JPH0540869U - Rigid body pendulum for viscoelasticity measurement - Google Patents

Rigid body pendulum for viscoelasticity measurement

Info

Publication number
JPH0540869U
JPH0540869U JP9973691U JP9973691U JPH0540869U JP H0540869 U JPH0540869 U JP H0540869U JP 9973691 U JP9973691 U JP 9973691U JP 9973691 U JP9973691 U JP 9973691U JP H0540869 U JPH0540869 U JP H0540869U
Authority
JP
Japan
Prior art keywords
viscoelasticity
pendulum
rigid pendulum
vibration
mass member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9973691U
Other languages
Japanese (ja)
Other versions
JP2585887Y2 (en
Inventor
寛爾 森
陽一 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP1991099736U priority Critical patent/JP2585887Y2/en
Publication of JPH0540869U publication Critical patent/JPH0540869U/en
Application granted granted Critical
Publication of JP2585887Y2 publication Critical patent/JP2585887Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

(57)【要約】 【目的】 広範囲の粘弾性を容易に測定でき,また空気
の粘性抵抗の影響が少なく,測定精度に優れた粘弾性測
定用剛体振子を提供すること。 【構成】 塗膜等の成膜に接触させると共に振動させる
エッジ部10と,該エッジ部の振動における慣性モーメ
ントを確保するための質量部材(円環体13)とよりな
り,かつ質量部材はエッジ部10が成膜と接触する先端
部101を含む鉛直面と垂直な面の上下両側にそれぞれ
位置していること。質量部材には,変位片11,加振片
12を設ける。また,質量部材は,上記先端部の中心線
を含む鉛直面の両側に位置させる構成とすることもでき
る。
(57) [Abstract] [Purpose] To provide a rigid pendulum for viscoelasticity measurement, which can easily measure a wide range of viscoelasticity, is less affected by the viscous resistance of air, and has excellent measurement accuracy. [Structure] An edge portion 10 that is brought into contact with a film such as a coating film and vibrates, and a mass member (annular body 13) for securing an inertia moment in the vibration of the edge portion, and the mass member is an edge. The portions 10 are located on both the upper and lower sides of the plane perpendicular to the vertical plane including the tip 101 that contacts the film formation. A displacement piece 11 and a vibrating piece 12 are provided on the mass member. Further, the mass member may be arranged on both sides of a vertical plane including the center line of the tip.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は,塗料,接着剤,高分子構造材等の粘弾性物質の成膜について,その 粘弾性を測定するために用いる粘弾性測定用剛体振子に関する。 The present invention relates to a viscoelasticity measuring rigid pendulum used for measuring the viscoelasticity of a film of a viscoelastic substance such as a paint, an adhesive or a polymer structural material.

【0002】[0002]

【従来技術】[Prior art]

塗料,接着剤,熱可塑性又は熱硬化性の高分子構造材等は,これを各種相手材 に塗布し,膜状の成膜とすることが多い。 そして,かかる成膜における粘弾性を測定するために,従来,粘弾性測定用剛 体振子が用いられている。 かかる粘弾性測定用剛体振子としては,例えば図12〜図14に示すものがあ る。 Paints, adhesives, thermoplastic or thermosetting polymer structural materials, etc. are often applied to various mating materials to form a film. A rigid pendulum for measuring viscoelasticity has been conventionally used to measure the viscoelasticity in such film formation. Examples of such a rigid pendulum for viscoelasticity measurement are shown in FIGS. 12 to 14.

【0003】 該粘弾性測定用剛体振子(以下,単に剛体振子ともいう)は,図12に示すご とく,エッジ部91と,枠部93と,その下方に垂設した棹状の質量部材94と よりなる。上記エッジ部91は,図13に示すごとく,被測定物である粘弾性を 有する成膜70に接触する先端部910を有している。また,質量部材94は, 上記エッジ部の振動における慣性モーメントを確保するための部位である。そし て,該質量部材94には,その下端近くに加振片95を,また中央付近に変位片 96を有している。 そして,粘弾性の測定に当たっては,図13に示すごとく,まずエッジ部90 の先端部910を,成膜70に接触させる。そして,図14に示すごとく,質量 部材94の加振片95に対して,制御部8,駆動装置81,加振アクチュエータ 82により電磁力による振動を付与する。これにより,剛体振子9はエッジ部の 先端部910を支点として図12(b)の左右方向に振子振動する。A rigid body pendulum for measuring viscoelasticity (hereinafter, also simply referred to as a rigid body pendulum) includes an edge portion 91, a frame portion 93, and a rod-shaped mass member 94 vertically provided below the edge portion 91, the frame portion 93, and the like. And becomes. As shown in FIG. 13, the edge portion 91 has a tip portion 910 that comes into contact with the film 70 having viscoelasticity, which is an object to be measured. Further, the mass member 94 is a portion for ensuring the moment of inertia in the vibration of the edge portion. The mass member 94 has a vibrating piece 95 near its lower end and a displacing piece 96 near its center. Then, in measuring the viscoelasticity, as shown in FIG. 13, first, the tip end portion 910 of the edge portion 90 is brought into contact with the film formation 70. Then, as shown in FIG. 14, vibration due to electromagnetic force is applied to the vibrating piece 95 of the mass member 94 by the control unit 8, the driving device 81, and the vibrating actuator 82. As a result, the rigid pendulum 9 oscillates in the left-right direction in FIG. 12B with the tip end 910 of the edge as a fulcrum.

【0004】 そこで,この振動を,図14に示すごとく変位片96の近傍に配置した変位セ ンサ84により測定する。 そして,変位センサの入力信号は,変位計83,制御部8を経て,出力装置8 6に変位データとして出力される。このとき,成膜70が高粘弾性の場合には, 振動減衰が早く,低粘弾性の場合には振動減衰が遅いため,これを測定すること により,成膜の粘弾性が測定できる(詳細は後述)。 なお,図13において,符号72は成膜を形成させる基台,73はその支持台 でる。Therefore, this vibration is measured by a displacement sensor 84 arranged near the displacement piece 96 as shown in FIG. The input signal of the displacement sensor is output as displacement data to the output device 86 via the displacement meter 83 and the control unit 8. At this time, when the film 70 has high viscoelasticity, the vibration damping is fast, and when it is low, the vibration damping is slow. Therefore, by measuring this, the viscoelasticity of the film can be measured (details). Is described later). In FIG. 13, reference numeral 72 is a base for forming a film, and 73 is a support for the same.

【0005】 ところで,従来,剛体振子を用いた粘弾性測定装置としては,前記図12に示 したものが発売されている(例えば,オリエンテック社,旧社名東洋ボールドウ ィン:商品名「剛体振子型粘弾性測定器」,型式「DDV−OPA」)。 そして,図12に示した形状の剛体振子を基本として,いくつかのバリエーシ ョンが標準あるいは別売として提供されている。 また,市販機の実質的な開発者である田中丈之(日本油脂)の講演や,オリエ ンテック社と日本油脂(株)との共同出願の実用新案公報(実公平3−1172 5号公報)にも種々の特徴を具えた剛体振子が紹介,提案されている。By the way, conventionally, as a viscoelasticity measuring device using a rigid pendulum, the one shown in FIG. 12 has been put on the market (for example, Orientec Co., former company name Toyo Baldwin: product name “rigid pendulum”). Viscoelasticity measuring instrument ", model" DDV-OPA "). Based on the rigid pendulum having the shape shown in FIG. 12, several variations are offered as standard or as an option. In addition, a lecture by Takeyuki Tanaka (Nippon Oil & Fats Co., Ltd.), who is a substantial developer of commercial machines, and a utility model gazette (Japanese Utility Model Publication No. 3-11725 gazette) jointly filed between Orientec and Nippon Oil & Fats Co., Ltd. A rigid pendulum with various features has also been introduced and proposed.

【0006】 これらの剛体振子は,優れたものであり,そのすべてに共通する特徴は,その 構成がエッジ部とその保持機構(エッジ部が本体部と同材質で一体であることも ある)に,慣性モーメントと重心位置を調節する部材として,棹状部を下方に接 続した構造となっていることである。 更に,注目すべきは,エッジ部周辺の支持構造を除いてほとんどの質量部材を エッジの鉛直下方に配置することであって,これは本原理を発案した牛尼清治職 業訓練大学校助教授の設計を踏襲したものと言える。These rigid body pendulums are excellent, and the characteristic common to all of them is that the structure is that the edge part and its holding mechanism (the edge part may be made of the same material as the body part and integrated). As a member for adjusting the moment of inertia and the position of the center of gravity, the rod-shaped part is connected downward. Furthermore, it should be noted that most of the mass members, except for the supporting structure around the edges, are placed vertically below the edges, which was proposed by the associate professor of Seiji Ushimani, who proposed this principle. It can be said that it follows the design.

【0007】 これらの剛体振子においては,棹状部の形状・大きさ・材質によって慣性モー メントと重心位置を調節する。剛体振子による粘弾性測定では,振子の慣性モー メントの大きさは,その剛体振子を用いて測定する粘弾性応答の範囲を規定する 要素である。 粘弾性応答とは,試料としての成膜からの反作用の大きさのことで,試料の粘 弾性値と試料寸法とで決まる量である。剛体振子の慣性モーメントが大きいほど ,試料からの粘弾性応答が剛体振子の運動に与える影響が小さい。In these rigid pendulums, the inertia moment and the position of the center of gravity are adjusted depending on the shape, size, and material of the rod-shaped portion. In viscoelasticity measurement using a rigid pendulum, the magnitude of the inertial moment of the pendulum is an element that determines the range of viscoelastic response measured using the rigid pendulum. The viscoelastic response is the magnitude of the reaction from the film formation as a sample, and is a quantity determined by the viscoelastic value of the sample and the sample size. The larger the moment of inertia of the rigid pendulum, the smaller the influence of the viscoelastic response from the sample on the motion of the rigid pendulum.

