JPH0346478B2 - - Google Patents

Info

Publication number
JPH0346478B2
JPH0346478B2 JP15027683A JP15027683A JPH0346478B2 JP H0346478 B2 JPH0346478 B2 JP H0346478B2 JP 15027683 A JP15027683 A JP 15027683A JP 15027683 A JP15027683 A JP 15027683A JP H0346478 B2 JPH0346478 B2 JP H0346478B2
Authority
JP
Japan
Prior art keywords
general formula
compound
formula
group
white powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15027683A
Other languages
Japanese (ja)
Other versions
JPS6042391A (en
Inventor
Toranosuke Saito
Hiroyuki Ooishi
Takumi Hirayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANKO KAIHATSU KAGAKU KENKYUSHO KK
Original Assignee
SANKO KAIHATSU KAGAKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANKO KAIHATSU KAGAKU KENKYUSHO KK filed Critical SANKO KAIHATSU KAGAKU KENKYUSHO KK
Priority to JP15027683A priority Critical patent/JPS6042391A/en
Publication of JPS6042391A publication Critical patent/JPS6042391A/en
Publication of JPH0346478B2 publication Critical patent/JPH0346478B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は環状有機りん化合物の生成方法に関
し、更に詳しくは、一般式() (式中、R1〜R8は同一又は相異なつて水素原
子、ハロゲン原子、アルキル基、シクロアルキル
基、アリール基、アラールキル基、シアノ基、ア
シル基、又はハロゲンで置換されたアルキル基、
アリール基或いはアラールキルキル基を示す。)
で表わされる環状有機りん化合物の生成方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a cyclic organophosphorus compound, more specifically, (In the formula, R 1 to R 8 are the same or different and are hydrogen atoms, halogen atoms, alkyl groups, cycloalkyl groups, aryl groups, aralkyl groups, cyano groups, acyl groups, or halogen-substituted alkyl groups,
Indicates an aryl group or an aralkyl group. )
The present invention relates to a method for producing a cyclic organophosphorus compound represented by

一般式()で表わされるりん化合物は、各種
有機薬品類、界面活性剤、合成樹脂、エラストマ
ー等の空気、光、熱等による劣化、着色等の防
止、難燃化等に効果を有し、更にこれからの誘導
化合物は各種の基質の物理的化学的性質の改善、
向上に独特の効果を示すものが多く、近年注目さ
れつつある化合物である。
Phosphorus compounds represented by the general formula () are effective in preventing deterioration and coloring of various organic chemicals, surfactants, synthetic resins, elastomers, etc. due to air, light, heat, etc., and making them flame retardant. Furthermore, derivative compounds derived from this will improve the physical and chemical properties of various substrates,
There are many compounds that show unique effects on improvement, and these compounds have been attracting attention in recent years.

一般式()のりん化合物は、例えば特公昭49
−45397号及び特公昭50−17979号公報に記載の様
に、o−フエニルフエノール又はその核置換体と
三塩化りんとを触媒の存在下に加熱反応せしめて
生成する化合物を、加水分解して得られる下記一
般式 {ここでR1〜R8は前記一般式()における
定義に同じ。} で表わされる化合物を加熱脱水することにより得
られる。
For example, the phosphorus compound of the general formula () is
As described in No. 45397 and Japanese Patent Publication No. 50-17979, a compound produced by heating o-phenylphenol or its nuclear substituted product and phosphorus trichloride in the presence of a catalyst is hydrolyzed. The following general formula obtained {Here, R 1 to R 8 are the same as defined in the general formula () above. } It can be obtained by heating and dehydrating the compound represented by:

一般式()のりん化合物は前記の通りそれ自
体で各種用途に用いられるが、更に各種誘導体と
してそれぞれ特徴あるりん化合物が得られる。例
えば前記特公昭50−17979号公報にその誘導体が
記載されている。
As mentioned above, the phosphorus compound of the general formula () can be used by itself for various purposes, but it can also be obtained as various derivatives, each with its own characteristic phosphorus compound. For example, derivatives thereof are described in the above-mentioned Japanese Patent Publication No. 17979/1983.

