JPH0346422B2 - - Google Patents

Info

Publication number
JPH0346422B2
JPH0346422B2 JP57230375A JP23037582A JPH0346422B2 JP H0346422 B2 JPH0346422 B2 JP H0346422B2 JP 57230375 A JP57230375 A JP 57230375A JP 23037582 A JP23037582 A JP 23037582A JP H0346422 B2 JPH0346422 B2 JP H0346422B2
Authority
JP
Japan
Prior art keywords
starch
etherified
binder
molding
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57230375A
Other languages
Japanese (ja)
Other versions
JPS59116171A (en
Inventor
Masahiro Nishida
Norio Hishiki
Shigeyuki Takagi
Tooru Nakajima
Hiroshi Hayakawa
Norishige Ogura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Starch Chemical Co Ltd
Original Assignee
Nippon Starch Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Starch Chemical Co Ltd filed Critical Nippon Starch Chemical Co Ltd
Priority to JP57230375A priority Critical patent/JPS59116171A/en
Publication of JPS59116171A publication Critical patent/JPS59116171A/en
Publication of JPH0346422B2 publication Critical patent/JPH0346422B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はセラミツクスの製造工程において澱粉
誘導体、植物性種子粘質物誘導体からなる群より
選ばれる1種または2種以上を結合剤として使用
する成形性の優れたセラミツクスの成形方法に関
するものである。 従来、セラミツクスの製造工程において成形可
能な程度の可塑性粘度を有していない素地や乾燥
強度が十分でない素子には、結合剤が添加されて
いる。 結合剤は成形時、可塑性を付与し成形後の形を
保持するために用いられる。 成形過程においては乾燥強度、均一性、漏れ等
が良好で、混合が短時間でよく、収縮、気泡の発
生が起こらない等の性質が要求される。 焼結過程においては400〜500℃で燃え切り、熱
歪、発泡等が起こらない等の性質が要求される。 従来使用されている結合剤は、素地の種類や採
用される成形方法によつてその種類は多種多様で
あり、それぞれ使い分けられているが通常、澱
粉、セルロース誘導体ポリビニルアルコール等が
用いられている。 澱粉としては未加工の原料澱粉、酸加水分解処
理により冷水可溶性としたデキストリン、あるい
は、熱処理により冷水膨潤性としたアルフアー化
澱粉等が用いられているが、これらは流動特性、
型枠への付着または沈積、成形体の強度、均一
性、成形体の乾燥性状等が好ましくなく満足すべ
きものでない。 セルロース誘導体としてはカルボキシメチルセ
ルロースあるいはメチルセルロース等が用いられ
ているが、これらはセラミツクス素地との混合の
際、気孔率が高くピンホールが生じ易い、脱型枠
後の成形体が変形し易く反り等が生じる、乾燥速
度が遅い、沈積が早く焼結後表面が滑らかでなく
緻密さに欠ける、価格が高い等の欠点を有し満足
すべきものではない。 ポリビニルアルコールはセラミツクス素地との
混合の際気孔率が高くピンホールが生じ易い、成
形体の乾燥強度が弱い、燃焼範囲が狭く爆発的に
燃焼するため熱歪が生じる、適切な流動性が得が
たい等の欠点を有し満足すべきものでない。 本発明者らは前記の欠点を解決すべく鋭意研究
を重ねた結果、澱粉誘導体、植物性種子粘質物誘
導体からなる群より選ばれる1種または2種以上
を結合剤として成形可能な程度の可塑性粘度を有
していないセラミツクス素地や乾燥強度が十分で
ないようなセラミツクス素地に添加して成形する
と、前記の欠点を解決されるという事実を見出し
本発明を完成するに至つた。 本発明における澱粉誘導体とはエーテル化澱
粉、エステル化澱粉、グラフト共重合化澱粉およ
びこれらをデキストリン化したもの、アルフアー
化したものを云う。 エーテル化澱粉は小麦澱粉、馬鈴薯澱粉、甘藷
澱粉、タピオカ澱粉、米澱粉、サゴ澱粉、コーン
スターチ、ハイアミロースコーンスターチ等の天
然澱粉やこれらの弁解物、アミロースやアミロペ
クチン分画物、小麦粉、米粉、トウモロコシ粉、
切干藷粉末、切干タピオカ粉末等の澱粉含有物質
を原料として、エチレンオキシド、プロピレンオ
キシド、モノクロル酢酸、ジメチル硫酸、ヨウ化
メチル、塩化アリル、アクリロニトリル、アクリ
ルアミド、塩化ベンジル、ジエチルアミノエチル
クロリド、3−クロロ、2−ヒドロキシプロピル
トリメチルアンモニウムクロリド等のエーテル化
剤を作用させて得られる。 エステル化澱粉は前記澱粉類に濃硫酸、無水酢
酸、酢酸ビニル、無水マレイン酸、無水コハク
酸、プロピオン酸、酪酸、オルトリン酸塩、ポリ
リン酸塩、メタリン酸塩等のエステル化剤を作用
させれ得られる。 架橋エーテル化澱粉、架橋エステル化澱粉は前
記澱粉類にエーテル化剤またはエステル化剤を作
用させる前後あるいは同時にホルムアルデヒド、
エピクロルヒドリン、オキシ塩化リン、ポリリン
酸塩、メタリン酸塩、ジイソシアネート、ビスエ
チレン尿素、アジピン酸、アクロレイン等の架橋
剤を作用させて得られる。 グラフト共重合化澱粉は前記澱粉類にアクリル
酸、メタアクリル酸、アクリルアミド、メタアク
リルアミド、酢酸ビニル、アクリル酸メチル、メ
タアクリル酸メチル、アクリル酸エチル、メタア
クリル酸エチル等の単量体を単独重合あるいは共
重合させて得られる。 同様にエーテル化またはエステル化の前後にグ
ラフト共重合化させることによつてグラフト共重
合化エーテル化澱粉またはグラフト共重合化エス
テル化澱粉が得られる。 更に、これらを高温で酸加水分解処理しデキス
トリン化することによつて冷水可溶性、あるいは
熱処理しアルフアー化することによつて冷水膨潤
性にしても良い。 本発明における植物性種子粘質物としては、グ
アーガム、ローカストビーンガム、タマリンド等
が挙げられる。 本発明における植物性種子粘質物誘導体として
は前記植物性種子粘質物に前記エーテル化剤を作
用させて得られるもの、前記エステル化剤を作用
させて得られるもの、前記架橋剤を作用させて得
られるもの、前記単量体をグラフト共重合化させ
て得られるもの、これらを組み合わせて得られる
ものが挙げられる。 ここで、エーテル化澱粉、エステル化澱粉、架
橋エーテル化澱粉、架橋エステル化澱粉、グラフ
ト共重合化エーテル化澱粉、グラフト共重合化エ
ステル化澱粉、エーテル化植物性種子粘質物、エ
ステル化植物性種子粘質物、架橋エーテル化植物
性種子粘質物、架橋エステル化植物性種子粘質
物、グラフト共重合化エーテル植物性種子粘質
物、グラフト共重合化エステル化植物性種子粘質
物におけるエーテル化、エステル化の程度は置換
度(無水グルコース残基1モル当りの置換基D.S.