【0008】 したがって,低粘性の液体に対しては慣性モーメントの小さい剛体振子を,ま た高弾性の固体には慣性モーメントの大きい剛体振子を用いる必要がある。1個 の剛体振子で測定できる粘弾性応答のダイナミックレンジは,剛体振子の剛性が 十分であれば振動の測定精度に依存する。 一方,振動の計測について考慮すると,一般に振動の周期と振幅の減衰を決定 するために必要な観測時間は周期に比例するから,試料の状態の変化(硬化反応 や相転移)に対して十分に短くするため,振子の周期には設計上,上限がある。 また,振動計測手段側からの要請によって,同じく下限がある。Therefore, it is necessary to use a rigid pendulum having a small moment of inertia for a liquid having a low viscosity and a rigid pendulum having a large moment of inertia for a highly elastic solid. The dynamic range of viscoelastic response that can be measured with one rigid pendulum depends on the vibration measurement accuracy if the rigidity of the rigid pendulum is sufficient. On the other hand, when considering the measurement of vibrations, the observation time required to determine the vibration period and the damping of the amplitude is generally proportional to the period, so it is sufficient for changes in the sample state (hardening reaction and phase transition). There is an upper limit on the pendulum cycle in terms of design in order to shorten it. There is also a lower limit due to the request from the vibration measuring means side.

【0009】[0009]

【解決しようとする課題】[Problems to be solved]

しかしながら,従来の粘弾性測定用剛体振子には,次の問題がある。 即ち,上記のように,振子の周期(自由振動時)は,設計上許容される範囲が 存在する。前述のように粘弾性測定の対象範囲を広く確保するには,まず剛体振 子の慣性モーメントについて幅の広いバリエーションを設定する必要があるが, 一方では,その自由振動周期はある範囲に調節されねばならない。 However, the conventional rigid pendulum for measuring viscoelasticity has the following problems. That is, as described above, the pendulum cycle (during free vibration) has a range that is allowed by design. As mentioned above, in order to secure a wide target range for viscoelasticity measurement, it is necessary to first set a wide variation of the moment of inertia of the rigid pendulum, but on the other hand, the free vibration period is adjusted to a certain range. I have to.

【0010】 ところが,従来装置で用いる剛体振子のように,慣性モーメントと重心位置を 単一の部材で調節する構造であると,それぞれの設計可能範囲が限られてしまう 。特に,従来の剛体振子では低い粘弾性応答に対する感度を高めた設計,即ち低 慣性モーメントの剛体振子を適切な周期で設計することができない。 剛体振子を用いた粘弾性測定法では,原理的には焼付け初期の塗膜粘性に対応 し得るものであるが,従来品では上記のように,これに対応する剛体振子の設計 が困難である。さらにまた,従来の剛体振子では,振動時に空気から受ける粘性 抵抗の大きさが無視できず,有効な測定範囲が制限される。However, if the structure is one in which the moment of inertia and the position of the center of gravity are adjusted by a single member like the rigid pendulum used in the conventional device, the designable range of each is limited. In particular, conventional rigid pendulums cannot be designed with a high sensitivity to low viscoelastic responses, that is, rigid pendulums with a low moment of inertia cannot be designed with an appropriate period. In principle, the viscoelasticity measurement method using a rigid pendulum can cope with the viscosity of the coating film at the initial stage of baking, but it is difficult for conventional products to design a rigid pendulum corresponding to this as described above. .. Furthermore, with conventional rigid pendulums, the amount of viscous drag received from air during vibration cannot be ignored, and the effective measurement range is limited.

【0011】 上記のごとく,従来の粘弾性測定用剛体振子においては,剛体振子の振動周期 を適切な範囲に限定しつつ慣性モーメントの設計範囲を広くすることは困難であ り,広範囲の粘弾性を測定することが困難である。 粘弾性応答の小さい測定に際しては,剛体振子が空気の粘性抵抗の影響を受け 易く,正確な粘弾性測定をなし難い。 本考案は,かかる従来の問題点に鑑み,広範囲の粘弾性を容易に測定すること が可能で,また空気の粘性抵抗の影響が少なく,測定精度に優れた,粘弾性測定 用剛体振子を提供しようとするものである。As described above, in the conventional rigid pendulum for measuring viscoelasticity, it is difficult to limit the vibration period of the rigid pendulum to an appropriate range and widen the design range of the moment of inertia. Is difficult to measure. When measuring a small viscoelastic response, the rigid pendulum is easily affected by the viscous resistance of air, making accurate viscoelastic measurement difficult. In view of such conventional problems, the present invention provides a rigid pendulum for viscoelasticity measurement that can easily measure a wide range of viscoelasticity, has little influence of viscous resistance of air, and has excellent measurement accuracy. Is what you are trying to do.

【0012】[0012]

【課題の解決手段】[Means for solving the problem]

本考案は,塗膜等の粘弾性を有する成膜に接触させると共に振動させるエッジ 部と,該エッジ部の振動における慣性モーメントを確保するための質量部材とよ りなる粘弾性測定用剛体振子において,上記質量部材は,エッジ部が成膜と接触 する先端部を含む鉛直面と垂直な面の上下両側に,それぞれ配設してあることを 特徴とする粘弾性測定用剛体振子にある。 The present invention provides a rigid pendulum for viscoelasticity measurement, which includes an edge part that is brought into contact with a viscoelastic film such as a coating film and vibrates, and a mass member that secures a moment of inertia in the vibration of the edge part. The mass member is a rigid pendulum for measuring viscoelasticity, characterized in that the mass member is arranged on each of the upper and lower sides of a plane perpendicular to the vertical plane including the tip portion in contact with the film formation.

【0013】 本考案において,上記エッジ部は,成膜に接触させると共に振動を与える部分 で,粘弾性測定の中心部である。該エッジ部としては,その先端部を鋭角状にし たもの(図3a),或いは先端部が円形を呈するもの(図3b)などがある。前 者の場合は,先端部は成膜の内部まで侵入し,一方後者の場合は先端部が成膜の 上部に載置された状態となる。In the present invention, the edge portion is a portion that is brought into contact with the film formation and gives vibration, and is the center portion of the viscoelasticity measurement. As the edge portion, there is one in which the tip portion has an acute angle shape (Fig. 3a), or one in which the tip portion has a circular shape (Fig. 3b). In the former case, the tip penetrates into the inside of the film, while in the latter case, the tip is placed on top of the film.

【0014】 また,該エッジ部は,例えば鋼,セラミックスなど,測定温度範囲で弾性率が 高く,試料と化学反応を起こさない材質を用いる。 また,上記エッジ部において,先端部の刃先角は粘弾性測定感度に大きく影響 する。すなわち,刃先角が大きいほど試料から受けるトルクが大きくなることに より感度が高い。しかし,塗膜等の粘弾性測定では,溶媒等が揮発する過程で測 定されることが多いので,刃先角が大きいほどこれら揮発成分の揮散が妨げられ ,測定が不正確となる。 揮発成分の存在する場合には,刃先角はおおむね60度以内が望ましい。刃先 角が小さい場合は,測定感度が低くなることに加え,エッジ部の破損のおそれが 増すので実用上10度以上とする必要がある。The edge portion is made of a material such as steel and ceramics that has a high elastic modulus in the measurement temperature range and does not cause a chemical reaction with the sample. In addition, at the above-mentioned edge portion, the cutting edge angle of the tip portion greatly affects the sensitivity of viscoelasticity measurement. That is, the larger the cutting edge angle, the greater the torque received from the sample, and the higher the sensitivity. However, when measuring the viscoelasticity of a coating film, etc., it is often measured in the process of volatilization of the solvent, so the larger the cutting edge angle, the more difficult the volatilization of these volatile components is, and the more inaccurate the measurement. When volatile components are present, the cutting edge angle is preferably within 60 degrees. If the cutting edge angle is small, the measurement sensitivity will decrease and the risk of damage to the edge will increase, so it is necessary to set it to 10 degrees or more for practical use.

【0015】 一方,揮発成分のない試料では,150度程度以内の刃先角を用い得るが,こ れ以上では振子の振幅に対する試料歪が大きくなり過ぎて試料を破壊するおそれ がある。 また,質量部材は,慣性モーメントを確保するための機能を有する。そして, 該質量部材は,エッジ部の上記先端部を含む鉛直面と垂直な面の両側(上下)に ,それぞれ位置させる。かかる手段としては,後述するホルダーや連結部材を用 いて,質量部材を上記垂直な面の上下の両側に位置させる手段がある。On the other hand, in the case of a sample having no volatile component, a cutting edge angle within about 150 degrees can be used, but above this range, the sample strain with respect to the amplitude of the pendulum becomes too large and the sample may be destroyed. Further, the mass member has a function of ensuring the moment of inertia. Then, the mass members are respectively positioned on both sides (upper and lower sides) of a plane perpendicular to the vertical plane including the tip portion of the edge portion. As such means, there is a means for positioning the mass member on the upper and lower sides of the vertical plane by using a holder or a connecting member described later.

