付勢装置30の付勢に抗して所定角度回
転させ、その状態から自由振動させる。するとこの振動
は上述のように減衰振動となり、その振幅または回動周
期を検出器40により検出する。そして検出器40この
検出値の対数減衰率、即ち減衰係数を例えばマイクロコ
ンピュータ等によりデータ処理すれば測定対象物の粘性
抵抗が算出される。減衰振動条件は板ばね33の支持位
置を変えてばね定数を可変させることにより行ない、上
記と同様に測定を行なう。
[Operation] Next, the operation will be explained. The container 50 containing the object to be measured is placed on the mounting plate 21 and fixed so as not to shift, and the entire mounting plate 20 is rotated by a predetermined angle against the biasing force of the rotational biasing device 30. Let it vibrate freely from the state. This vibration then becomes a damped vibration as described above, and the detector 40 detects its amplitude or rotation period. Then, the logarithmic attenuation rate, ie, the attenuation coefficient, of this detected value by the detector 40 is processed by a microcomputer or the like to calculate the viscous resistance of the object to be measured. The damped vibration conditions are determined by changing the support position of the leaf spring 33 to vary the spring constant, and measurements are performed in the same manner as above.

[実施例] 以下、本発明の実施例を図面に基づいて説明する。[Example] Embodiments of the present invention will be described below based on the drawings.

図中10は支持装置、20は載物台、30は回動付勢装
置、40は検出器である。
In the figure, 10 is a support device, 20 is a stage, 30 is a rotation urging device, and 40 is a detector.

支持装置10は基盤11の後縁中央に太い長柱状の支柱
12を立設すると共に、前縁各コーナ部および支柱12
の後部に水平度調節用のネジ15を設けたものである。
The support device 10 has a thick long column-shaped support 12 erected at the center of the rear edge of the base 11, and supports 12 at each corner of the front edge.
A screw 15 for leveling is provided at the rear of the frame.

支柱12には二本の支持アーム13.13が水平に固設
してあり、はぼその先端部分には夫々ピボットピン14
が垂直方向で反対方向に突出させて設けである。なお、
支持アーム13は一本でもよいし、三本以上であっても
よい。
Two support arms 13.13 are horizontally fixed to the column 12, and a pivot pin 14 is attached to each end of the support arm 13.13.
are vertically protruding in opposite directions. In addition,
The number of support arms 13 may be one, or three or more.

載物台20は、薄い円板状の戴物板21と、この戴物板
21の下面中心に取付けた支軸22とから構成される。
The stage 20 is composed of a thin disc-shaped stage plate 21 and a support shaft 22 attached to the center of the lower surface of the stage plate 21 .

支軸22は中空円筒で、途中位置に三筒の開孔23,2
3が設けである。この開孔23.23は、支持アーム1
3.13を余裕を持って挿通させ得るよう、支持アーム
13.13との対応位置に支持アーム13の断面積より
も若干大、き目に開口させである。また支軸22の1 上下端には夫々取付座25.26を嵌込んで固定してあ
り、上側の取付座25に戴物板21を固着し、下側の取
付座26に回動付勢装置30を取付けである。
The support shaft 22 is a hollow cylinder, with three cylindrical openings 23, 2 in the middle.
3 is a provision. This aperture 23.23 is connected to the support arm 1
The opening is slightly larger than the cross-sectional area of the support arm 13 at a position corresponding to the support arm 13.13 so that the support arm 13.13 can be inserted through the support arm 13.13 with plenty of room. In addition, mounting seats 25 and 26 are fitted into and fixed to the upper and lower ends of the support shaft 22, respectively, and the mounting plate 21 is fixed to the upper mounting seat 25, and the lower mounting seat 26 is rotatably biased. The device 30 is installed.

上側の取付座25内にはスプリング27と軸受24とが
埋込んであり、スプリング27で軸受24を下方に突出
するように付勢しである。また下側の取付座26にも軸
受24を上方に向けて固着しである。
A spring 27 and a bearing 24 are embedded in the upper mounting seat 25, and the spring 27 biases the bearing 24 to protrude downward. The bearing 24 is also fixed to the lower mounting seat 26 with the bearing 24 facing upward.