本発明者らはこれらの誘導体につき種々検討を
重ねているうちに、一般式()の化合物とケト
ン化合物、例えばアセトンとの反応により得られ
る誘導体を加熱すると、一般式()の化合物と
アセトンに分解することを発見した。上記の反応
を示せば下記反応式に示す通りである。
While conducting various studies on these derivatives, the present inventors discovered that when a derivative obtained by the reaction of the compound of general formula () with a ketone compound, such as acetone, is heated, the compound of general formula () and acetone are combined. I discovered that it can be decomposed. The above reaction is shown in the reaction formula below.

(R1〜R8=Hの場合) 更に一般式()の化合物と各種のケトン化合
物(アルデヒドを含む)との反応生成物につき検
討を加えて、本発明を完成した。
(When R 1 to R 8 = H) Furthermore, the present invention was completed by studying the reaction products of the compound of general formula () and various ketone compounds (including aldehydes).

すなわち本発明は、一般式() (式中R1〜R8は前記一般式()における定
義に同じ。A1及びA2は同一又は相違なつて水素
原子、アルキル基、アリール基を示す。) で表わされる有機りん化合物を、加熱分解せしめ
ることを特徴とする、一般式()(前記)で示
される環状有機りん化合物の生成方法である。
That is, the present invention is based on the general formula () (In the formula, R 1 to R 8 are the same as defined in the general formula () above. A 1 and A 2 are the same or different and represent a hydrogen atom, an alkyl group, or an aryl group.) This is a method for producing a cyclic organophosphorus compound represented by the general formula () (above), which is characterized by thermal decomposition.

上記分解反応は下記反応式(a)で示される。 The above decomposition reaction is shown by the following reaction formula (a).

上記反応式(a)で示される熱分解反応は通常一般
式()の化合物の熱分解温度以上、一般式
()の化合物の分解温度以下で行なろれるが、
その難易は一般に、一般式() A1COA2 () {式中A1及びA2は前記一般式()における
定義に同じ。} で示される化合物の揮発性の大小に影響される。
すなわち一般式()の化合物の揮発性が大きい
場合は熱分解は容易に進行し、揮発性が小さい場
合は困難となる。ここで一般式()の化合物の
揮発性の大小は単に通常状態下での程度のみでな
く、その化合物が置かれる雰囲気系全体を考慮し
て判断される。例えば開放系下又は減圧系下での
加熱の場合は、一般式()の化合物の揮発性は
大となり熱分解反応は促進される。
The thermal decomposition reaction represented by the above reaction formula (a) is usually carried out at a temperature above the thermal decomposition temperature of the compound of general formula () and below the decomposition temperature of the compound of general formula (),
The difficulty is generally expressed by the general formula () A 1 COA 2 () {where A 1 and A 2 are defined as in the above general formula (). } is affected by the volatility of the compound shown.
That is, when the volatility of the compound of general formula () is high, thermal decomposition proceeds easily, and when the volatility is low, it becomes difficult. Here, the degree of volatility of the compound of general formula () is determined not only by the degree under normal conditions but also by taking into account the entire atmosphere system in which the compound is placed. For example, in the case of heating under an open system or a reduced pressure system, the volatility of the compound of general formula () becomes high and the thermal decomposition reaction is accelerated.

例えば一般式()でA1=A2=フエニルの場
合、生成すべき一般式()の化合物はベンゾフ
エノンであるが、このものは常圧では揮発性が小
さく反応式(a)の熱分解反応は進行し難いが、減圧
系内では反応が促進される。
For example, when A 1 = A 2 = phenyl in the general formula (), the compound of the general formula () to be produced is benzophenone, but this compound has low volatility at normal pressure and cannot be reacted by the thermal decomposition reaction of reaction formula (a). Although it is difficult to proceed, the reaction is accelerated in a reduced pressure system.

又一般式()の化合物には、これから熱分解
生成すべき一般式()の化合物が高揮発性であ
るにも拘らず、そのP−C(A1,A2が結合する
C)結合が強固であるため、反応式(a)の熱分解反
応が困難であるものが存在(例えばA1=A2=H
の場合)するが、この場合も高真空下では反応が
促進される。
In addition, in the compound of general formula (), although the compound of general formula () to be thermally decomposed is highly volatile, the P-C (C bonded by A 1 and A 2 ) bond is There are some substances that are so strong that the thermal decomposition reaction of reaction formula (a) is difficult (for example, A 1 = A 2 = H
), but in this case too, the reaction is accelerated under high vacuum.