【0016】 該質量部材としては,ステンレス鋼,タングステン,白金合金等密度が高い材 質がよい。装置の取扱上,容易に変形しないことが望ましいので機械強度の高い 材料であることも必要である。 また,質量部材の形状としては,円環体(図1,図6,図7,図11),球状 体(図8,図10),円板体(図9)などがある。 また,上記エッジ部には,これを保持するためのホルダーを設けることが好ま しい。また,該ホルダーと質量部材との間には両者を結合する連結部材を介設す ることが好ましい。As the mass member, a material having a high density such as stainless steel, tungsten, or a platinum alloy is preferable. In terms of handling the equipment, it is desirable that it should not be easily deformed, so a material with high mechanical strength is also necessary. The shape of the mass member includes a torus (Figs. 1, 6, 7, and 11), a sphere (Figs. 8 and 10), and a disc (Fig. 9). In addition, it is preferable to provide a holder for holding the edge portion. Further, it is preferable to provide a connecting member between the holder and the mass member for connecting the both.

【0017】 上記ホルダーとしては,ベークライト,ガラス繊維強化エポキシ樹脂等測定温 度範囲で十分な機械強度を持ち,なるべく熱伝導率の低い材質が望ましい。エッ ジ部からの熱の放散が大きいと,測定部位の温度の均一性が損なわれ,測定精度 が低下するおそれがある。 また,上記連結部材としては,ジュラルミン,チタン,マグネシウム合金,炭 素繊維強化樹脂等密度が低く,剛性の高い材料がよい。該連結部材は慣性モーメ ントを受け持つ必要はなく,所望の剛性をもって上記ホルダーと質量部材とを接 続すればよい。The holder is preferably made of a material such as bakelite or glass fiber reinforced epoxy resin that has sufficient mechanical strength in the measurement temperature range and has as low thermal conductivity as possible. If the heat dissipation from the edge is large, the temperature uniformity at the measurement site may be impaired and the measurement accuracy may be reduced. As the connecting member, a material having a low density and a high rigidity such as duralumin, titanium, magnesium alloy, carbon fiber reinforced resin is preferable. The connecting member does not have to be responsible for the inertia moment, and the holder and the mass member may be connected with desired rigidity.

【0018】 しかし,剛体振子の運動に伴う成膜以外に由来する減衰を低減するため,振動 方向の断面積を小さくして空気抵抗を低減し,また重量を低減してエッジ部の先 端部での摩擦を低減する必要があるので,比強度の高い材質が好ましい。 また,上記質量部材としては,円環状(図1,図6,図7,図11)とするこ とが好ましい。このような円環状の質量部材を左右に配置し,その間にエッジ部 を配設した場合,通常に用いられる塗料,接着剤等の粘弾性を測定する際に適切 な剛体振子の慣性モーメントは,おおむね20〜10000gcm2 の範囲と考 えられる。However, in order to reduce the attenuation due to other than film formation due to the motion of the rigid pendulum, the cross-sectional area in the vibration direction is reduced to reduce the air resistance, and the weight is reduced to reduce the tip portion of the edge portion. Since it is necessary to reduce the friction at the above, a material having a high specific strength is preferable. Further, it is preferable that the mass member has an annular shape (FIGS. 1, 6, 7, and 11). When such an annular mass member is arranged on the left and right and the edge is arranged between them, the appropriate moment of inertia of the rigid pendulum when measuring the viscoelasticity of commonly used paints, adhesives, etc. It is considered to be in the range of 20 to 10,000 gcm 2 .

【0019】 これらの慣性モーメントを得るための円環体の半径は,剛体振子の許容重量や 円環体に採用する材質の密度および機械強度に依存するので一意には定まらない が,装置の取扱上不都合を生じない限り,限定されない。なお典型的な測定条件 に好適な円環体は,例えばステンレス鋼にて半径15mm〜70mmの範囲で製 作できる。 また,本考案の本質は,振子支点真下以外の位置に慣性モーメントを確保する 質量部材の一部又は全部が存在する点にある。これにより剛体振子の重量と自由 振動周期を適当な値に固定して,なお慣性モーメントを広い範囲で選択した剛体 振子を設計することができるのである。The radius of the annulus for obtaining these moments of inertia depends on the allowable weight of the rigid pendulum, the density of the material used for the annulus, and the mechanical strength. It is not limited as long as it does not cause inconvenience. A torus suitable for typical measurement conditions can be made of stainless steel, for example, with a radius of 15 mm to 70 mm. Further, the essence of the present invention is that a part or all of the mass member that secures the moment of inertia exists at a position other than directly below the pendulum fulcrum. As a result, the weight of the rigid pendulum and the free vibration period can be fixed to appropriate values, and a rigid pendulum can be designed with the inertia moment selected in a wide range.

【0020】 また,上記剛体振子においては,その質量部材の一部分,或いはエッジ部を保 持するホルダーなどに,エッジ部に振動を付与するための加振片,及び振動状態 を測定するための変位片を設ける。そして,加振片及び変位片の近傍には,前記 従来例で示したごとく,ソレノイド等の加振器,変位センサ等を非接触で配置す る。 また,加振器,変位センサは制御装置に電気的に接続する。制御装置は,上記 加振を行わせ,また変位センサからの信号により,自由減衰振動を計測する。ま た,制御装置は,必要に応じ,試料である成膜の温度制御,温度計測を行う。計 測結果は,制御部で処理され,出力装置よりアウトプットされる。In addition, in the rigid pendulum, a vibrating piece for applying vibration to the edge part, a displacement piece for measuring the vibration state, to a part of the mass member or a holder that holds the edge part. Provide a piece. In the vicinity of the vibrating piece and the displacing piece, a vibrating device such as a solenoid and a displacement sensor are arranged in a non-contact manner as shown in the conventional example. The vibrator and displacement sensor are electrically connected to the control device. The control device performs the above-mentioned vibration and measures the free damping vibration by the signal from the displacement sensor. In addition, the controller controls the temperature of the sample film formation and measures the temperature as necessary. The measurement result is processed by the control unit and output from the output device.

【0021】 また,本考案における他の粘弾性測定用剛体振子としては,塗膜等の粘弾性を 有する成膜に接触させると共に振動させるエッジ部と,該エッジ部の振動におけ る慣性モーメントを確保するための質量部材とよりなる粘弾性測定用剛体振子に おいて,上記質量部材は,エッジ部が成膜と接触する先端部の中心線を含む鉛直 面の両側に,それぞれ配設してあることを特徴とする粘弾性測定用剛体振子があ る。 該粘弾性測定用剛体振子においては,エッジ部の先端部の中心線を含む鉛直面 の両側に,慣性モーメントを確保するための質量部材を配設する。その他は,上 記粘弾性測定用剛体振子と同様である。Further, as another rigid pendulum for measuring viscoelasticity in the present invention, an edge part that is brought into contact with a viscoelastic film such as a coating film and vibrates, and an inertia moment in the vibration of the edge part are used. In the rigid pendulum for viscoelasticity measurement consisting of a mass member for securing, the mass member is placed on both sides of the vertical surface including the center line of the tip where the edge contacts the film formation. There is a rigid pendulum for measuring viscoelasticity. In the viscoelasticity measuring rigid pendulum, mass members for securing a moment of inertia are arranged on both sides of a vertical plane including the center line of the tip of the edge portion. Others are the same as the rigid pendulum for measuring viscoelasticity.

【0022】[0022]

【作用及び効果】[Action and effect]

本考案の粘弾性測定用剛体振子を用いて粘弾性の測定をするに当たっては,ま ずエッジ部の先端部を被測定物である成膜に接触させる(図3参照)。次いで, 加振器により,剛体振子を適切な振幅で振動させる。 次いで,変位センサにより,剛体振子の振動挙動,即ち振動周期,振幅の減衰 率等を測定する。次いで,その測定値に基づき,所望の物理量を算出する(実施 例1参照)。 When measuring viscoelasticity using the rigid pendulum for measuring viscoelasticity of the present invention, the tip of the edge is first brought into contact with the film to be measured (see Fig. 3). Next, the rigid pendulum is vibrated with an appropriate amplitude by a vibrator. Next, the displacement sensor measures the vibration behavior of the rigid pendulum, that is, the vibration period and the damping rate of the amplitude. Then, a desired physical quantity is calculated based on the measured value (see Example 1).

【0023】 そして,本考案の粘弾性測定用剛体振子においては,上記のごとく,質量部材 が上記エッジ部の先端部を含む鉛直面に垂直な面の上下両側に,それぞれ位置し ている。そのため,両側の質量部材の上記垂直な面との距離,質量,エッジ部の 先端部との角度等の要素を変化させることにより振子の重心位置を調節できるた め,重心位置の設計自由度が高く,しかも剛体振子の形状を大きく変化させる必 要がなく,自由に慣性モーメントを変化させることができる。 そのため,慣性モーメントを広い範囲で設定することができ,広範囲の粘弾性 を容易に測定することができる。Further, in the viscoelasticity measuring rigid pendulum of the present invention, as described above, the mass members are respectively positioned on the upper and lower sides of the plane perpendicular to the vertical plane including the tip of the edge portion. Therefore, the center of gravity of the pendulum can be adjusted by changing factors such as the distance from the vertical plane of the mass members on both sides, the mass, and the angle with the tip of the edge. It is high, and the moment of inertia can be changed freely without having to change the shape of the rigid pendulum significantly. Therefore, the moment of inertia can be set in a wide range, and viscoelasticity in a wide range can be easily measured.