そして支軸22の開孔23.23内を支持アーム13.
13が挿通するよう支持装置に載物台20を組付け、軸
受24.24が夫々支持アーム13のピボットピン14
.14と係合させである。即ち、軸受24の突端がピボ
ットピン14の窪みの頂部に合致していわゆるピボット
軸受を構成し、支軸22を回動させた際に摩擦が生じな
いように組合わせである。また上側のピボットピン14
と軸受24との係合においては、スプリング27が軸受
24を下方に突出するよう付勢し、この付勢力の反力で
下側の軸受24が下側のビボッ 2 トビン14を突き上げる。従って支軸22は、吉例から
の付勢のみで充分に支持され、上下のピボットピン14
と軸受24先端との接点を結ぶ線を回転軸として水平方
向で回動自在となる。もっとも開孔23の開口径は支持
アーム13の断面積よりも若干大きいだけなので、支軸
22の回動角度は制限される。発明者の行なったヨーグ
ルトの粘性抵抗測定試験では、支軸22の回動角度は5
度程度が適当であった。
Then, the support arm 13.
13 is inserted into the support device, and the bearings 24 and 24 are connected to the pivot pins 14 of the support arm 13, respectively.
.. 14. That is, the tip of the bearing 24 matches the top of the recess of the pivot pin 14 to form a so-called pivot bearing, and the combination is such that no friction occurs when the support shaft 22 is rotated. Also, the upper pivot pin 14
When the bearing 24 is engaged with the bearing 24, the spring 27 urges the bearing 24 to protrude downward, and the reaction force of this urging force causes the lower bearing 24 to push up the lower pivot pin 14. Therefore, the support shaft 22 is sufficiently supported only by the biasing force, and the upper and lower pivot pins 14
It is rotatable in the horizontal direction with the line connecting the contact point of the bearing 24 and the tip of the bearing 24 as the rotation axis. However, since the diameter of the opening 23 is only slightly larger than the cross-sectional area of the support arm 13, the rotation angle of the support shaft 22 is limited. In the yogurt viscosity resistance measurement test conducted by the inventor, the rotation angle of the support shaft 22 was 5.
The degree was appropriate.

回動付勢装置30は支軸22の下端に設けた取付座26
の下端面に直線状の溝31を設け、この溝31に一対の
ライナー32で挟んだ板バネ33を嵌着固定し、板バネ
33の両端なローラガイド34で支持したものである。
The rotational biasing device 30 is attached to a mounting seat 26 provided at the lower end of the support shaft 22.
A linear groove 31 is provided on the lower end surface of the plate spring 33, and a plate spring 33 sandwiched between a pair of liners 32 is fitted and fixed into this groove 31, and is supported by roller guides 34 at both ends of the plate spring 33.

ローラガイド34は基盤11上に立設した固定台35に
一対のローラ36を内蔵したローラ保持体37を取付け
たもので、ローラ保持体37の先端部分37aにはロー
ラ36.36間に空隙ができるように溝38が形成して
あり、板バネ33は両端部がこの溝38を貫通して外方
に突出するよう挿入してある。
The roller guide 34 is constructed by attaching a roller holder 37 containing a pair of rollers 36 to a fixed base 35 erected on the base 11. A gap is provided between the rollers 36 and 36 at the tip end 37a of the roller holder 37. A groove 38 is formed so as to allow the plate spring 33 to pass through the groove 38, and the leaf spring 33 is inserted such that both ends thereof pass through the groove 38 and protrude outward.

また、ローラ保持体37はローラ36を保持した先端部
分37aを先細の台形状とし、固定台35はこれに対応
する台形状の切欠き溝35aを有している。このため、
固定台35の切欠き溝35a内にローラ保持体37の先
端部分37aを嵌込んで固定すれば板バネ33に対する
ローラ36の位置決めを計測器具等を使わずに簡単にで
きる。なお、溝38の幅、特に支軸22側の開口部分は
板バネ33の撓みによる幅方向の変位を考慮して若干広
げてるとよい。
Further, the roller holder 37 has a tip end portion 37a that holds the roller 36 in a tapered trapezoidal shape, and the fixing base 35 has a corresponding trapezoidal notch groove 35a. For this reason,
By fitting and fixing the tip portion 37a of the roller holder 37 into the notch groove 35a of the fixing base 35, the roller 36 can be easily positioned with respect to the leaf spring 33 without using a measuring instrument or the like. Note that the width of the groove 38, particularly the opening portion on the support shaft 22 side, is preferably widened slightly in consideration of displacement in the width direction due to deflection of the leaf spring 33.