モル)で表わし、置換度0.01〜1.0好ましくは0.05
〜0.3のものが好適に用いられる。 また、架橋エーテル化澱粉、架橋エステル化澱
粉、架橋植物性種子粘質物、架橋エーテル化植物
性種子粘質物、架橋エステル化植物性種子粘質物
における架橋程度は膨潤度で表わし、膨潤度1〜
8ml好ましくは2〜5mlのものが好適に用いられ
る。 尚、膨潤度とは澱粉試料100mgを採取し、電解
液(蒸留水中、塩化亜鉛10%および塩化アンモニ
ウム26%を含有する溶液)10ml中に懸濁させ湯浴
中(95℃以上)で5分間加熱後、20℃に冷却し十
分振とうし、これを10ml容メスシリンダーに移
し、20℃で12時間静置したときの試料膨潤容積を
mlで表わした数値を意味し、この値が小さい程架
橋の程度が大である。 グラフト共重合化澱粉、グラフト共重合化エー
テル化澱粉、グラフト共重合化エステル化澱粉、
グラフト共重合化架橋澱粉、グラフト共重合化植
物性種子粘質物等におけるグラフト率は1〜100
%好ましくは3〜40%のものが好適に用いられ
る。 これらの結合剤は通常単独で用いられるが、成
形方法や目的とする性質に応じて2種以上併用す
ることがより効果的となる。 本発明で用いられる結合剤の添加量は成形可能
な程度の可塑性粘度を有しないセラミツクス素地
や乾燥強度が十分でないセラミツクス素地100重
量部に対し0.2〜35重量部好ましくは0.5〜20重量
部が好適に添加される。 その他の成形助剤添加物としては、可塑剤(ア
ビエチン酸誘導体、ジエチル蓚酸、ポリエチレン
グリコール、ポリプロピレングリコール、フター
ル酸エステル、フタール酸ジブチル、サクロー
ス、アセテート、イソブチレート、グリセリン
等)解膠剤(グリセリン、オクタデシルアミン、
トリクロロ酢酸、オレイン酸、オクタジエン、オ
レイン酸グリセリン、トリオレイン酸グリセリ
ン、トリステアリン酸グリセリン、メンヘーデン
油等)溶剤(トルエン、メチルエチルケトン等)
が挙げられる。 これら成形助剤の添加量はセラミツクス素地、
成形方法によつて適宜、乾燥性、分解性、結合
性、可塑性、解膠性等を検討し適切な性質を得る
べく適量を添加する。 本発明の結合剤を用いると従来より低い水分率
で適性な可塑性、流動性が得られ、混合の際の気
孔率が低いためピンホールが出がたく、水分保持
安定性が良好で経時変化に対し安定である。また
粒子の沈降速度、水の移動速度が良好であり、面
が滑らかで均質であり、脱型が容易で乾燥強度が
優れている。更に燃焼温度範囲が広く成形後の収
縮が少なく成形できる。 本発明の結合剤を用いる成形方法としては、
種々公知の方法が用いられ、成形方法の種類を問
わず、従来よりも低コストでかつ優れた性質を得
ることができる。 特に泥漿鋳込み成形、塑性成形、乾式および半
乾式加圧成形に適しているがこれらに限定される
ものでない。 成形に際しては、セラミツクス素地と本発明の
結合剤および前記成形助剤各種を乾燥性、分解
性、結合性、可塑性、解膠性等を検討し適切な性
質を得るべく適量を添加される。 以上実施例を挙げて本発明を更に詳しく説明す
る。 実施例 1 アルミナ(平均粒子径5μ)99%以上を含むセ
ラミツクス素地100部(重量部以下同じ)に対し
て本発明の結合剤10部(エーテル化澱粉35%水溶
液、架橋エーテル化澱粉35%水溶液、架橋エーテ
ル化澱粉6部の25%水溶液とエーテル化グアガム
4部の9%水溶液の混合溶液)、可塑剤としてポ
リエチレングリコール(重合度1000)0.1部、フ
タル酸ジブチル0.6部、解膠剤としてグリセリン
0.1部、、分散剤として界面活性剤0.1部をパツグ
ミルに供給して混合を行ない粘土状の混合物を塑
性成形により良好な成形物を得た。 比較例 1 実施例1において本発明の結合剤の代りに、コ
ーンスターチ10部の20%水溶液、メチルセルロー
ス(重合度4000)10部の10%水溶液、ポリビニル
アルコール(部分ケン化重合度300)10部の35%
水溶液を結合剤として用いる以外は実施例1と同
様にして塑性成形を行つた。 実施例 2 実施例1、比較例1で得た成形物の物理強度
(曲げ強度、曲げ伸度)を測定した。 試験方法は塑性成形により得た70mm×20mm×1
mmの成形板を試験片とし、その横の中心線に降下
による外力(圧力)を与え破壊するときの曲げ強
度、曲げ伸度を測定した。ここで曲げ強度とは成
形板崩壊に要する最大外力(圧力)を表わし、曲
げ伸度とは成形板崩壊の際の最大変形値を成形板
の縦長に対する割合で表わす。 テンシロン型試験機にて降下速度5mm/minで
20℃、65%RH下で測定。 結果を第1表に示す。
The present invention relates to a method for molding ceramics with excellent moldability in which one or more selected from the group consisting of starch derivatives and vegetable seed mucilage derivatives is used as a binder in the ceramic manufacturing process. Conventionally, in the manufacturing process of ceramics, a binder is added to a base material that does not have a plastic viscosity that can be molded or to an element that does not have sufficient dry strength. A binder is used during molding to impart plasticity and maintain the shape after molding. In the molding process, properties such as good dry strength, uniformity, leakage, etc., short mixing time, and no shrinkage or bubble generation are required. In the sintering process, properties such as burnout at 400 to 500°C, no thermal distortion, no foaming, etc. are required. There are a wide variety of binders that have been used in the past, depending on the type of substrate and the molding method employed, and each type is used appropriately, but starch, cellulose derivative polyvinyl alcohol, etc. are usually used. The starches used include unprocessed raw starch, dextrin made cold-water soluble by acid hydrolysis, and alpha-alpharated starch made cold-water swellable by heat treatment.