【0024】 また,慣性モーメントを確保するための質量部材を,振動軸であるエッジ部か ら離れた位置に配置しているので,等価な慣性モーメントを有する従来型の剛体 振子よりも,剛体振子全体を小型にすることができる。 そのため,振動周期が共通であっても,対気運動速度が小さいので,空気の粘 性抵抗を低減できる。そのため,粘弾性測定に当たり空気の粘性抵抗の影響が少 ない。Further, since the mass member for ensuring the moment of inertia is arranged at a position apart from the edge portion which is the vibration axis, the rigid pendulum is more rigorous than the conventional rigid pendulum having an equivalent moment of inertia. The overall size can be reduced. Therefore, even if the vibration period is common, the air velocity is small, and the viscous resistance of the air can be reduced. Therefore, the influence of the viscous resistance of air is small when measuring viscoelasticity.

【0025】 また,請求項2に記載の粘弾性測定用剛体振子においても,質量部材が,エッ ジ部の上記先端部の中心線を含む鉛直面の両側に位置している。そのため,上記 と同様に重心位置の設計自由度が高く,しかも剛体振子の形状を大きく変化させ る必要がなく,自由に慣性モーメントを変化させることができる。また,上記と 同様に,剛体振子全体を小型にできるので,空気の粘性抵抗も低い。 したがって,本考案によれば,広範囲の粘弾性を容易に測定することができ, また空気の粘性抵抗の影響が少なく,測定精度に優れた粘弾性測定用剛体振子を 提供することができる。Also, in the rigid pendulum for measuring viscoelasticity according to the second aspect, the mass members are located on both sides of the vertical plane including the center line of the tip portion of the edge portion. Therefore, similar to the above, there is a high degree of freedom in designing the position of the center of gravity, and it is not necessary to change the shape of the rigid pendulum significantly, and the moment of inertia can be changed freely. Also, as in the above case, the entire rigid pendulum can be made compact, so the viscous resistance of air is low. Therefore, according to the present invention, it is possible to easily measure a wide range of viscoelasticity, and to provide a viscoelasticity rigid pendulum which is less affected by the viscous resistance of air and has excellent measurement accuracy.

【0026】[0026]

【実施例】【Example】

実施例1 本考案の実施例にかかる粘弾性測定用剛体振子につき,図1〜図5を用いて説 明する。 本例の剛体振子1は,図1〜図3に示すごとく,エッジ部10と,該エッジ部 10の振動における慣性モーメントを確保するための,質量部材としての円環体 13とよりなり,該円環体13は,エッジ部10が成膜70と接触する先端部1 01を含む鉛直面と垂直な面の上下の両側に,それぞれ位置している。 Example 1 A rigid pendulum for measuring viscoelasticity according to an example of the present invention will be described with reference to FIGS. As shown in FIGS. 1 to 3, the rigid pendulum 1 of this example includes an edge portion 10 and an annular body 13 as a mass member for securing an inertia moment in the vibration of the edge portion 10. The torus 13 is located on each of the upper and lower sides of a plane perpendicular to the vertical plane including the tip portion 101 where the edge portion 10 contacts the film formation 70.

【0027】 即ち,図2,図3に示すごとく,エッジ部10は,一対のホルダー15により 挟持されて,ビス151により固定されている。そして,図2に示すごとく該ホ ルダー15の左右両側は,一対の連結部材14に固定されている。該連結部材1 4は,それぞれ,上記円環体13にその上下を固定されている。また,連結部材 14の下端部には,錘16を,ビス161により固定している。 上記のごとく,本例の剛体振子は,図1,図2に示すごとく,エッジ部10の 先端部101よりも上方にホルダー15があり,該ホルダー15に対して連結部 材14を介して円環体13が設けてある。それ故,エッジ部10の上記先端部1 01を含む鉛直面と垂直な面の両側(上下,以下同じ)に,質量部材としての円 環体13が位置していることになる。That is, as shown in FIGS. 2 and 3, the edge portion 10 is sandwiched by a pair of holders 15 and fixed by screws 151. The left and right sides of the holder 15 are fixed to a pair of connecting members 14 as shown in FIG. The connecting members 14 are fixed to the annular body 13 at the top and bottom thereof, respectively. A weight 16 is fixed to the lower end of the connecting member 14 with a screw 161. As described above, in the rigid pendulum of this example, as shown in FIGS. 1 and 2, the holder 15 is located above the tip 101 of the edge portion 10, and the holder 15 is circularly connected via the connecting member 14. A ring body 13 is provided. Therefore, the ring-shaped bodies 13 as the mass members are located on both sides (upper and lower sides, hereinafter the same) of the surface of the edge portion 10 that is perpendicular to the vertical plane including the tip portion 101.

【0028】 また,円環体13においては,図2(b)に示すごとく,その左側には,エッ ジ部10の振動変位を検出するための変位片11を,一方右側には円環体13, 連結部材14,ホルダー15を介して,エッジ部に振動を付与するための加振片 12を設けてある。 また,図1に示すごとく,上記変位片11には,変位センサ24を非接触に対 向配置し,加振片12には加振用のソレノイド22を非接触に配置する。変位セ ンサ24は,変位計23,制御装置2に接続する。また,ソレノイド22は加振 電源21,制御装置2に接続する。制御装置2には,出力装置26を接続する。 また,上記エッジ部10の先端部101の形状は,図3(a)に示すごとく, 鋭角状に突出させたものであっても,また図3(b)に示すごとく円形状であっ ても良い。As shown in FIG. 2B, the annular body 13 has a displacement piece 11 on the left side thereof for detecting the vibration displacement of the edge portion 10, and on the right side thereof, the annular body 13. A vibrating piece 12 for applying vibration to the edge portion is provided via 13, the connecting member 14, and the holder 15. Further, as shown in FIG. 1, a displacement sensor 24 is arranged in a non-contact manner on the displacement piece 11 and a vibration solenoid 22 is arranged in a non-contact manner on the vibration piece 12. The displacement sensor 24 is connected to the displacement meter 23 and the control device 2. The solenoid 22 is connected to the vibration power source 21 and the control device 2. An output device 26 is connected to the control device 2. Further, the shape of the tip portion 101 of the edge portion 10 may be an acute-angled protrusion as shown in FIG. 3 (a) or a circular shape as shown in FIG. 3 (b). good.

【0029】 次に,上記粘弾性測定用剛体振子1を用いて,成膜70の粘弾性を測定するに 当たっては,図1,図3に示すごとく,まず基材72上に,被測定物としての塗 料等を塗布し成膜70を形成する。そして,脚部74を有する支持台73上に固 定する。 次に,上記剛体振子1のエッジ部10を,上記成膜70上に接触させる。この とき,流動性のある試料では,エッジ部10の先端部101は図3(a)に示す ごとく,成膜70内に侵入して基材72上に接触する。また,流動性のない試料 では,エッジ部の先端部は基板には達せず,試料表面に接触するのみである。Next, when measuring the viscoelasticity of the film formation 70 using the above-mentioned rigid pendulum 1 for measuring viscoelasticity, first, as shown in FIGS. A film 70 is formed by applying a coating material or the like. Then, it is fixed on the support base 73 having the leg portions 74. Next, the edge portion 10 of the rigid pendulum 1 is brought into contact with the film formation 70. At this time, in the case of a fluid sample, the tip portion 101 of the edge portion 10 penetrates into the film formation 70 and comes into contact with the substrate 72, as shown in FIG. In the case of a non-fluid sample, the tip of the edge does not reach the substrate, but only contacts the sample surface.

【0030】 次に,上記制御装置2,加振電源21により,ソレノイド22を作動させる。 これにより,円環体13に設けた加振片12が振動する。そして,この振動力は ,連結部材14,ホルダー15を通じてエッジ部10に伝達される。そのため, 円環体13はエッジ部の先端部101を中心として図2(b)の左右方向(図1 の紙面方向)に回動する。上記加振片12への振動付与は,1〜2秒間である。 そして,上記振動付与を中止した後,変位片11に対向配置した変位センサ2 4により,円環体13の振動挙動,即ち振動周期,振幅の減衰率等を測定する。 そして,その測定値に基づき,所望の物理量を算出する(後述参照)。Next, the solenoid 22 is operated by the control device 2 and the vibration power source 21. As a result, the vibrating piece 12 provided on the annular body 13 vibrates. Then, this vibration force is transmitted to the edge portion 10 through the connecting member 14 and the holder 15. Therefore, the annular body 13 rotates in the left-right direction of FIG. 2B (the paper surface direction of FIG. 1) around the tip portion 101 of the edge portion. The vibration is applied to the vibrating piece 12 for 1 to 2 seconds. Then, after the application of the vibration is stopped, the vibration behavior of the annular body 13, that is, the vibration period, the damping rate of the amplitude, and the like are measured by the displacement sensor 24 arranged opposite to the displacement piece 11. Then, a desired physical quantity is calculated based on the measured value (see later).

【0031】 そして,本例の剛体振子1においては,上記のごとく,質量部材としての円環 体13が,エッジ部の先端部101を含む鉛直面と垂直な面の両側に,それぞれ 位置している。そのため,重心位置の設計自由度が高く,しかも剛体振子1の形 状を大きく変化させる必要がない。 それ故,自由に慣性モーメントを変化させることができる。したがって,慣性 モーメントを広範囲で設定することができ,広範囲の粘弾性を容易に測定するこ とができる。Then, in the rigid pendulum 1 of this example, as described above, the annular body 13 as the mass member is located on both sides of the plane perpendicular to the vertical plane including the tip 101 of the edge portion. There is. Therefore, there is a high degree of freedom in designing the position of the center of gravity, and it is not necessary to significantly change the shape of the rigid pendulum 1. Therefore, the moment of inertia can be changed freely. Therefore, the moment of inertia can be set in a wide range, and viscoelasticity in a wide range can be easily measured.