固定台35のローラ保持体37を設けていない側には、
夫々一対の孔35b、35cが設けてあり、支軸22側
の孔35b、35cにはガイドシャフト60が挿通しで
ある。また他方の孔35cはねじ孔となっており、夫々
位置可変用のねじ軸61が螺合させである。ねじ軸61
は端部にかさ歯車62が形成してあり、互いに一般的な
右ネジとなっている。またこれらガイドシャフト60、
ねじ軸61は基板11上に固定した支持架台63に挿通
支持させてあり、夫々のかさ歯車62は支持架台63に
設けた調節用っまみ64の先端に設けたかさ歯車65と
螺合している。
On the side of the fixed base 35 where the roller holder 37 is not provided,
A pair of holes 35b and 35c are provided respectively, and a guide shaft 60 is inserted through the holes 35b and 35c on the support shaft 22 side. The other hole 35c is a threaded hole, into which a screw shaft 61 for varying the position is screwed. Screw shaft 61
A bevel gear 62 is formed at the end, and each has a common right-hand thread. In addition, these guide shafts 60,
The screw shaft 61 is inserted through and supported by a support frame 63 fixed on the base plate 11, and each bevel gear 62 is screwed into a bevel gear 65 provided at the tip of an adjustment knob 64 provided on the support frame 63. There is.

このため調節用つまみ64を回すとかさ歯車62.65
のかみ合いによりねじ軸61が回転し、ねじ軸61.6
1が互いに逆ねじとなっているので固定台35.35は
ねじ軸61の軸に沿って夫々逆方向に移動し、間隔が拡
がったり狭まったりしてローラ36による板ばね33の
支持位置を可変させるようになっている。
Therefore, when the adjustment knob 64 is turned, the bevel gear 62.65
The screw shaft 61 rotates due to the engagement, and the screw shaft 61.6
1 have opposite threads, the fixing bases 35 and 35 move in opposite directions along the axis of the screw shaft 61, and the distance between them widens and narrows, changing the supporting position of the leaf spring 33 by the rollers 36. It is designed to let you do so.

検出器40は、例えばポテンショメータを用いることが
でき、図示の例では支軸22の下側の取付座26の下端
面にアーム41を取付け、このアーム41と検出器40
のアーム42とをビンで連結させて支軸22の回転変位
を電気信号として取出すようになっている。勿論、検出
器40としては、いかなる種類のものであっても良いが
、回動付勢装置30と同様に、支軸22の回動に対する
摩擦抵抗を極力小さくしたものが望ましい。
For example, a potentiometer can be used as the detector 40. In the illustrated example, an arm 41 is attached to the lower end surface of the mounting seat 26 on the lower side of the support shaft 22, and the arm 41 and the detector 40
The rotational displacement of the support shaft 22 is taken out as an electric signal by connecting the support shaft 22 with the arm 42 using a bottle. Of course, the detector 40 may be of any type, but like the rotation urging device 30, it is desirable that the detector 40 has as little frictional resistance to the rotation of the support shaft 22 as possible.

なお図中70はストッパー装置で、支柱12の 5 上端に取付けてあり、運搬中の載物台20の回転を防止
するものである。即ちこのストッパー装置70はケース
71内をストッパ72が貫通し、載物台20が回転して
は困る状態ではストッパ72の先端を載物板21の下側
へ突出させたビン21aに係止させて載物板21の位置
を固定し、載物台20を回転させる時はストッパー72
を更に載物板21の下面に押込んでストッパー72とビ
ン21aとの係合を解くようになっている。
In the figure, reference numeral 70 denotes a stopper device, which is attached to the upper end of the support column 12 to prevent rotation of the stage 20 during transportation. That is, in this stopper device 70, a stopper 72 passes through the inside of the case 71, and in a situation where it is difficult for the loading stage 20 to rotate, the tip of the stopper 72 is latched to the bin 21a protruding below the loading plate 21. to fix the position of the loading plate 21, and when rotating the loading table 20, use the stopper 72.
is further pushed into the lower surface of the loading plate 21 to release the engagement between the stopper 72 and the bin 21a.

次に容器50内に収納した測定対象物の粘度測定を行な
う場合の本実施例装置の操作及び動作について説明する
Next, the operation and operation of the apparatus of this embodiment when measuring the viscosity of the object to be measured stored in the container 50 will be explained.

まず載物板21上にヨーグルト等の測定対象物を収容し
た容器50を載置固定し、載物板21を所定角度、例え
ば5°だけ回す。すると支軸22も共に回転し、これに
伴なって回動付勢装置30の板バネ33が中央部分でね
じられて第4図の状態から第5図のように変形する。
First, the container 50 containing the object to be measured, such as yogurt, is placed and fixed on the mounting plate 21, and the mounting plate 21 is rotated by a predetermined angle, for example, 5 degrees. Then, the support shaft 22 also rotates, and accordingly, the plate spring 33 of the rotational biasing device 30 is twisted at its center and deformed from the state shown in FIG. 4 to the state shown in FIG. 5.