又一般式()及び()の化合物に対し不活
性で、分解生成する一般式()の化合物の沸点
より高く、一般式()の分解温度より低い沸点
を有する溶媒の共存下に一般式()の化合物を
加熱することにより熱分解を行なうこともでき
る。この方法は、一般式()の熱分解温度が一
般式()の分解温度に近接している場合や、一
般式()の熱分解温度が高い場合に有利であ
る。
In addition, in the presence of a solvent that is inert to the compounds of general formula () and () and has a boiling point higher than the boiling point of the compound of general formula () to be decomposed and lower than the decomposition temperature of general formula (), ) can also be thermally decomposed by heating the compound. This method is advantageous when the thermal decomposition temperature of general formula () is close to the decomposition temperature of general formula () or when the thermal decomposition temperature of general formula () is high.

本発明の方法は種々の技術的反応が可能であ
る。例えば一般式()の化合物の特徴であり又
場合により欠点となるPに結合するHの大きい反
応性や加水分解性のための種々の目的の使用時に
おける不都合性を、一旦一般式()の化合物と
して安定化して目的場所に定着せしめたのち加熱
分解せしめて、一般式()の化合物を生成せし
めることにより解消し目的を達成することができ
る。かかる応用例として、一般式()の化合物
を有機溶媒溶液として、或いは水性微粒子分散液
として、これに紙、繊維、織物等を浸漬したの
ち、乾燥、熱分解を行なつてこれらの基質表面に
一般式()の化合物を固着させることができ
る。
The method of the invention allows various technical reactions. For example, once the inconveniences of the compound of the general formula () when used for various purposes due to the large reactivity and hydrolyzability of H bonded to P, which are the characteristics and sometimes disadvantages of the compound of the general formula (), After being stabilized as a compound and fixed at the target location, it is thermally decomposed to produce a compound of the general formula (), thereby eliminating the problem and achieving the objective. As an example of such an application, paper, fibers, textiles, etc. are immersed in the compound of general formula () as an organic solvent solution or as an aqueous fine particle dispersion, and then dried and thermally decomposed to form a solution on the surface of these substrates. A compound of general formula () can be fixed.

又熱分解により生成する一般式()の化合物
の利用のみでなく、同時に生成する一般式()
の化合物の利用が可能であることは勿論である。
In addition to the use of compounds of general formula () produced by thermal decomposition, compounds of general formula () produced at the same time can also be used.
Of course, it is possible to use the following compounds.

他の利用法の一例として、一般的に一般式
()の化合物は一般式()の化合物より融点
が高いので、一般式()の利用における固−液
状選択が可能となり、利用効果を高める。
As an example of another usage, since the compound of the general formula () generally has a higher melting point than the compound of the general formula (), it becomes possible to select between solid and liquid forms when using the general formula (), thereby increasing the usage effect.

反応式(a)による一般式()の化合物の生成確
認は、重量分析、融点測定、元素分析、液体クロ
マトグラフイー、赤外線吸収スペクトル分析等で
行なわれる。又よう素消費量の測定によつても行
ない得る。すなわち一般式()の化合物は通常
よう素を消費しないが、一般式()の化合物は
定量的に消費する。
Confirmation of the production of the compound of general formula () by reaction formula (a) is carried out by gravimetric analysis, melting point measurement, elemental analysis, liquid chromatography, infrared absorption spectrum analysis, etc. It can also be carried out by measuring the amount of iodine consumed. That is, the compound of general formula () does not normally consume iodine, but the compound of general formula () consumes it quantitatively.

次に本発明の実施例について説明する。 Next, examples of the present invention will be described.