【0032】 また,質量部材としての円環体13を,振動軸であるエッジ部10から離れた 位置に設けたので,等価の慣性モーメントを有する従来の剛体振子よりも,剛体 振子全体をコンパクトにできる。 また,質量部材として円環体13を用いているので,振動周期が共通であって も,対空気運動速度が小さいので,空気の粘性抵抗を低減できる。そのため,粘 弾性測定に当たり,空気の粘性抵抗の影響が小さく,測定精度が向上する。 また,本例の剛体振子1は,質量部材としての円環体13が,エッジ部の先端 部101の中心線を含む鉛直面の両側に,一対配置してある。そのため,重心位 置の設計自由度が高く,しかも剛体振子の形状を大きく変化させる必要がなく, 自由に慣性モーメントを変化させることができる。 したがって,本例によれば,広範囲の粘弾性を測定でき,空気の粘性抵抗の影 響が少なく,測定精度に優れた粘弾性測定用剛体振子を提供することができる。Further, since the annular body 13 as the mass member is provided at a position apart from the edge portion 10 which is the vibration axis, the entire rigid body pendulum is made more compact than the conventional rigid body pendulum having an equivalent moment of inertia. it can. Further, since the annular body 13 is used as the mass member, the viscous resistance of air can be reduced because the velocity of movement to air is small even if the vibration cycle is common. Therefore, when measuring viscoelasticity, the influence of the viscous resistance of air is small and the measurement accuracy is improved. Further, in the rigid pendulum 1 of this example, a pair of annular bodies 13 as mass members are arranged on both sides of the vertical plane including the center line of the tip portion 101 of the edge portion. Therefore, there is a high degree of freedom in designing the center of gravity, and it is not necessary to change the shape of the rigid pendulum significantly, and the moment of inertia can be changed freely. Therefore, according to this example, it is possible to provide a rigid pendulum for measuring viscoelasticity that can measure viscoelasticity over a wide range, has little effect of viscous resistance of air, and has excellent measurement accuracy.

【0033】 以下に,これらにつき,更に具体的に説明する。 まず,粘弾性測定用剛体振子においては,測定する成膜の粘弾性が極端に大き いかあるいは小さい場合には,従来の慣性モーメントでは適用することができな い。Hereinafter, these will be described more specifically. First, the rigid pendulum for viscoelasticity measurement cannot be applied with the conventional moment of inertia when the viscoelasticity of the film to be measured is extremely large or small.

【0034】 すなわち,粘弾性が大きいと慣性モーメントを大きくする必要がある。逆に, 粘弾性が小さいと慣性モーメントを小さくする必要がある。この慣性モーメント Iは,図4,図5及び次の(1)式に示すごとく,エッジ部の先端部101と振 子の重心Gとの距離dに比例する(なお,周期にも比例するが,測定においては 一定が望ましいため,上記距離dのみに比例する)。 T=2π(I/Mgd)1/2 ・・・(1) なお,上式において,Tは周期,gは重力加速度,Mは振子の質量,Iは慣性 モーメント,dは支点と重心との距離である。That is, when viscoelasticity is large, it is necessary to increase the moment of inertia. On the contrary, if the viscoelasticity is small, the moment of inertia must be small. This moment of inertia I is proportional to the distance d between the tip 101 of the edge and the center of gravity G of the pendulum as shown in FIGS. 4 and 5 and the following equation (1). , It is desirable to be constant in measurement, so it is proportional to only the distance d). T = 2π (I / Mgd) 1/2 (1) In the above equation, T is the period, g is the acceleration of gravity, M is the mass of the pendulum, I is the moment of inertia, and d is the fulcrum and the center of gravity. It is a distance.

【0035】 従来の粘弾性測定用剛体振子では,エッジ部の先端部より鉛直下方のみに慣性 モーメントを確保するための質量部材があるため,上記dの調整に制限があった 。例えば,上記dを小さくするには質量部材を支点近くに位置させる必要があり ,非常に短い振子となってしまう。一方,上記dを大きくするには質量部材を支 点より遠くに位置させる必要があり,非常に長い振子となってしまう。 これに対して,本考案のごとく,上記質量部材がエッジ部の先端部を含む鉛直 面と垂直な面の両側に,それぞれ位置している場合には,重心位置の設計自由度 が高く,しかも振子の形状を大きく変化させる必要がなく,自由にd(慣性モー メントI)を変化させることができる。In the conventional rigid pendulum for measuring viscoelasticity, there is a mass member for ensuring the moment of inertia only vertically below the tip of the edge portion, so that there is a limit to the adjustment of d. For example, in order to reduce the above d, it is necessary to position the mass member near the fulcrum, resulting in a very short pendulum. On the other hand, in order to increase the above d, it is necessary to position the mass member farther than the fulcrum, resulting in a very long pendulum. On the other hand, as in the present invention, when the mass member is located on both sides of the vertical surface including the tip of the edge portion and the surface perpendicular to the vertical surface, the degree of freedom in designing the center of gravity is high, and It is possible to freely change d (inertia moment I) without having to change the shape of the pendulum largely.

【0036】 また,本考案のごとく,質量部材がエッジ部の先端部の中心線を含む鉛直面の 両側にある場合には,重心位置の設計自由度が高く,しかも振子の形状を大きく 変化させる必要がなく,自由にd(慣性モーメントI)を変化させることができ る。 このように,本考案では,振子の形状を大きく変化させることなく,慣性モー メントIの変化量が大きい振子となるため,測定できる成膜の粘弾性の幅が大き い。Further, as in the present invention, when the mass member is on both sides of the vertical plane including the center line of the tip of the edge, the degree of freedom in designing the position of the center of gravity is high, and the shape of the pendulum is greatly changed. There is no need to change d (moment of inertia I) freely. As described above, in the present invention, since the pendulum has a large amount of change of the inertia moment I without largely changing the shape of the pendulum, the measurable width of the viscoelasticity of the film is large.

【0037】 次に,空気粘性が測定結果に及ぼす影響につき説明する。 試料(成膜)のない状態での測定動作により,剛体振子が空気粘性およびエッ ジ部での摩擦によって減衰振動することが観測できる。これらの抵抗力は,試料 の粘性項に加わるので測定精度を低下させる原因となる。 空気粘性と摩擦力の測定結果に及ぼす効果は,試料のない状態での対数減衰率 Δと周期T及び振子の慣性モーメントIから次式(2)で求められるD値で比較 できる。 D=I・Δ/T・・・(2)Next, the effect of air viscosity on the measurement results will be described. It is possible to observe that the rigid pendulum vibrates due to air viscosity and friction at the edge by the measurement operation without the sample (deposition). These resistance forces add to the viscous term of the sample and thus cause a decrease in measurement accuracy. The effects on the measurement results of air viscosity and friction force can be compared with the logarithmic attenuation rate Δ in the absence of the sample, the period T, and the D value calculated by the following equation (2) from the pendulum inertia moment I. D = I · Δ / T (2)

【0038】 次に,表1に実施例1と比較例(前記図12参照)との実測結果を示す。これ らの測定値は,それぞれ99回の測定値の平均値である。 表1のD値から,実施例は比較例の23.6倍高感度であることがわかる。こ の感度差は,低粘性試料,たとえば焼付け初期の自動車用上塗り塗膜への,適用 の可否として重要な差となる。Next, Table 1 shows the measurement results of Example 1 and the comparative example (see FIG. 12). Each of these measured values is an average value of 99 measured values. From the D value in Table 1, it can be seen that the example is 23.6 times more sensitive than the comparative example. This difference in sensitivity is an important difference as to whether or not it can be applied to low-viscosity samples, such as automotive topcoats in the early stages of baking.

【0039】[0039]

【表1】 [Table 1]

【0040】 次に慣性モーメントについて説明すると,前記従来例の振子(図12)では, 自由振動の周期を約1秒に限定すると,慣性モーメントIの値はおおむね200 0〜10000gcm2 の範囲に限定される。 試料からの粘弾性応答が大きい場合には高いI値が必要となるが,試料幅を調 節するなどにより,通常の測定には10000gcm2 以上のI値をもつ振子は 必要としない。The moment of inertia will be described next. In the pendulum of the conventional example (FIG. 12), if the period of free vibration is limited to about 1 second, the value of the moment of inertia I is generally limited to the range of 2000 to 10000 gcm 2. To be done. A high I value is required when the viscoelastic response from the sample is large, but a pendulum having an I value of 10000 gcm 2 or more is not required for normal measurement due to the adjustment of the sample width.

【0041】 しかし,試料からの粘弾性応答が小さい場合には必然的に低いI値の振子が必 要となる。従来型の振子では,これが約2000gcm2 に限定されるのに対し ,本考案の振子では20gcm2 の慣性モーメントI値をもつ振子を実用に供す ることができる。これにより,従来の振子に比べ約100倍の高感度測定が可能 である。However, when the viscoelastic response from the sample is small, a pendulum with a low I value is inevitably required. In the conventional pendulum, this is limited to about 2000 gcm 2 , whereas in the pendulum of the present invention, a pendulum having an inertia moment I value of 20 gcm 2 can be put to practical use. This makes it possible to perform high-sensitivity measurements that are about 100 times higher than conventional pendulums.