この状態で載物板21を解放すると載物台20及び支軸
22は変形させられていた板バネ 6 33の復元力によって先の回動操作方向と逆方向に回転
を始め、更に板バネ33の自由減衰振動に伴なって往復
回動し、支軸22の回動変位に応じた電気信号が検出器
40から出力される。
When the loading plate 21 is released in this state, the loading table 20 and the support shaft 22 begin to rotate in the opposite direction to the previous rotation operation direction due to the restoring force of the deformed plate spring 633, and then the plate spring 33 The support shaft 22 rotates back and forth with the free damping vibration, and an electric signal corresponding to the rotational displacement of the support shaft 22 is output from the detector 40.

このときの検出器40の出力が描く振動曲線は第9図の
ような減衰振動曲線となるが、載物台20と容器50及
び測定対象物とは、先に述べたような付加質量による共
振系を構成するので、載物台20になにも載せていない
状態での減衰振動曲線とは異なる。従って載物台20に
なにも載せていない状態での振動データを予め採取して
おけば、上述のように容器50を付加した状態の振動デ
ータと比較して、先に述べたように測定対象物の粘性抵
抗を算定できる。
The vibration curve drawn by the output of the detector 40 at this time becomes a damped vibration curve as shown in FIG. system, it is different from the damped vibration curve when nothing is placed on the stage 20. Therefore, if you collect vibration data in advance when nothing is placed on the stage 20, you can compare it with the vibration data when the container 50 is added and perform the measurement as described above. The viscous resistance of an object can be calculated.

板ばね33のばね定数k。を可変させるには調節用つま
み64を回して固定台35.35をねじ軸61の軸に沿
って夫々逆方向に移動させるだけでよい。すると固定台
35.35間が拡がったり狭まったりし、ローラ36に
よる板ばね33の支持位置が変わってばね定数k。が変
化し、試験条件を変えることができる。
Spring constant k of the leaf spring 33. In order to vary this, it is only necessary to turn the adjustment knob 64 and move the fixing bases 35, 35 in opposite directions along the axis of the screw shaft 61. Then, the space between the fixed bases 35 and 35 widens and narrows, and the supporting position of the leaf spring 33 by the roller 36 changes, resulting in a spring constant k. can change and test conditions can be changed.

なお、本発明装置は粘性抵抗を直接に計測するものでは
なく、減衰振動データを出力するものであるから、測定
対象が粘性抵抗に限定されるものではない。
Note that since the device of the present invention does not directly measure viscous resistance but outputs damped vibration data, the measurement target is not limited to viscous resistance.

[発明の効果] 本発明に係る減衰係数測定器は、以上説明してきた如き
ものなので、従来粘性抵抗等を測定するのが面倒であっ
たヨーグルト等のようなものについても測定対象物に対
して直接的に外力を加えることなく、単に微かな強制振
動を加えるだけでその振動の減衰状態を測定するための
電気的測定データを容易に採取できるようになり、しか
も板ばねのばね定数を種々可変させることにより多くの
試験条件の下での測定を行なうことが簡単にできるよう
になるという効果がある。
[Effects of the Invention] Since the attenuation coefficient measuring device according to the present invention is as described above, it can be used for measuring objects such as yogurt, for which it has been troublesome to measure viscous resistance etc. in the past. By simply applying a slight forced vibration without directly applying an external force, it is now possible to easily collect electrical measurement data to measure the damping state of the vibration, and the spring constant of the leaf spring can be varied in various ways. This has the effect of making it easier to perform measurements under many test conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の斜視図、第2図は同部分
断面側面図、第3図は同部分断面平面図、第4図及び第
5図は同回動付勢装置の平面部 9 分断面図、第6図は同検出器の斜視図、第7図ないし第
10図は本発明の原理を示す説明図である。 IO=支持装置    11:基盤 12:支柱      13:支持アーム14:ピボッ
トピン  20:載物台 21:載物板     22:支軸 23:開孔      24:軸受 30:回動付勢装置  40:検出器 33:板ばね     50:容器
FIG. 1 is a perspective view of one embodiment of the present invention, FIG. 2 is a partially sectional side view of the same, FIG. 3 is a partially sectional plan view of the same, and FIGS. 4 and 5 are of the same rotational biasing device. FIG. 6 is a perspective view of the detector, and FIGS. 7 to 10 are explanatory views showing the principle of the present invention. IO = Support device 11: Base 12: Strut 13: Support arm 14: Pivot pin 20: Load stage 21: Load plate 22: Support shaft 23: Opening 24: Bearing 30: Rotation biasing device 40: Detector 33: Leaf spring 50: Container