The adhesion or deposition on the mold, the strength and uniformity of the molded product, the drying properties of the molded product, etc. are unfavorable and unsatisfactory. Carboxymethylcellulose or methylcellulose are used as cellulose derivatives, but these have high porosity and are prone to pinholes when mixed with ceramic substrates, and the molded product after demolding is easily deformed and warped. However, it is not satisfactory as it has drawbacks such as slow drying rate, rapid deposition, lack of smooth and dense surface after sintering, and high price. Polyvinyl alcohol has a high porosity and pinholes are likely to occur when mixed with ceramic substrates, the dry strength of the molded product is weak, the combustion range is narrow and it burns explosively, causing thermal distortion, and it is difficult to obtain appropriate fluidity. It is not satisfactory as it has the following drawbacks. The present inventors have conducted extensive research in order to solve the above-mentioned drawbacks, and as a result, we have found that the plasticity is such that it can be molded using one or more types selected from the group consisting of starch derivatives and vegetable seed mucilage derivatives as a binder. The present invention was completed based on the discovery that the above-mentioned drawbacks can be solved by adding it to a ceramic base that does not have viscosity or a ceramic base that does not have sufficient dry strength and molding it. The starch derivatives used in the present invention refer to etherified starch, esterified starch, graft copolymerized starch, and those obtained by converting these into dextrin or alpha. Etherified starches include natural starches such as wheat starch, potato starch, sweet potato starch, tapioca starch, rice starch, sago starch, corn starch, high amylose corn starch, their derivatives, amylose and amylopectin fractions, wheat flour, rice flour, and corn flour. ,
Using starch-containing substances such as dried potato powder and dried tapioca powder as raw materials, ethylene oxide, propylene oxide, monochloroacetic acid, dimethyl sulfate, methyl iodide, allyl chloride, acrylonitrile, acrylamide, benzyl chloride, diethylaminoethyl chloride, 3-chloro, 2 - Obtained by the action of an etherifying agent such as hydroxypropyltrimethylammonium chloride. Esterified starch is obtained by treating the starch with an esterifying agent such as concentrated sulfuric acid, acetic anhydride, vinyl acetate, maleic anhydride, succinic anhydride, propionic acid, butyric acid, orthophosphate, polyphosphate, metaphosphate, etc. can get. Cross-linked etherified starch and cross-linked esterified starch are treated with formaldehyde,
It is obtained by the action of a crosslinking agent such as epichlorohydrin, phosphorus oxychloride, polyphosphate, metaphosphate, diisocyanate, bisethylene urea, adipic acid, and acrolein. Graft copolymerized starch is produced by homopolymerizing monomers such as acrylic acid, methacrylic acid, acrylamide, methacrylamide, vinyl acetate, methyl acrylate, methyl methacrylate, ethyl acrylate, and ethyl methacrylate to the above starches. Alternatively, it can be obtained by copolymerization. Similarly, graft copolymerized etherified starch or graft copolymerized esterified starch can be obtained by graft copolymerization before and after etherification or esterification. Furthermore, these may be made cold water soluble by subjecting them to acid hydrolysis treatment at high temperature to form dextrin, or may be