【0042】 次に,本考案の粘弾性測定用振子を用いて粘弾性を測定する理論,および手法 について説明する。 即ち,ナイフエッジを支点とした剛体振子は,図4,図5に示すごとく,塗膜 素地で支えられ,塗膜の粘弾性による力F1 を受けながら振動する。剛体振子の 振動変位は静止位置を基準として振れ角θで表す。 剛体振子の振動は次式(3)で表現される。 I・d2 θ/dt2 +F1 ・h/sinθ1 +Mgdθ=0・・・(3) I:剛体振子の刃先を軸とした回転慣性モーメント θ:剛体振子の振動変位角度 t:時刻 F1 :塗膜が刃の片面に及ぼす力 h:刃に接する塗膜の高さ θ1 :静止した剛体振子の刃面と素地面とのなす角度 M:剛体振子の質量 g:重力加速度 d:エッジ部の先端部から剛体振子の重心までの距離Next, the theory and method for measuring viscoelasticity using the viscoelasticity pendulum of the present invention will be described. That is, as shown in FIGS. 4 and 5, the rigid pendulum having the knife edge as a fulcrum is supported by the coating film base and vibrates while receiving the force F 1 due to the viscoelasticity of the coating film. The vibration displacement of the rigid pendulum is represented by the deflection angle θ with reference to the rest position. The vibration of the rigid pendulum is expressed by the following equation (3). I · d 2 θ / dt 2 + F 1 · h / sin θ 1 + Mgdθ = 0 (3) I: rotational inertia moment about the blade edge of the rigid pendulum θ: vibration displacement angle of the rigid pendulum t: time F 1 : Force exerted by the coating film on one side of the blade h: Height of coating film in contact with the blade θ 1 : Angle formed by the blade surface of a stationary rigid pendulum and the ground surface M: Mass of rigid pendulum g: Gravity acceleration d: Edge From the tip of the part to the center of gravity of the rigid pendulum

【0043】 上記(3)式の左辺第1項は慣性の効果を,第2項は塗膜から受ける力F1 の 効果を,また第3項は重力の効果を表す。外部から強制振動をさせないので(3 )式の右辺は常にゼロである。 ここで,F1 を吟味するため剛体振子が平衡位置から角度θだけ振れたときを 考える。図5に示すごとく,刃先から距離aの位置にある刃面上の点Pは,小さ なθに対しては距離aθだけ移動する。 このとき,点Pから刃面に垂直な方向にみた塗膜の厚さは,atanθ1 から aθだけ増加,あるいは減少するので歪の大きさはθ/tanθ1 と表せる。塗 膜が刃面に及ぼす力が,この歪に比例するならば, F1 =E* Scotθ1 ・θ ・・(4) S=bh/sinθ1 ・・・・・・(5) と表される。Sは塗膜と刃の片面とが接する面積で,bは刃に接する塗膜の長さ である。The first term on the left side of the above equation (3) represents the effect of inertia, the second term represents the effect of the force F 1 received from the coating film, and the third term represents the effect of gravity. Since the forced vibration is not applied from the outside, the right side of the equation (3) is always zero. Here, to examine F 1 , consider the case where the rigid pendulum swings from the equilibrium position by the angle θ. As shown in FIG. 5, a point P on the blade surface located at a distance a from the blade edge moves by a distance aθ with respect to a small θ. The thickness of the coating film as viewed in a direction perpendicular to the rake face from the point P is increased from Atanshita 1 only A.theta., Or since decreasing the strain magnitude can be expressed as θ / tanθ 1. If the force exerted by the coating film on the blade surface is proportional to this strain, then F 1 = E * Scot θ 1 · θ ··· (4) S = bh / sin θ 1 ··· (5) It S is the area of contact between the coating and one side of the blade, and b is the length of the coating contacting the blade.

【0044】 次に,上記E* は塗膜の複素弾性率を表し, E* =E′+iE″・・・・・・・(6) と表現される複素数である。ここで, K=Scotθ1 ・h/sinθ1 =bh2 cosθ1 /sin3 θ1 ・・・(7) とおくと前記(3)式は次のように書き換えられる。Next, E * represents the complex elastic modulus of the coating film, and is a complex number expressed as E * = E ′ + iE ″ ... (6), where K = Scot θ When 1 · h / sin θ 1 = bh 2 cos θ 1 / sin 3 θ 1 (7), the equation (3) can be rewritten as follows.

【0045】 I・d2 θ/dt2 +K(E′+iE″)θ+Mgdθ=0・・(8) この式は,θのみがtの関数である場合には次の形の解を持つ。 θ=θ0 exp(−αt+iωt)・・・(9) θ0 ,αおよびωは定数であり,それぞれ時刻ゼロでの振幅,振幅の減衰率およ び振動の角速度を表す。これをtで微分すると dθ/dt=(−α+iω)θ・・・(10) d2 θ/dt2 =(−α+iω)2 θ・・・(11)I · d 2 θ / dt 2 + K (E ′ + iE ″) θ + Mgdθ = 0 (8) This equation has a solution of the following form when only θ is a function of t. = Θ 0 exp (−αt + iωt) (9) θ 0 , α and ω are constants, which represent the amplitude at zero time, the damping rate of the amplitude and the angular velocity of vibration, respectively, and differentiated with t. Then dθ / dt = (- α + iω) θ ··· (10) d 2 θ / dt 2 = (- α + iω) 2 θ ··· (11)

【0046】 したがって,(8)式は次のようになり,E′とE″が求まる。 I(−α+iω)2 +K(E′+iE″)+Mgd=0・・・(12) E′=−〔(α2 −ω2 )I+Mgd〕/K・・・・・・・・(13) E″=2αωI/K・・・・・・・・・・・・・・・・・・・(14)Therefore, the equation (8) is as follows, and E ′ and E ″ are obtained. I (−α + iω) 2 + K (E ′ + iE ″) + Mgd = 0 ... (12) E ′ = − [(Α 2 −ω 2 ) I + Mgd] / K ... (13) E ″ = 2αωI / K ... (14) )

【0047】 一般には粘性の相対変化を表すのに対数減衰率Δを用いる。 Δ=αT(無次元)・・・・・(15) T=2π/ω・・・・・・・・(16) Δは1周期当たりの振幅変化の自然対数値で,振動を記録したチャートから振 幅を読み取って求めることができる。(14)式との比較により,Δと損失弾性 率E″との間には Δ=〔πK/ω2 I〕・E″・・・(17) の関係があり,ωが一定すなわち振動周期Tが一定の場合にはΔがE″に比例す ることがわかる。Generally, the logarithmic decay rate Δ is used to represent the relative change in viscosity. Δ = αT (dimensionless) (15) T = 2π / ω (16) Δ is the natural logarithmic value of the amplitude change per cycle, and is a chart that records vibration. It can be obtained by reading the amplitude from. From the comparison with the equation (14), there is a relation of Δ = [πK / ω 2 I] · E ″ ... (17) between Δ and the loss elastic modulus E ″, and ω is constant, that is, the vibration period. It can be seen that Δ is proportional to E ″ when T is constant.

【0048】 試料の粘弾性に基づく振動現象から対数減衰率を求めて粘性を評価する方法は ,振桿硬度計やTBA(Torsional Braid Analysis) でも行われる常法となっている。 一般に液体あるいは気体の粘性は粘度η(poise=dyne・sec/c m2 =0.1Pa・sec)で表現される。ηはずり応力をずり速度で除して得 られ,測定に対しては定常的なずり状態がよく用いられる。A method for evaluating the viscosity by obtaining a logarithmic decrement from a vibration phenomenon based on viscoelasticity of a sample is a common method that is also carried out by a vibrating rod hardness tester or a TBA (Tortional Braid Analysis). Generally, the viscosity of liquid or gas is expressed by viscosity η (poise = dyne · sec / cm 2 = 0.1 Pa · sec). η It is obtained by dividing shear stress by shear rate, and steady shear state is often used for measurement.

【0049】 粘弾性体に対しては,振動変位に対する応答を測定する必要からηの代わりに 次のη′が用いられる。 η′=E″/ω(定義)・・・(18) η′は動的粘性率と呼ばれ,ηと同じ次元,すなわち〔質量〕〔長さ〕-1〔時 間〕-1をもつ。(17)式によれば対数減衰率Δは次のように表される。 Δ∝η′/ω=E″/ω2 ・・・(19) すなわちΔは動的粘性率とはωを介して比例し,損失弾性率とはω2 の係数で 関係する。試料が液状で弾性が無視できる場合には,ωは定数として取扱えるの で,粘性変化の表現にはΔ,η′あるいはE″のいずれを用いてもよい。For viscoelastic bodies, the following η ′ is used instead of η because it is necessary to measure the response to vibration displacement. η '= E "/ ω (definition) (18) η'is called the dynamic viscosity, and has the same dimension as η, that is, [mass] [length] -1 [time] -1 According to the equation (17), the logarithmic damping ratio Δ is expressed as follows: Δ∝η ′ / ω = E ″ / ω 2 (19) That is, Δ is the dynamic viscosity and ω is , And is related to the loss elastic modulus by the coefficient of ω 2 . When the sample is liquid and its elasticity can be ignored, ω can be treated as a constant, so either Δ, η ′ or E ″ can be used to express the viscosity change.

【0050】 一方,試料を粘弾性体として取扱う場合には,粘性と弾性をそれぞれ貯蔵弾性 率E′と損失弾性率E″で表現するのが適切である。 そこで,ここではE′とE″の相対変化を表す変数としてE′rとE″rを定 義する。 E′r=ω2 −α2 −ω0 2 ・・・(20) E″r=2αω・・・・・・・・・(21) ω0 =〔Mgd/I〕1/2 ・・・・(22) ω0 は無試料時の剛体振子振動の角速度を表す。On the other hand, when the sample is handled as a viscoelastic body, it is appropriate to express the viscosity and the elasticity by the storage elastic modulus E ′ and the loss elastic modulus E ″ respectively. Therefore, here, E ′ and E ″. E′r and E ″ r are defined as variables that express the relative change of E′r = ω 2 −α 2 −ω 0 2 (20) E ″ r = 2αω. ··· (21) ω 0 = [Mgd / I] 1/2 ··· (22) ω 0 represents the angular velocity of the rigid pendulum vibration in the absence of the sample.