Claims (1)

【特許請求の範囲】  基盤上に立設した支柱に支持アームを水平に固設し、
該支持アームに上下一対のピボット状軸受を設けた支持
装置と、 測定対象物を収容した容器を載せるための載物板下面中
心を支軸で支承してなり、該支軸は上記支持アームのピ
ボット状軸受と対応する位置に上下一対のピボットピン
を備え、該ピボットピンを上記ピボット状軸受に支持さ
せて回転自在とした載物台と、 上記支軸に中央部分を固定し、両端部近傍を夫々支持位
置可変に挟んで支持した板ばねを備え、上記支軸に対し
減衰回転振動を付勢する回動付勢装置と、 上記支軸の回転振幅若しくは回動周期を検出、出力する
検出器とよりなる減衰係数測定器。
[Claims] A support arm is fixed horizontally to a support erected on a base,
The support device includes a support device in which a pair of upper and lower pivot-shaped bearings are provided on the support arm, and a support shaft supports the center of the lower surface of a mounting plate for placing a container containing an object to be measured, and the support shaft is attached to the support arm. A stage is provided with a pair of upper and lower pivot pins at positions corresponding to the pivot-shaped bearings, and the pivot pins are supported by the pivot-shaped bearings to be rotatable; a rotational biasing device, which includes leaf springs supported with variable support positions, and which applies damped rotational vibration to the support shaft; and a detection device which detects and outputs the rotational amplitude or rotation period of the support shaft. Attenuation coefficient measuring device consisting of a device.
JP18178089A 1989-07-14 1989-07-14 Damping coefficient measuring instrument Pending JPH0346539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18178089A JPH0346539A (en) 1989-07-14 1989-07-14 Damping coefficient measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18178089A JPH0346539A (en) 1989-07-14 1989-07-14 Damping coefficient measuring instrument

Publications (1)

Publication Number Publication Date
JPH0346539A true JPH0346539A (en) 1991-02-27

Family

ID=16106756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18178089A Pending JPH0346539A (en) 1989-07-14 1989-07-14 Damping coefficient measuring instrument

Country Status (1)

Country Link
JP (1) JPH0346539A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006197706A (en) * 2005-01-13 2006-07-27 Fujitsu General Ltd Axial gap type motor
CN102436800A (en) * 2011-10-20 2012-05-02 张树岩 Keyboard type drawing strings device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006197706A (en) * 2005-01-13 2006-07-27 Fujitsu General Ltd Axial gap type motor
CN102436800A (en) * 2011-10-20 2012-05-02 张树岩 Keyboard type drawing strings device

Similar Documents

Publication Publication Date Title
US5777215A (en) Apparatus for measuring the coagulation characteristics of test liquids
Pollard et al. [20] Methods to characterize actin filament networks
KR920003532B1 (en) Vibration type rheometer apparatus
CN100562740C (en) Rotary liquid comprehensive experimental instrument and experimental technique
US4794788A (en) Method and apparatus for rheological testing
AU2005273118B2 (en) Method and apparatus for testing of shear stiffness in board
US9274038B2 (en) Apparatus and method for constant shear rate and oscillatory rheology measurements
CN109341948A (en) Aircraft wing rudder face and rudder rotational inertia measuring device and measurement method
US4034602A (en) Dynamic mechanical analyzer
Mizukami et al. Mechanical model analysis for resonance shear measurement
JPH0346539A (en) Damping coefficient measuring instrument
Marin Oscillatory rheometry
US2796758A (en) Viscometer
JPH01162129A (en) Attenuation coefficient measuring apparatus
Jimenez et al. A novel computerized viscometer/rheometer
US5509298A (en) Apparatus and method for measuring visco-elastic characteristics of a sample
US9766172B2 (en) Double-motor rheometer with extension assembly
US2637996A (en) Method and apparatus for testing paperboard
CA2061843A1 (en) Damping mechanism for load cell
DE2945819C2 (en)
US2676486A (en) Fatigue testing machine
GB2583474A (en) Drive system tensioner testing methods and apparatus
JPH10339693A (en) Device for measuring flexural characteristics of sheet-shaped sample
Wang et al. New method of forced-resonance measurement for the concentrated and large-viscous liquid in the low frequency range by torsion resonator
JPH0540869U (en) Rigid body pendulum for viscoelasticity measurement