made cold water swellable by heat treatment and alpha conversion. Examples of the plant seed mucilage in the present invention include guar gum, locust bean gum, and tamarind. The plant seed mucilage derivatives in the present invention include those obtained by reacting the plant seed mucilage with the etherifying agent, those obtained by reacting the esterifying agent, and those obtained by reacting the crosslinking agent. Examples include those obtained by graft copolymerization of the above monomers, and those obtained by combining these. Here, etherified starch, esterified starch, crosslinked etherified starch, crosslinked esterified starch, graft copolymerized etherified starch, graft copolymerized esterified starch, etherified vegetable seed mucilage, esterified vegetable seed Mucilage, cross-linked etherified vegetable seed mucilage, cross-linked esterified vegetable seed mucilage, graft copolymerized ether vegetable seed mucilage, graft copolymerized esterified vegetable seed mucilage in etherification and esterification The degree is the degree of substitution (substituent DS per mole of anhydroglucose residue)
expressed in moles), degree of substitution 0.01 to 1.0, preferably 0.05
~0.3 is preferably used. In addition, the degree of crosslinking in cross-linked etherified starch, cross-linked esterified starch, cross-linked vegetable seed mucilage, cross-linked etherified vegetable seed mucilage, and cross-linked esterified vegetable seed mucilage is expressed by the swelling degree, and the swelling degree is 1 to 1.
8 ml, preferably 2 to 5 ml is suitably used. The degree of swelling is defined as 100 mg of starch sample, suspended in 10 ml of electrolyte solution (a solution containing 10% zinc chloride and 26% ammonium chloride in distilled water), and placed in a hot water bath (95°C or higher) for 5 minutes. After heating, cool to 20℃, shake thoroughly, transfer this to a 10ml graduated cylinder, and calculate the swelling volume of the sample when it is left standing at 20℃ for 12 hours.
It means a numerical value expressed in ml, and the smaller the value, the greater the degree of crosslinking. Graft copolymerized starch, graft copolymerized etherified starch, graft copolymerized esterified starch,
The graft ratio in graft copolymerized crosslinked starch, graft copolymerized vegetable seed mucilage, etc. is 1 to 100.
%, preferably 3 to 40%. Although these binders are usually used alone, it is more effective to use two or more kinds in combination depending on the molding method and the desired properties. The amount of the binder used in the present invention is preferably 0.2 to 35 parts by weight, preferably 0.5 to 20 parts by weight, per 100 parts by weight of ceramic bodies that do not have a plastic viscosity that can be molded or that do not have sufficient dry strength. added to. Other molding aid additives include plasticizers (abietic acid derivatives, diethyl oxalate, polyethylene glycol, polypropylene glycol, phthalate esters, dibutyl phthalate, sucrose, acetate, isobutyrate, glycerin, etc.), peptizers (glycerin, octadecyl amine,
Trichloroacetic acid, oleic acid, octadiene, glyceryl oleate, glyceryl trioleate, glyceryl tristearate, menhaden oil, etc.) Solvents (toluene, methyl ethyl ketone, etc.)
can be mentioned. The amount of these molding aids added to the ceramic base,
Depending on the molding method, drying properties, decomposability, binding properties, plasticity, peptization properties, etc. are examined as appropriate, and an appropriate amount is added to obtain appropriate properties. By using the binder of the present invention, suitable plasticity and fluidity can be obtained with a lower moisture content than conventional ones, and the porosity during mixing is low, so pinholes are difficult to form, and the moisture retention stability is good, making it resistant to changes over time. On the other hand, it is stable. In addition, the sedimentation rate of particles and the movement rate of water are good, the surface is smooth and homogeneous, demolding is easy, and dry strength is excellent. Furthermore, it has a wide combustion temperature range and can be molded with less shrinkage after molding. The molding method using the binder of the present invention includes:
Various known methods can be used, and regardless of the type of molding method, superior properties can be obtained at lower costs than conventional methods. It is particularly suitable for slurry casting, plastic molding, dry and semi-dry pressure molding, but is not limited thereto. During molding, appropriate amounts of the ceramic base, the binder of the present invention, and the various molding aids mentioned above are added in order to obtain appropriate properties by examining drying properties, decomposability, binding properties, plasticity, peptization properties, etc. The present invention will be described in more detail with reference to Examples. Example 1 10 parts of the binder of the present invention (etherified starch 35% aqueous solution, crosslinked etherified starch 35% aqueous solution , a mixed solution of a 25% aqueous solution of 6 parts of crosslinked etherified starch and a 9% aqueous solution of 4 parts of etherified guar gum), 0.1 part of polyethylene glycol (degree of polymerization 1000) as a plasticizer, 0.6 part of dibutyl phthalate, and glycerin as a peptizer.
0.1 part of a surfactant as a dispersant was fed into a pack mill and mixed, and the clay-like mixture was plastically molded to obtain a good molded product. Comparative Example 1 In Example 1, instead of the binder of the present invention, a 20% aqueous solution of 10 parts of corn starch, a 10% aqueous solution of 10 parts of methyl cellulose (degree of polymerization 4000), and 10 parts of polyvinyl alcohol (degree of polymerization partially saponified 300) were used. 35%
Plastic molding was carried out in the same manner as in Example 1 except that an aqueous solution was used as the binder. Example 2 The physical strength (bending strength, bending elongation) of the molded products obtained in Example 1 and Comparative Example 1 was measured. The test method is 70mm x 20mm x 1 obtained by plastic forming.
A molded plate of mm was used as a test piece, and the bending strength and bending elongation at breakage were measured by applying an external force (pressure) due to a drop to the lateral center line. Here, the bending strength represents the maximum external force (pressure) required for the molded plate to collapse, and the bending elongation represents the maximum deformation value when the molded plate collapses as a ratio to the vertical length of the molded plate. At a descending speed of 5 mm/min using a Tensilon test machine
Measured at 20℃ and 65%RH. The results are shown in Table 1.

【表】 実施例 3 アルミナ(平均粒子径5μ)99%以上を含むセ
ラミツクス素地100部に対して本発明の結合剤5
部(エーテル化グアガム2%水溶液、エーテル化
澱粉6%水溶液、架橋エーテル化澱粉5%水溶
液、架橋エーテル化澱粉3部の5%水溶液とエー
テル化グアガム2部の2%水溶液の混合溶液)、
可塑剤としてポリエチレングリコール(重合度
1000)0.1部、フタル酸ジブチル0.6部、解膠剤と
してグリセリン0.1部、分散剤として界面活性剤
0.1部をボールミルに供給して混合を行なつて泥
漿状の混合物を得る。この泥漿状の混合物を泥漿
鋳込み成形により良好な成形物として得た。 比較例 2 実施例3において本発明の結合剤の代りに、コ
ーンスターチ5部の6%水溶液、メチルセルロー
ス(重合度4000)5部の1.5%水溶液、ポリビニ
ルアルコール(部分ケン化重合度300)5部の25
%水溶液を結合剤として用いる以外は実施例3と
同様にして泥漿鋳込み成形を行つた。 実施例 4 実施例3、比較例2で得た成形物の物理強度
(硬さ、塑性比)を測定した。ここで硬さ、塑性
比は次式で表わされる。 硬さ=(総外力)−(ビンガム降状値)/変化の割
合 塑性比=ビンガム降状値/下部限界降状値 良好な泥漿鋳込みというものは硬さが小さく、
塑性比の大きいものが良く、塑性比は鋳込み性状
(流動性、成形体の固化状態、反り、亀裂、乾燥
素地の収縮率や強度)を支配する。 結果を第2表に示す。
[Table] Example 3 5 parts of the binder of the present invention per 100 parts of a ceramic base containing 99% or more of alumina (average particle size 5μ)
parts (2% aqueous solution of etherified guar gum, 6% aqueous solution of etherified starch, 5% aqueous solution of crosslinked etherified starch, mixed solution of 5% aqueous solution of 3 parts of crosslinked etherified starch and 2% aqueous solution of 2 parts of etherified guar gum),
Polyethylene glycol as a plasticizer (polymerization degree
1000) 0.1 part, dibutyl phthalate 0.6 part, glycerin 0.1 part as a deflocculant, surfactant as a dispersant
0.1 part is fed into a ball mill and mixed to obtain a slurry-like mixture. This slurry-like mixture was obtained as a good molded product by slurry casting. Comparative Example 2 In Example 3, instead of the binder of the present invention, a 6% aqueous solution of 5 parts of cornstarch, a 1.5% aqueous solution of 5 parts of methyl cellulose (degree of polymerization 4000), and 5 parts of polyvinyl alcohol (degree of polymerization by partial saponification 300) were used. twenty five
Slime casting was carried out in the same manner as in Example 3, except that a % aqueous solution was used as the binder. Example 4 The physical strength (hardness, plasticity ratio) of the molded products obtained in Example 3 and Comparative Example 2 was measured. Here, the hardness and plasticity ratio are expressed by the following formula. Hardness = (Total external force) - (Bingham drop value) / Rate of change Plasticity ratio = Bingham drop value / Lower limit drop value Good slurry casting means that the hardness is small;
A material with a large plasticity ratio is good, and the plasticity ratio controls the casting properties (fluidity, solidification state of the molded body, warping, cracking, shrinkage rate and strength of the dry base). The results are shown in Table 2.

【表】 実施例 5 アルミナ(平均粒子径5μ)99%以上を含むセ
ラミツクス素地100部に対して本発明の結合剤
(アルフアー化架橋エーテル化澱粉、アルフアー
化エーテル化澱粉、アルフアー化ポリアクリル酸
ナトリウムグラフト共重合化澱粉、タマリンド)
10部、可塑剤としてグリセリン0.1部、分散剤と
して界面活性剤0.1部をボールミルに供結し、混
合を行ない粉状の混合物を得た。次いでこの粉状
の混合物を0.5%、1.0%に水分調整を行ない乾式
加圧成形により良好な成形物を得た。 比較例 3 実施例5において本発明の結合剤の代りに、焙
焼デキストリン、プルラン(分子量30万)をそれ
ぞれ10部を結合剤として用いる以外は実施例5と
同様にして乾式加圧成形を行なつた。 実施例 6 実施例5、比較列3で得た成形物の物理強度
(崩壊強度)を測定した。 試験方法は0.5%および1.0%に水分調整し、25
Kg/cm2の圧力で直径10mm高さ20mmの円柱形に乾式
成形された試験片の縦方向に降下による外力(圧
力)を与え崩壊強度を測定した。 テンシロン型試験機にて降下速度50mm/minで
20℃、65%RH下で測定。 結果を第3表に示す。
[Table] Example 5 The binder of the present invention (alpha-formed crosslinked etherified starch, alpha-formed etherified starch, alpha-sodium polyacrylate Graft copolymerized starch, tamarind)
10 parts of glycerin as a plasticizer, and 0.1 part of a surfactant as a dispersant were added to a ball mill and mixed to obtain a powdery mixture. Next, the moisture content of this powdery mixture was adjusted to 0.5% and 1.0%, and a good molded product was obtained by dry pressure molding. Comparative Example 3 Dry pressure molding was carried out in the same manner as in Example 5, except that 10 parts each of roasted dextrin and pullulan (molecular weight 300,000) were used as binders instead of the binder of the present invention. Summer. Example 6 The physical strength (collapse strength) of the molded product obtained in Example 5 and Comparative Row 3 was measured. Test method: moisture adjusted to 0.5% and 1.0%, 25
An external force (pressure) was applied by falling in the longitudinal direction of a test piece that had been dry-formed into a cylindrical shape with a diameter of 10 mm and a height of 20 mm at a pressure of Kg/cm 2 to measure the collapse strength. At a descending speed of 50 mm/min using a Tensilon test machine
Measured at 20℃ and 65%RH. The results are shown in Table 3.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 エーテル化澱粉、エステル化澱粉、架橋エー
テル化澱粉、架橋エステル化澱粉、グラフト共重
合化澱粉およびこれらをデキストリン化きたも
の、アルフアー化したものである澱粉誘導体およ
びグアーガム、ローカストビーンガム、タマリン
ドをエーテル化、エステル化、グラフト共重合化
およびこれらを組み合わしたものである植物性種
子粘質物誘導体からなる群より選ばれる1種また
は2種以上を結合剤として使用することを特徴と
するセラミツクスの成形方法。
1 Etherified starch, esterified starch, cross-linked etherified starch, cross-linked esterified starch, graft copolymerized starch, starch derivatives such as dextrinized and alphalyzed starch, guar gum, locust bean gum, and tamarind with ether A method for molding ceramics, characterized by using as a binder one or more types selected from the group consisting of plant seed mucilage derivatives, which are esterification, esterification, graft copolymerization, and combinations thereof. .
JP57230375A 1982-12-23 1982-12-23 Ceramic formation Granted JPS59116171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57230375A JPS59116171A (en) 1982-12-23 1982-12-23 Ceramic formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57230375A JPS59116171A (en) 1982-12-23 1982-12-23 Ceramic formation

Publications (2)

Publication Number Publication Date
JPS59116171A JPS59116171A (en) 1984-07-04
JPH0346422B2 true JPH0346422B2 (en) 1991-07-16

Family

ID=16906874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57230375A Granted JPS59116171A (en) 1982-12-23 1982-12-23 Ceramic formation

Country Status (1)

Country Link
JP (1) JPS59116171A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2616777B1 (en) * 1987-06-19 1992-07-24 Rhone Poulenc Chimie NEW COMPOSITIONS COMPRISING CERAMIC MATERIALS
JPH01160880A (en) * 1987-12-15 1989-06-23 Kanebo Ltd Production of formed article of porous ceramic
EP0325425B1 (en) * 1988-01-20 1993-08-11 Takeda Chemical Industries, Ltd. Plastic compositions of inorganic powders and sintered bodies of the same
JP3155217B2 (en) * 1995-12-13 2001-04-09 品川白煉瓦株式会社 Carbon-containing refractory and production method thereof
AT408439B (en) * 2000-08-21 2001-11-26 Tulln Zuckerforschung Gmbh Flocculant or binder for ceramic applications
JP4685591B2 (en) * 2005-10-26 2011-05-18 ニチアス株式会社 Refractory composition, irregular refractory and spraying method
CN108249924B (en) * 2016-12-29 2021-11-12 比亚迪股份有限公司 Silicon carbide ceramic, preparation method thereof and Al-SiC composite material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4854115A (en) * 1971-11-08 1973-07-30
JPS5364212A (en) * 1976-11-20 1978-06-08 Nippon Steel Corp Refractories made by vibration molding and caking agents applied thereto

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4854115A (en) * 1971-11-08 1973-07-30
JPS5364212A (en) * 1976-11-20 1978-06-08 Nippon Steel Corp Refractories made by vibration molding and caking agents applied thereto

Also Published As

Publication number Publication date
JPS59116171A (en) 1984-07-04

Similar Documents

Publication Publication Date Title
CN102858717B (en) For the composition of extrusion die plastomer
JP5908892B2 (en) Composition for extrusion molding
JP2011503333A (en) Building material composition
JPH0346422B2 (en)
JPH02160656A (en) Body composition for forming inorganic powder and calcined product obtained by calcining the same
JPS6045201B2 (en) Starch acrylamide and its manufacturing method
JPS623064A (en) Ceramics binder
JP2001302319A (en) Building material composition
JPS5841758A (en) Manufacture of ceramic moldings
JP2014510687A (en) Composition for extruded bodies containing methylcellulose
JP6118001B2 (en) Thermoformable ceramic composition comprising hydroxypropylmethylcellulose
JP3227039B2 (en) Method for manufacturing cordierite honeycomb structure
JPS6227022B2 (en)
CN100352791C (en) Binder system for honeycomb ceramic bodies and method for producting said honeycomb bodies
US2519280A (en) Method and composition for making ceramic articles
JP4854833B2 (en) Manufacturing method of ceramic molded body
JP2004505884A (en) Flocrants or binders for the ceramics field
JPS59128266A (en) Manufacture of ceramic formed body
JPH10167856A (en) Porous ceramic and its production
CN1125003C (en) Extrusion forming method of porous ceramics solidified by adopting high molecular polymerization crosslinking process
JP3892504B2 (en) Tile manufacturing method
JP2000264696A (en) Binder for solvent type inorganic formed product
JP2614809B2 (en) Manufacturing method of heat-resistant low specific gravity fibrous molding
JP3205818B2 (en) Binder for inorganic molded products
JPH0327508B2 (en)