【0051】 相対貯蔵弾性率E′rと相対損失弾性率E″rは(13),(14)式により それぞれE′,E″に比例し, E′r=(K/I)・E′・・・(23) E″r=(K/I)・E″・・・(24) tanδ=E″/E′=E″r/E′r・・・(25) となって,損失正接tanδを求めることが可能となる。 tanδが極大となる温度は塗膜の微視的構造に由来する特性値のひとつと考 えられ,便宜上ガラス転移温度Tgと呼ばれる。これは,剛体振子をセットした 状態で硬化させた塗膜について,温度を変化させながら粘弾性を測定することに より得られる。The relative storage elastic modulus E′r and the relative loss elastic modulus E ″ r are respectively proportional to E ′ and E ″ according to the equations (13) and (14), and E′r = (K / I) · E ′ (23) E ″ r = (K / I) · E ″ (24) tan δ = E ″ / E ′ = E ″ r / E′r (25) It is possible to obtain the tangent tan δ. The temperature at which tan δ reaches its maximum is considered to be one of the characteristic values derived from the microscopic structure of the coating film, and is conveniently called the glass transition temperature Tg. This can be obtained by measuring the viscoelasticity of the coating film cured with the rigid pendulum set while changing the temperature.

【0052】 本原理によって粘弾性測定する手法は,次の手順による。 〔1〕振子を適切な振幅で振動させる。ここに,加振の方法は任意であるが, 試料以外から振子に加わる力を少なくするため,非接触の方法が望ましい。また 振幅は,これにより試料が破損しない範囲でなければならない。 〔2〕振子の振動挙動を計測する。その計測項目は,周期,振幅の減衰率であ る。 〔3〕上述の理論に従い,所望の物理量を算出する。The viscoelasticity measurement method according to the present principle is based on the following procedure. [1] Vibrate the pendulum with an appropriate amplitude. Here, the method of vibration is arbitrary, but a non-contact method is preferable to reduce the force applied to the pendulum from other than the sample. The amplitude should also be in the range where this does not damage the sample. [2] Measure the vibration behavior of the pendulum. The measurement items are the period and amplitude attenuation rate. [3] A desired physical quantity is calculated according to the above theory.

【0053】 実施例2 本例は,図6(a),(b)に示すごとく,実施例1の粘弾性測定用剛体振子 において,質量部材を楕円状の円環体13としたものである。また,連結部材1 4の下部には,錘を設けていない。 その他は,実施例1と同様である。このように質量部材は,実施例1のごとく 真円状体であっても,本例のごとく楕円状体であっても,更に弧状体であっても 良い。Example 2 In this example, as shown in FIGS. 6A and 6B, in the rigid pendulum for measuring viscoelasticity of Example 1, the mass member is an elliptical annular body 13. .. Further, no weight is provided below the connecting member 14. Others are the same as in the first embodiment. Thus, the mass member may be a perfect circular body as in the first embodiment, an elliptical body as in this example, or an arcuate body.

【0054】 実施例3 本例は,図7(a),(b)に示すごとく,実施例1の粘弾性測定用剛体振子 において,連結部材14をワイヤー31に代えたものである。該ワイヤー31に より,ホルダー15を質量部材の円環体13に剛性的に懸吊保持している。上記 ワイヤーとしては,ピアノ線,細いワイヤーロープなどを用いる。 その他は,実施例1と同様である。 本例においても,実施例1と同様の効果を得ることができる。また,本例にお いては,連結部材としてワイヤー31を用いているので,測定時の空気粘性の抵 抗が一層少ない。Example 3 In this example, as shown in FIGS. 7A and 7B, in the rigid pendulum for measuring viscoelasticity of Example 1, the connecting member 14 was replaced with a wire 31. The wire 31 rigidly suspends and holds the holder 15 on the annular member 13 of the mass member. As the above wire, use a piano wire or a thin wire rope. Others are the same as in the first embodiment. Also in this example, the same effect as that of the first embodiment can be obtained. Moreover, in this example, since the wire 31 is used as the connecting member, the resistance of the air viscosity at the time of measurement is further reduced.

【0055】 実施例4 本例は図8(a),(b)に示すごとく,連結部材としての連結棒14により ,ホルダー15と,質量部材としての球状体131を連結したものである。また ,ホルダー15の下方には,懸垂棒142を介して質量部材としてのバランス球 41を設ける。 球状体131は,エッジ部10よりも上方に位置し,バランス球41はエッジ 部10よりも下方に位置している。そして,球状体131とバランス球41との 質量比と,連結棒14,懸垂棒142の長さを変えることにより,重心位置を設 定する。Embodiment 4 In this embodiment, as shown in FIGS. 8A and 8B, a holder 15 and a spherical body 131 as a mass member are connected by a connecting rod 14 as a connecting member. Further, a balance ball 41 as a mass member is provided below the holder 15 via a suspension rod 142. The spherical body 131 is located above the edge portion 10, and the balance sphere 41 is located below the edge portion 10. Then, the position of the center of gravity is set by changing the mass ratio between the spherical body 131 and the balance sphere 41 and the lengths of the connecting rod 14 and the suspension rod 142.

【0056】 また,ホルダー15には変位片11,加振片12を設ける。 このように,質量部材の形状は,環状,弧状のみでなく,球状体であっても良 い。 本例においては,質量部材としての球状体131とバランス球41とがエッジ 部10の先端部101を含む鉛直面と垂直な面の両側に位置する。それ故,かか る構成に関して,実施例1に示した効果と同様の効果を得ることができる。Further, the holder 15 is provided with a displacement piece 11 and a vibrating piece 12. As described above, the shape of the mass member is not limited to the ring shape, the arc shape, and may be the spherical body. In this example, the spherical body 131 as a mass member and the balance sphere 41 are located on both sides of a plane including the tip 101 of the edge portion 10 and perpendicular to the vertical plane. Therefore, with regard to such a configuration, it is possible to obtain the same effects as those shown in the first embodiment.

【0057】 実施例5 本例は,図9(a),(b)に示すごとく,ホルダー15の上部に連結部材1 4を1本立設し,該連結部材14に質量部材としての金属板132をナット13 4,134により固定している。 また,ホルダー15の両側にはバランス棒144を垂設し,その下端にそれぞ れ質量部材としてのバランス用プレート42を設けたものである。該バランス用 プレート42は,バランス棒144のネジ部140に螺合した,ナット134, 134により固定されている。 その他は実施例4と同じである。Example 5 In this example, as shown in FIGS. 9A and 9B, one connecting member 14 is erected on the upper part of the holder 15, and the connecting member 14 is provided with a metal plate 132 as a mass member. Are fixed by nuts 134 and 134. Further, a balance bar 144 is vertically provided on both sides of the holder 15, and a balance plate 42 as a mass member is provided at each lower end thereof. The balance plate 42 is fixed by nuts 134 and 134 screwed onto the threaded portion 140 of the balance rod 144. Others are the same as in the fourth embodiment.

【0058】 本例においては,上記ナット134を上下動させることにより,質量部材とし ての金属板132,バランス用プレート42,42を上下動させて,重心位置を 設定する。 本例においては,質量部材がエッジ部10の先端部を含む鉛直面と垂直な面の 両側に位置しているので,かかる構成に関して実施例1で示した効果と同様の効 果を得ることができる。In this example, by moving the nut 134 up and down, the metal plate 132 as a mass member and the balancing plates 42, 42 are moved up and down to set the center of gravity. In this example, since the mass member is located on both sides of the vertical surface including the tip of the edge portion 10 and the vertical surface, the same effect as the effect shown in the first embodiment can be obtained in this configuration. it can.

【0059】 実施例6 本例は,図10(a),(b)に示すごとく,ホルダー15の両側下方に連結 部材145を設け,その先端部に質量部材としての球状体135を固定したもの である。その他は,実施例4と同様である。 そして,本例においては質量部材がエッジ部10の先端部101の中心線を含 む鉛直面の両側にある。そのため,かかる構成に関して,実施例1で示した効果 と同様の効果を得ることができる。Example 6 In this example, as shown in FIGS. 10A and 10B, a connecting member 145 is provided below both sides of the holder 15, and a spherical body 135 as a mass member is fixed to the tip end thereof. Is. Others are the same as in the fourth embodiment. Further, in this example, the mass members are on both sides of the vertical plane including the center line of the tip portion 101 of the edge portion 10. Therefore, with respect to such a configuration, it is possible to obtain the same effects as the effects shown in the first embodiment.

【0060】 実施例7 本例は,図11(a),(b)に示すごとく,エッジ部10を設けたホルダー 15と,質量部材としての円環体13とを横置きの連結部材14により連結した ものである。そして,本例は,実施例1と異なり,円環体13をエッジ部10の 中央部において1個のみ配置したものである。その他は実施例1と同様である。 本例においては,質量部材としての円環体13がエッジ部の先端部101を含 む鉛直面と垂直な面の両側に位置している。また,該円環体13が,上記先端部 の中心線を含む鉛直面の両側に位置している。Embodiment 7 In this embodiment, as shown in FIGS. 11 (a) and 11 (b), a holder 15 provided with an edge portion 10 and an annular body 13 as a mass member are connected by a horizontal connecting member 14. It is a connection. In this example, unlike the first example, only one annular member 13 is arranged in the central portion of the edge portion 10. Others are the same as in the first embodiment. In this example, the ring-shaped body 13 as a mass member is located on both sides of a plane perpendicular to the vertical plane including the tip portion 101 of the edge portion. Further, the annular body 13 is located on both sides of the vertical plane including the center line of the tip portion.