実施例 1 9,10−ジヒドロ−9−オキサ−10−ホスフア
フエナントレン−10−オキシド{一般式()
で、R1〜R8=Hであるもの、以下HCAと称す
る}とアセトアルドヒドとを反応させて得られ
た、式(−a) {常圧下の融解(分解)点153゜〜185℃、P含
有率11.83%(理論値11.92%)、白色粉末} で示される化合物65.0gを、ガラス製ロータリー
エバポレータに仕込み、窒素ガス気流下、30トー
ルに減圧し140℃に加熱後170℃まで緩やかに昇温
する。この間に内容物はガスを発生しながら液状
化する。170℃に5時間保つて分解を完結させた
後冷却して残留物54.2gを得た。これを溶融時磁
製皿に排出、固化、粉砕して白色粉末を得た。融
点118℃、P含有率14.21%(HCAとしての理論
値14.35%)。さらによう素滴定、液体クロマトグ
ラフイーによりHCAであることが確認された。
また分解排出ガスの凝縮物はガスクロマトグラフ
イーによりアセトアルデヒドであることが確認さ
れた。
Example 1 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide {general formula ()
Formula (-a) obtained by reacting a compound in which R 1 to R 8 =H, hereinafter referred to as HCA} and acetaldehyde. {Melting (decomposition) point under normal pressure 153° to 185°C, P content 11.83% (theoretical value 11.92%), white powder} 65.0 g of the compound shown below was charged into a glass rotary evaporator, and under a nitrogen gas stream, Reduce the pressure to 30 Torr, heat to 140℃, and then slowly increase the temperature to 170℃. During this time, the contents liquefy while generating gas. The mixture was kept at 170° C. for 5 hours to complete decomposition and then cooled to obtain 54.2 g of residue. When melted, this was discharged into a porcelain dish, solidified, and pulverized to obtain a white powder. Melting point: 118°C, P content: 14.21% (theoretical value as HCA: 14.35%). Furthermore, it was confirmed to be HCA by iodine titration and liquid chromatography.
Furthermore, the condensate of the decomposition exhaust gas was confirmed to be acetaldehyde by gas chromatography.

実施例 2 HCAとメチル・エチル・ケトンとを反応させ
て得られた、式(−b) {融点147℃、P含有率10.65%(理論値10.76
%)、白色粉末} で示される化合物を、実施例1と同様に処理し、
白色粉末54.1gを得た。融点118℃、P含有率
14.22%。さらに実施例1におけると同様の分析
によりHCAであることを確認した。又分解留出
物はメチルエチルケトンであつた。
Example 2 Formula (-b) obtained by reacting HCA with methyl ethyl ketone {Melting point 147℃, P content 10.65% (theoretical value 10.76
%), white powder} was treated in the same manner as in Example 1,
54.1 g of white powder was obtained. Melting point 118℃, P content
14.22%. Furthermore, the same analysis as in Example 1 confirmed that it was HCA. The decomposition distillate was methyl ethyl ketone.

実施例 3 HCAとアセトンとを反応させて得られた、式
(−c) {融解(分解)点166℃、P含有率11.26%(諭
論値11.31%)、白色粉末} で示される化合物68.5gを、実施例1と同様に処
理し、白色粉末54.1gを得た。融点118℃、P含
有率14.28%。実施例1と同様にしてHCAである
こと確認し、分解留出物はアセトンであることを
確認した。
Example 3 Formula (-c) obtained by reacting HCA and acetone {Melting (decomposition) point: 166° C., P content: 11.26% (problematic value: 11.31%), white powder} 68.5 g of the compound shown in the following was treated in the same manner as in Example 1 to obtain 54.1 g of white powder. Melting point: 118℃, P content: 14.28%. It was confirmed that it was HCA in the same manner as in Example 1, and that the cracked distillate was acetone.

実施例 4 HCAとアセトフエノンとを反応させて得られ
た、式(−d) {融点165℃、P含有率9.20%(理論値9.23
%)、白色粉末} で示される化合物84.0gを、実施例1と同様に処
理し、白色粉末54.3gを得た。融点117.5℃、P
含有率14.18%、白色粉末。実施例1と同様にし
てHCAであることを確認し、分解留出物はアセ
トフエノンであることを確認した。
Example 4 Formula (-d) obtained by reacting HCA and acetophenone {Melting point 165℃, P content 9.20% (theoretical value 9.23
%), white powder} 84.0 g of the compound shown in Example 1 was treated in the same manner as in Example 1 to obtain 54.3 g of white powder. Melting point 117.5℃, P
Content 14.18%, white powder. It was confirmed that it was HCA in the same manner as in Example 1, and the cracked distillate was confirmed to be acetophenone.

実施例 5 HCAとメチル・イソブチル・ケトンとを反応
させて得られる、式(−e) {融点143゜、P含有率9.75%(理論値9.81%)、
白色粉末} で示される化合物79.0gを、実施例1と同様に処
理し、白色粉末54.1gを得た。融点118℃、P含
有率14.30%、白色粉末。実施例1と同様にして
HCAであることを確認し、分解留出物はメチ
ル・イソブチル・ケトンであることを確認した。
Example 5 Formula (-e) obtained by reacting HCA and methyl isobutyl ketone {Melting point 143°, P content 9.75% (theoretical value 9.81%),
White powder} 79.0 g of the compound represented by was treated in the same manner as in Example 1 to obtain 54.1 g of white powder. Melting point 118℃, P content 14.30%, white powder. Same as Example 1
It was confirmed that it was HCA, and the cracked distillate was confirmed to be methyl isobutyl ketone.

実施例 6 式(−f) の化合物とアセトンとを反応させて得られる式
(−f) {分解点;約160℃、P含有率;8.65%(理論
値;8.78%)、白色粉末} で示される化合物73.8gを実施例1と同様に処理
し、白色粉末61.5gを得た。融点183℃、P含有
率10.38%(理論値10.51%)、白色粉末。実施例
1と同様にして式(−f)の化合物であること
を確認した。
Example 6 Formula (-f) Formula (-f) obtained by reacting the compound with acetone {Decomposition point: about 160°C, P content: 8.65% (theoretical value: 8.78%), white powder} 73.8 g of the compound shown in the following was treated in the same manner as in Example 1 to obtain 61.5 g of white powder. Melting point: 183°C, P content: 10.38% (theoretical value: 10.51%), white powder. The compound of formula (-f) was confirmed in the same manner as in Example 1.

実施例 7 式(−g) で示される化合物とアセトンとを反応させて得ら
れる式(−g) {分解点;約200℃、P含有率7.05%(理論値
7.18%)、白色粉末。}で示される化合物108gに
エチレングリコールモノエチルエーテル430gを
加えて溶媒の沸点下に5時間加熱してアセトンを
留去し、室温に冷却し、過、減圧乾燥して結晶
性白色粉末56gを得た。融点215℃、P含有率
8.01%(理論値8.29%)。実施例1と同様にして
式(−g)の化合物であることを確認した。
Example 7 Formula (-g) Formula (-g) obtained by reacting the compound shown by with acetone {Decomposition point: approx. 200℃, P content 7.05% (theoretical value
7.18%), white powder. } 430 g of ethylene glycol monoethyl ether was added to 108 g of the compound represented by the formula, heated below the boiling point of the solvent for 5 hours to distill off acetone, cooled to room temperature, filtered, and dried under reduced pressure to obtain 56 g of crystalline white powder. Ta. Melting point 215℃, P content
8.01% (theoretical value 8.29%). The compound of formula (-g) was confirmed in the same manner as in Example 1.

実施例 8 式(−h) (式中、t−Buは第3級ブチル基を表わす) で示される化合物とアセトンとを反応させて得ら
れる式(−h) {分解点:約100℃、P含有率9.30%(理論値
9.39%)、白色粉末}で示される化合物83gを実
施例1と同様に処理し、淡黄色アメ状物68gを得
た{融点;ガラス様で不明確、P含有率11.30%
(理論値11.40%)}。実施例1と同様にして式(
−h)の化合物であることを確認した。
Example 8 Formula (-h) (In the formula, t-Bu represents a tertiary butyl group) Formula (-h) obtained by reacting a compound represented by the following with acetone: {Decomposition point: approx. 100℃, P content 9.30% (theoretical value
9.39%), white powder} was treated in the same manner as in Example 1 to obtain 68 g of a pale yellow candy-like substance {melting point: glass-like and unclear, P content 11.30%
(Theoretical value 11.40%)}. Similarly to Example 1, the formula (
-h) was confirmed to be the compound.

Claims (1)

【特許請求の範囲】 1 一般式() (式中R1〜R8は同一又は相異なつて水素原子、
ハロゲン原子、アルキル基、シクロアルキル基、
アリール基、アラールキル基、シアノ基、アシル
基又はハロゲンで置換されたアルキル基、アリー
ル基或いはアラールキル基を、A1及びA2は同一
又は相異なつて水素原子、アルキル基、アリール
基を、それぞれ示す。) で表わされる有機りん化合物を、加熱分解せしめ
ることを特徴とする、一般式() {ここで、R1〜R8は一般式()における定
義に同じ。} で表わされる環状有機りん化合物を生成する方
法。
[Claims] 1 General formula () (In the formula, R 1 to R 8 are the same or different hydrogen atoms,
halogen atom, alkyl group, cycloalkyl group,
An aryl group, an aralkyl group, a cyano group, an acyl group, or a halogen-substituted alkyl group, an aryl group, or an aralkyl group, and A 1 and A 2 are the same or different and represent a hydrogen atom, an alkyl group, or an aryl group, respectively. . ) The general formula () is characterized by thermally decomposing an organic phosphorus compound represented by {Here, R 1 to R 8 are the same as defined in general formula (). } A method for producing a cyclic organophosphorus compound represented by
JP15027683A 1983-08-19 1983-08-19 Formation of cyclic organic phosphorus compound Granted JPS6042391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15027683A JPS6042391A (en) 1983-08-19 1983-08-19 Formation of cyclic organic phosphorus compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15027683A JPS6042391A (en) 1983-08-19 1983-08-19 Formation of cyclic organic phosphorus compound

Publications (2)

Publication Number Publication Date
JPS6042391A JPS6042391A (en) 1985-03-06
JPH0346478B2 true JPH0346478B2 (en) 1991-07-16

Family

ID=15493420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15027683A Granted JPS6042391A (en) 1983-08-19 1983-08-19 Formation of cyclic organic phosphorus compound

Country Status (1)

Country Link
JP (1) JPS6042391A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446076B1 (en) * 1995-11-30 2004-11-03 산요덴키가부시키가이샤 Internal combustion engine unit and air conditioner using the same
JPWO2005100650A1 (en) * 2004-04-13 2008-03-06 株式会社カネカ Flame retardant polyester artificial hair

Also Published As

Publication number Publication date
JPS6042391A (en) 1985-03-06

Similar Documents

Publication Publication Date Title
JP7305671B2 (en) Monoalkyltin compounds with reduced polyalkyl contamination, compositions and methods thereof
US4618693A (en) Cyclic organic phosphorus compound and process for producing same
EP3305769B1 (en) Method for preparation of (7-phenoxy-4-hydroxy-1-methyl-isoquinoline-3-carbonyl)-glycine (roxedustat) and its intermediates based on simultaneous opening of oxazolic ring, fission of ether and creation of imine
US20140228589A1 (en) Process for producing powders from alkali metal salts of silanols
US20140296556A1 (en) Method for producing solids from alkali salts of silanols
HU222121B1 (en) Process for preparing benzoic acid derivatives
Hopkins et al. Aromatic Phosphinic Acids and Derivatives. II. Direct Esterification of Diphenylphosphinodithioic Acid1
JPS61263986A (en) Organic silicon compound
JP2009263316A (en) Method for producing incompletely condensed oligosilsesquioxane
JPH0346478B2 (en)
Gasnot et al. Access to Stable Quaternary Phosphiranium Salts by P-Alkylation and P-Arylation of Phosphiranes
KR101249361B1 (en) Manufacturing process of high-purity Tris(trialkylsilyl)Phosphite
JP2009269820A (en) Method for producing basket-formed siloxane compound
US6160151A (en) Process for production of diphenyl-dialkoxysilane, phenylalkyl-dialkoxysilane, octaphenylcyclotetrasilozane and sym-tetraalkyltetraphenyl-cyclotetrasiloxane
WO2019006774A1 (en) Method for preparing didopo compound
Dussart et al. A General Protocol for the Synthesis of H-α-Hydroxyphosphinates
RU2464286C1 (en) Method of producing heat-resistant oligoorganosiloxane resins
US3332987A (en) Aminoalkylphosphinic acids
JP4147115B2 (en) Method for producing silanol-terminated oligomeric material
RU2814974C1 (en) Method of producing trimethylalkoxysilanes
US2472799A (en) Method for the production of alkalimetal salts of triorgano-silanols
EP2298781A1 (en) Method for producing novel sulfur-containing organosilicon compound
JP6219681B2 (en) Process for preparing fluoroacylated arylamines
SU460631A3 (en) Method for producing phosphorus acid esters
JPS6032783A (en) Fluorine-containing coumarins