【0061】 それ故,実施例1と同様の効果を得ることができる。 なお,上記より知られるごとく,実施例1,2,3及び7は,本考案の請求項 1及び2に関する実施例であり,実施例4及び5は請求項1に関する実施例であ り,実施例6は請求項2に関する実施例である。Therefore, the same effect as that of the first embodiment can be obtained. As is known from the above, Embodiments 1, 2, 3 and 7 are embodiments relating to Claims 1 and 2 of the present invention, and Embodiments 4 and 5 are embodiments relating to Claim 1. Example 6 is an example relating to claim 2.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1にかかる粘弾性測定用剛体振子及び粘
弾性測定の全体説明図。
FIG. 1 is an overall explanatory view of a rigid pendulum for measuring viscoelasticity and viscoelasticity according to a first embodiment.

【図2】実施例1にかかる剛体振子の正面図及びそのA
−A線断面図。
FIG. 2 is a front view of a rigid pendulum according to the first embodiment and its A.
-A line sectional view.

【図3】実施例1におけるエッジ部を成膜上に載置した
状態の説明図。
FIG. 3 is an explanatory diagram of a state in which an edge portion is placed on a film formation in Example 1.

【図4】実施例1における剛体振子の説明図。FIG. 4 is an explanatory diagram of a rigid pendulum according to the first embodiment.

【図5】実施例1における剛体振子の変位と成膜の歪の
説明図。
FIG. 5 is an explanatory diagram of displacement of a rigid pendulum and strain of film formation in Example 1.

【図6】実施例2における粘弾性測定用剛体振子の正面
図及び側面図。
6A and 6B are a front view and a side view of a rigid pendulum for measuring viscoelasticity in Example 2.

【図7】実施例3における粘弾性測定用剛体振子の正面
図及び側面図。
7A and 7B are a front view and a side view of a rigid pendulum for measuring viscoelasticity in Example 3.

【図8】実施例4における粘弾性測定用剛体振子の正面
図及び側面図。
8A and 8B are a front view and a side view of a rigid pendulum for measuring viscoelasticity in Example 4.

【図9】実施例5における粘弾性測定用剛体振子の正面
図及び側面図。
9A and 9B are a front view and a side view of a rigid pendulum for measuring viscoelasticity in Example 5.

【図10】実施例6における粘弾性測定用剛体振子の正
面図及び側面図。
FIG. 10 is a front view and a side view of a rigid pendulum for measuring viscoelasticity in Example 6.

【図11】実施例7における粘弾性測定用剛体振子の
(b)図のB−B線断面図及びそのA−A線断面図。
FIG. 11 is a cross-sectional view taken along the line BB of FIG. 11B of the rigid pendulum for measuring viscoelasticity in Example 7 and a cross-sectional view taken along the line AA thereof.

【図12】従来例における粘弾性測定用剛体振子の正面
図及びそのA−A線断面図。
FIG. 12 is a front view of a rigid pendulum for measuring viscoelasticity in a conventional example and a sectional view taken along line AA thereof.

【図13】従来例における,エッジ部と成膜との接触状
態の説明図。
FIG. 13 is an explanatory diagram of a contact state between the edge portion and the film formation in the conventional example.

【図14】従来例における,粘弾性測定の説明図。FIG. 14 is an explanatory diagram of viscoelasticity measurement in a conventional example.

【符号の説明】[Explanation of symbols]

1...剛体振子, 10...エッジ部, 101...先端部, 11...変位片, 12...加振片, 13...円環体(質量部材), 131,135...球状体, 132...金属板, 14...連結部材, 15...ホルダー, 31...ワイヤー, 41...バランス球, 42...バランス用プレート, 70...成膜, 1. . . Rigid pendulum, 10. . . Edge part, 101. . . Tip, 11. . . Displacement piece, 12. . . Excitation piece, 13. . . Torus (mass member), 131, 135. . . Spherical body, 132. . . Metal plate, 14. . . Connection member, 15. . . Holder, 31. . . Wire, 41. . . Balance sphere, 42. . . Balancing plate, 70. . . Film formation,

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 塗膜等の粘弾性を有する成膜に接触させ
ると共に振動させるエッジ部と,該エッジ部の振動にお
ける慣性モーメントを確保するための質量部材とよりな
る粘弾性測定用剛体振子において, 上記質量部材は,エッジ部が成膜と接触する先端部を含
む鉛直面と垂直な面の上下両側に,それぞれ配設してあ
ることを特徴とする粘弾性測定用剛体振子。
1. A rigid pendulum for viscoelasticity measurement, comprising an edge part which is brought into contact with a viscoelastic film such as a coating film and vibrates, and a mass member for ensuring a moment of inertia in vibration of the edge part. A viscoelasticity measuring rigid pendulum, characterized in that the mass members are arranged on both upper and lower sides of a plane perpendicular to a vertical plane including a tip portion whose edge portion comes into contact with the film formation.
【請求項2】 塗膜等の粘弾性を有する成膜に接触させ
ると共に振動させるエッジ部と,該エッジ部の振動にお
ける慣性モーメントを確保するための質量部材とよりな
る粘弾性測定用剛体振子において, 上記質量部材は,エッジ部が成膜と接触する先端部の中
心線を含む鉛直面の両側に,それぞれ配設してあること
を特徴とする粘弾性測定用剛体振子。
2. A rigid pendulum for viscoelasticity measurement, comprising: an edge part that is brought into contact with a viscoelastic film such as a coating film and vibrates, and a mass member for ensuring a moment of inertia in the vibration of the edge part. A rigid pendulum for viscoelasticity measurement, characterized in that the mass members are respectively arranged on both sides of a vertical plane including a center line of a tip portion whose edge portion comes into contact with the film formation.
JP1991099736U 1991-11-07 1991-11-07 Rigid pendulum for viscoelasticity measurement Expired - Fee Related JP2585887Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1991099736U JP2585887Y2 (en) 1991-11-07 1991-11-07 Rigid pendulum for viscoelasticity measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1991099736U JP2585887Y2 (en) 1991-11-07 1991-11-07 Rigid pendulum for viscoelasticity measurement

Publications (2)

Publication Number Publication Date
JPH0540869U true JPH0540869U (en) 1993-06-01
JP2585887Y2 JP2585887Y2 (en) 1998-11-25

Family

ID=14255327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991099736U Expired - Fee Related JP2585887Y2 (en) 1991-11-07 1991-11-07 Rigid pendulum for viscoelasticity measurement

Country Status (1)

Country Link
JP (1) JP2585887Y2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185875A (en) * 2013-03-22 2014-10-02 Nippon Telegr & Teleph Corp <Ntt> Method for evaluating deterioration of coating film
JP2016099285A (en) * 2014-11-25 2016-05-30 パナソニックIpマネジメント株式会社 Viscoelasticity measuring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165617A (en) * 1985-01-18 1986-07-26 Jeco Co Ltd Clinometer
JPS6335946U (en) * 1986-08-25 1988-03-08

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165617A (en) * 1985-01-18 1986-07-26 Jeco Co Ltd Clinometer
JPS6335946U (en) * 1986-08-25 1988-03-08

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185875A (en) * 2013-03-22 2014-10-02 Nippon Telegr & Teleph Corp <Ntt> Method for evaluating deterioration of coating film
JP2016099285A (en) * 2014-11-25 2016-05-30 パナソニックIpマネジメント株式会社 Viscoelasticity measuring device

Also Published As

Publication number Publication date
JP2585887Y2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
US4679427A (en) Apparatus for measuring viscosity
US3382706A (en) Oscillatory element for measuring viscosity
Pollard et al. [20] Methods to characterize actin filament networks
KR920003532B1 (en) Vibration type rheometer apparatus
Zahalak et al. Determination of cellular mechanical properties by cell poking, with an application to leukocytes
Desprat et al. Microplates-based rheometer for a single living cell
Cerimovic et al. Sensing viscosity and density of glycerol–water mixtures utilizing a suspended plate MEMS resonator
JP3135605B2 (en) Stir bar
WO2013111608A1 (en) Viscoelasticity measurement method and viscoelasticity measurement device
US20180321216A1 (en) Friction testing apparatus and method
JPH07504032A (en) Liquid viscoelastic property determination device and its usage
US4370888A (en) Vibratory weighing apparatus
Ciotta et al. Improved Understanding of Vibrating-Wire Viscometer− Densimeters
JP2585887Y2 (en) Rigid pendulum for viscoelasticity measurement
US2496632A (en) Vibration testing apparatus
Kumar et al. Shear moduli of metal specimens using resonant column tests
JP5831904B2 (en) Viscoelasticity measuring method and viscoelasticity measuring device
JPS5915837A (en) Viscosity measuring apparatus for high temperature fluid
JP5831903B2 (en) Viscoelasticity measuring method and viscoelasticity measuring device
Wu et al. Micronewton shear rheometer performing SAOS using 2 mg of sample
JPH04505803A (en) Sample property measuring device and method
JP2004012149A (en) Liquid physical property measuring apparatus
Mert et al. A new method to determine viscosity of liquids using vibration principles
Matsubara et al. Proposal for new hardness concept using Herbert hardness tester
CN108333081B (en) Device and method for testing ultimate shear stress of slurry material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees