JPH0345527B2 - - Google Patents

Info

Publication number
JPH0345527B2
JPH0345527B2 JP56071235A JP7123581A JPH0345527B2 JP H0345527 B2 JPH0345527 B2 JP H0345527B2 JP 56071235 A JP56071235 A JP 56071235A JP 7123581 A JP7123581 A JP 7123581A JP H0345527 B2 JPH0345527 B2 JP H0345527B2
Authority
JP
Japan
Prior art keywords
distortion
electron beam
exposed
field
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56071235A
Other languages
Japanese (ja)
Other versions
JPS57186331A (en
Inventor
Sakae Myauchi
Nobuo Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP7123581A priority Critical patent/JPS57186331A/en
Publication of JPS57186331A publication Critical patent/JPS57186331A/en
Publication of JPH0345527B2 publication Critical patent/JPH0345527B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • H01J37/3045Object or beam position registration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)

Description

【発明の詳細な説明】 本発明は光学的露光装置と電子線露光装置を用
いて半導体装置を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device using an optical exposure apparatus and an electron beam exposure apparatus.

半導体装置は通常多数枚のコンポジツト図の
各々に対応した多数枚の回路パターンを露光材料
上に重ね露光することによつて形成される。
Semiconductor devices are usually formed by overlapping and exposing a large number of circuit patterns, each corresponding to a large number of composite diagrams, onto an exposure material.

ところで、回路パターンの露光には光学的な露
光と電子線の照射位置を制御して行う電子線露光
が代表的なものとしてあるが、光学的露光は一括
露光が可能であるため露光速度が速いという長所
を有する反面微細パターンの作成が困難であると
いう短所を有する。一方電子線露光は露光速度は
光露光に比して劣るが、微細パターンの作成が容
易であるという長所を有している。従つて従来、
半導体装置を製造する際に単一の半導体装置を形
成するために露光材料上に重ね露光される多数の
パターンのうち、比較的微細な部分が多いパター
ンのみ電子線露光によつて露光し、他のパターン
は光露光によつて材料上に露光することが提案さ
れている。このような方法を用いれば、重ね露光
をしなければならない回路パターンの一部に微細
なパターンを有するような半導体装置を品質を落
とさず高速に製造することができるはずである
が、拡大原図(レチクル)等をステツパーを用い
て露光材料上に転写する際の光露光手段には大き
な光学歪があるため、電子線露光により露光され
たパターンとの重ね精度が悪くなり、上述した技
術の実施が阻まれていた。
By the way, typical methods for exposing circuit patterns include optical exposure and electron beam exposure, which is performed by controlling the irradiation position of the electron beam, but optical exposure has a faster exposure speed because it allows batch exposure. However, it has the disadvantage that it is difficult to create fine patterns. On the other hand, although the exposure speed of electron beam exposure is inferior to that of light exposure, it has the advantage that fine patterns can be easily created. Therefore, conventionally,
When manufacturing a semiconductor device, among the many patterns that are overlapped and exposed on the exposure material to form a single semiconductor device, only the patterns with relatively many fine parts are exposed by electron beam exposure, and the other patterns are exposed by electron beam exposure. It has been proposed that the pattern is exposed onto the material by light exposure. If such a method is used, it should be possible to manufacture semiconductor devices with fine patterns in parts of circuit patterns that require overlapping exposure at high speed without compromising quality. Since there is large optical distortion in the light exposure means used when transferring a reticle (reticle, etc.) onto the exposed material using a stepper, the overlapping accuracy with the pattern exposed by electron beam exposure deteriorates, making it difficult to implement the above-mentioned technology. It was blocked.

本発明はこのような従来技術の欠点を解決する
ためになされたもので、以下図面に基づき本発明
の一実施例を詳述する。
The present invention has been made to solve the drawbacks of the prior art, and one embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は本発明に基づく半導体製造方法の各ス
テツプを概略的に示すためのもので、図から明ら
かなように半導体装置の製作者は周知のように仕
様書に基づいて色層を色分けして重ね書きしたコ
ンポジツト図を作成する。この色分けして重ね書
きされた層の数は多数になることが多く、次にこ
れらの層の各々につきコンピユータエイデイドデ
ザイン装置を用いてそのパターンに応じた描画デ
ータを作成し、該データを磁気的データ格納手段
に記憶して行く。この時同時にパターンジエネレ
ータによつてパターンの拡大原図(レチクル)を
作成した際に少くとも1枚のパターンの周辺部に
多数のマークが形成されるようにデータを追加し
てデータ格納手段に記憶する。このマークは後述
するようにレチクルを光学的転写手段によつて転
写する際の光学レンズ系の歪を測定するために使
用され、又光学的転写手段によつてウエハーの如
き露光材料に転写されたパターンに電子線描画パ
ターンを重ね露光する際の位置合わせ用マークと
して使用される。又、特定の1パターン以外のパ
ターンの周辺部にも位置合わせ用の3個程度のマ
ークが形成されるようにデータを作成する。次
に、磁気的データ格納手段からのデータをパター
ンジエネレータに供給して、前記コンポジツト図
の各層のパターンのうち光学的露光手段によつて
露光しようとする比較的微細なパターン部分を含
まないパターンのレチクルを作成する。このよう
なレチクルのうち前述した多数のマークを回路パ
ターンの周辺部に有するレチクルは第2図に示す
ようなものとなる。第2図においてイがレチクル
の例えばAというパターンが形成された領域であ
り、M1,M2,M3,…,M8はマークであ
る。次にこの歪測定用の多数のマークを有するレ
チクルをステツパーと称する光学的転写手段を用
いてウエハーに縮小転写する。その結果ウエハー
1を載置したステツパーのステージを一定量間歇
的に移動する毎にレチクルの露光を行うため、第
3図に示すように、多数のレチクル像が所定の間
隔を置いてウエハーの異なつた位置に転写され
る。光学的転写手段の結像レンズ系に歪があるた
め、ウエハー1上に転写されたマークの位置は第
4図に拡大して示すようなものになる。そこで、
電子線露光装置を用いてウエハー1に転写された
レチクル像のうちのいずれか1個のレチクル像の
マークの各々を順次電子線で走査して、その位置
を検出して行く。その結果、該検出された各マー
クの位置と歪が全く無い時に予想されるマーク位
置との比較から各マークが形成されている地点に
おける前記光学的転写手段の結像レンズ系の歪量
を測定する。更にこれら各マーク地点における歪
量の測定値から、第4図において点線で囲まれた
各領域(フイールド)における歪量を算出し該算
出された歪量をこれら各領域の位置に対応させて
後述する補助記憶手段に記憶させる。但し、前記
フイールドは電子線露光装置によつて露光を行う
際にステージの移動なしに描画できる領域であ
る。
Figure 1 is intended to schematically show each step of the semiconductor manufacturing method according to the present invention. As is clear from the figure, manufacturers of semiconductor devices color-code the color layers based on the specifications, as is well known. Create a composite diagram with overlays. The number of color-coded and overwritten layers is often large, and then a computer-aided design device is used to create drawing data corresponding to the pattern for each of these layers, and the data is magnetically transferred. The data is stored in the data storage means. At this time, when an enlarged original image (reticle) of the pattern is created by the pattern generator, data is added and stored in the data storage means so that a large number of marks are formed around at least one pattern. do. This mark is used to measure the distortion of the optical lens system when the reticle is transferred by the optical transfer means, as described later, and is also used to measure the distortion of the optical lens system when the reticle is transferred to the exposure material such as a wafer by the optical transfer means. It is used as a positioning mark when exposing an electron beam drawing pattern to a pattern. Furthermore, data is created so that about three marks for positioning are formed in the periphery of patterns other than one specific pattern. Next, the data from the magnetic data storage means is supplied to a pattern generator to generate a pattern that does not include a relatively fine pattern portion to be exposed by the optical exposure means among the patterns of each layer of the composite diagram. Create a reticle. Among such reticles, a reticle having the aforementioned large number of marks on the periphery of the circuit pattern is as shown in FIG. In FIG. 2, A is a region of the reticle where a pattern A, for example, is formed, and M1, M2, M3, . . . , M8 are marks. Next, this reticle having a large number of marks for strain measurement is reduced and transferred onto a wafer using an optical transfer means called a stepper. As a result, the reticle is exposed every time the stage of the stepper on which the wafer 1 is placed is moved intermittently by a certain amount, so as shown in Fig. It is transferred to the ivy position. Since there is distortion in the imaging lens system of the optical transfer means, the position of the mark transferred onto the wafer 1 is as shown in an enlarged view in FIG. Therefore,
Each mark of any one of the reticle images transferred to the wafer 1 using an electron beam exposure device is sequentially scanned with an electron beam to detect its position. As a result, the amount of distortion of the imaging lens system of the optical transfer means at the point where each mark is formed is measured by comparing the detected position of each mark with the mark position expected when there is no distortion. do. Furthermore, from the measured values of the amount of strain at each of these mark points, the amount of strain in each area (field) surrounded by dotted lines in FIG. The information is stored in the auxiliary storage means. However, the field is an area that can be drawn without moving the stage during exposure using an electron beam exposure device.

さて、ステツパーを用いて最初のレチクル以外
の他のレチクルの像をもウエハーに重ね露光した
後、電子線露光装置を用いて光学的露光に適しな
いパターンをウエハー1上に重ね露光する。この
際磁気的データ格納手段に格納されていた描画デ
ータは電子線露光装置用にフオーマツト変換して
電子線露光装置に供給する。
Now, images of reticles other than the first reticle are superimposed on the wafer for exposure using a stepper, and then a pattern unsuitable for optical exposure is superimposed on the wafer 1 using an electron beam exposure device. At this time, the drawing data stored in the magnetic data storage means is format-converted for use in an electron beam exposure apparatus and is supplied to the electron beam exposure apparatus.

第5図はこのような電子線露光装置の一例を示
すもので、図中2は電子銃、3は収束レンズ、4
はブランキング電極、5は偏向電極である。6は
載置したウエハーを自在に移動させるためのステ
ージである。電子計算機7は前述した電子線露光
装置用にフオーマツト変換された描画データを貯
えている。該電子計算機7よりのブランキング信
号は前記ブランキング電極4に供給されると共
に、該ブランキング信号と同期した偏向信号は加
算回路8を介して偏向電極5に供給される。9は
補助記憶装置であり、該補助記憶装置9には第4
図における各フイールドに対応する歪量がテーブ
ル状に記憶されている。
FIG. 5 shows an example of such an electron beam exposure apparatus, in which 2 is an electron gun, 3 is a convergent lens, and 4 is an electron beam exposure device.
5 is a blanking electrode, and 5 is a deflection electrode. 6 is a stage for freely moving the mounted wafer. The electronic computer 7 stores drawing data that has been format-converted for use with the above-mentioned electron beam exposure apparatus. A blanking signal from the computer 7 is supplied to the blanking electrode 4, and a deflection signal synchronized with the blanking signal is supplied to the deflection electrode 5 via an adding circuit 8. 9 is an auxiliary storage device, and the auxiliary storage device 9 includes a fourth
The amount of distortion corresponding to each field in the figure is stored in a table.

さて、このような装置を用いて、第3図に示す
多数のレチクル像の各々につき第4図において点
線で示すフイールドごとにステージ6を移動させ
て電子線により重ね露光するが、偏向電極5には
電子計算機7よりの照射位置指定信号と描画フイ
ールドに応じて補助記憶装置9から読み出された
歪値データとを加算した信号が供給される。そし
て、2番目以降のレチクル像へ電子線により重ね
露光する場合には、そのレチクル像に対してその
都度光学的転写手段の歪をマーク検出により測定
することなく、前述した既に記憶されている光学
的転写手段の歪み量データの代表値を読み出して
利用し重ね露光が行なわれる。従つてウエハー1
上に描かれる各回路パターンは、その都度光学的
転写手段の歪み量の測定に時間を費すことなく光
学的露光手段のレンズ系の歪に合わせて歪みを有
するものとなる。従つて同一ウエハー上に光学的
に露光されるパターンと電子線露光されたパター
ンとの重ね精度を向上させることができる。
Now, using such an apparatus, the stage 6 is moved for each field shown by dotted lines in FIG. 4 for each of the many reticle images shown in FIG. is supplied with a signal obtained by adding the irradiation position designation signal from the electronic computer 7 and the distortion value data read out from the auxiliary storage device 9 in accordance with the drawing field. When the second and subsequent reticle images are exposed overlappingly with an electron beam, the distortion of the optical transfer means is not measured by mark detection each time for the reticle image, but the previously stored optical The representative value of the distortion amount data of the target transfer means is read out and used to perform overlapping exposure. Therefore, wafer 1
Each circuit pattern drawn thereon has a distortion corresponding to the distortion of the lens system of the optical exposure means, without wasting time in measuring the amount of distortion of the optical transfer means each time. Therefore, it is possible to improve the overlapping accuracy of the optically exposed pattern and the electron beam exposed pattern on the same wafer.

尚、上述した実施例においては、パターンジエ
ネレーターによつてレチクルを作成し、該レチク
ルをステツパーを用いて露光材料に転写したウエ
ハーに電子線を用いて回路パターンを重ね露光す
るようにしたが、このような実施例に限らず光学
的な露光手段による露光パターンと電子線による
露光パターンとを重ね合わせて露光する場合に、
本発明は同様に適用できる。
In the above-described embodiments, a reticle was created using a pattern generator, and a stepper was used to transfer the reticle onto an exposure material, and a circuit pattern was overlaid on a wafer using an electron beam. Not limited to such embodiments, when exposure is performed by overlapping an exposure pattern by an optical exposure means and an exposure pattern by an electron beam,
The invention is equally applicable.

更に又上述した実施例においては光学レンズの
歪に合わせて電子線露光像を歪ませるために、フ
イールド毎に異つた歪値を与えて露光するように
したが、フイールド毎の補正に加えて電子線照射
位置毎に歪補正をするようにしても良い。
Furthermore, in the above-described embodiment, in order to distort the electron beam exposure image in accordance with the distortion of the optical lens, exposure is performed with different distortion values applied to each field. Distortion correction may be performed for each line irradiation position.

更に又、上述した実施例においてはハード的に
歪を加えるようにしたが、露光位置を指定するた
めのデータをソフト的に変換して歪を加えるよう
にしても良い。
Furthermore, in the embodiments described above, distortion is applied using hardware, but the distortion may be applied by converting data for specifying the exposure position using software.

上述した説明から明らかなように、本発明にお
いては、前記原図の回路パターンの周辺部に複数
のマークを形成しておき、前記光学的転写手段に
よつて材料上に転写された複数の原図像中のいず
れか1個の原図像中の複数のマークの各々の位置
を電子線で走査することによつて検出し、該検出
された各マークの位置情報に基づいて前記光学的
転写手段の歪に基づく該転写された回路パターン
の各フイールドにおける歪量を求め、該歪量を各
フイールドに対応させて記憶手段に記憶させ、前
記各原図像における各フイールドを電子線で重ね
露光する際にそのフイールドにおける歪量を前記
記憶手段から読み出してそれに基づき該フイード
における前記光学的転写手段の歪量に合わせて電
子線の投射位置をずらして露光するようにしてい
るため、一度だけ単一の原図像の各フイールドに
おける光学的転写手段の歪量を求めて記憶させ、
他の原図像上に電子線で重ね露光する場合には、
その原図像の各フイールドに対応するフイールド
の歪量を読み出して電子線の投射位置をずらして
重ね露光し、他の原図像上に重ね露光する際のマ
ーク検出を利用した光学的転写手段の歪み量の測
定を省くことができるため、高精度の重ね露光を
高スループツトで行なうことができる。
As is clear from the above description, in the present invention, a plurality of marks are formed around the circuit pattern of the original image, and a plurality of original images are transferred onto the material by the optical transfer means. The position of each of a plurality of marks in any one of the original images is detected by scanning with an electron beam, and the distortion of the optical transfer means is determined based on the position information of each detected mark. The amount of distortion in each field of the transferred circuit pattern is determined based on the amount of distortion, the amount of distortion is stored in a storage means in correspondence with each field, and the amount of distortion is stored in a storage means in correspondence with each field, and when each field in each original image is exposed overlappingly with an electron beam, the amount of distortion is determined. Since the amount of distortion in the field is read from the storage means and the projection position of the electron beam is shifted in accordance with the amount of distortion of the optical transfer means in the field based on the reading, a single original image is exposed only once. determine and store the amount of distortion of the optical transfer means in each field;
When overlapping exposure with an electron beam on another original image,
The distortion amount of the field corresponding to each field of the original image is read out, and the projection position of the electron beam is shifted to perform overlapping exposure, and the distortion of the optical transfer means using mark detection when overlapping exposure is performed on other original images. Since the measurement of the amount can be omitted, highly accurate overlapping exposure can be performed with high throughput.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すための流れ
図、第2図はレチクルのパターン形成領域の周辺
に形成されたマークを例示するための図、第3図
は光学的転写手段によつてウエハー上に転写され
たレチクル像を示すための図、第4図はマークを
検出することによる歪測定を説明するための図、
第5図は本発明を実施するための装置の一例を示
すための図である。 M1,M2,…,M8:マーク、1:ウエハ
ー、2:電子線、5:偏向電極、7:電子計算
機、8:加算回路、9:補助記憶装置。
FIG. 1 is a flowchart showing one embodiment of the present invention, FIG. 2 is a diagram showing an example of marks formed around a pattern forming area of a reticle, and FIG. 3 is a flowchart showing an embodiment of the present invention. A diagram showing a reticle image transferred onto a wafer; FIG. 4 is a diagram explaining distortion measurement by detecting marks;
FIG. 5 is a diagram showing an example of an apparatus for carrying out the present invention. M1, M2,..., M8: mark, 1: wafer, 2: electron beam, 5: deflection electrode, 7: electronic computer, 8: addition circuit, 9: auxiliary storage device.

Claims (1)

【特許請求の範囲】[Claims] 1 描画図形情報に基づき拡大又は縮小原図を作
成し、光学的転写手段を用いて該作成された原図
を被露光材料の所定量の移動毎に該材料上に転写
して該材料上の異なつた位置に同一の原図を複数
露光すると共に、材料の移動なしに電子線で描画
できる前記材料上の領域をフイールドと呼ぶと
き、前記原図像の各々を複数のフイールドに分割
し、各フイールドを電子線で露光する毎に材料を
移動させて前記材料上に露光された原図像の各々
の上に前記描画図形情報に基づいて電子線で回路
パターンを重ね露光する方法において、前記原図
の回路パターンの周辺部に複数のマークを形成し
ておき、前記光学的転写手段によつて材料上に転
写された複数の原図像中のいずれか1個の原図像
中の複数のマークの各々の位置を電子線で走査す
ることによつて検出し、該検出された各マークの
位置情報に基づいて前記光学的転写手段の歪に基
づく該転写された回路パターンの各フイールドに
おける歪量を求め、該歪量を各フイールドに対応
させて記憶手段に記憶させ、前記各原図像におけ
る各フイールドを電子線で重ね露光する際にその
フイールドにおける歪量を前記記憶手段から読み
出してそれに基づき該フイールドにおける前記光
学的転写手段の歪量に合わせて電子線の投射位置
をずらして露光するようにしたことを特徴とする
半導体装置の製造方法。
1 An enlarged or reduced original image is created based on the drawing figure information, and the created original image is transferred onto the material to be exposed every time the material to be exposed moves by a predetermined amount using an optical transfer means, and different images on the material are transferred. When multiple exposures of the same original image are made at the same position and an area on the material that can be drawn with an electron beam without moving the material is called a field, each of the original images is divided into a plurality of fields, and each field is exposed to the electron beam. A method in which a circuit pattern is overlapped and exposed with an electron beam on each of the original images exposed on the material by moving the material each time the material is exposed to light, based on the drawn figure information, the circuit pattern is exposed around the circuit pattern of the original image. A plurality of marks are formed on the material, and the position of each of the plurality of marks in any one of the plurality of original images transferred onto the material by the optical transfer means is determined using an electron beam. Detecting the detected marks by scanning, and determining the amount of distortion in each field of the transferred circuit pattern based on the distortion of the optical transfer means based on the position information of each detected mark, and calculating the amount of distortion. The optical transfer means is stored in a storage means in correspondence with each field, and when each field in each original image is exposed overlappingly with an electron beam, the amount of distortion in that field is read from the storage means, and based on the distortion amount in the field, the optical transfer means in the field is 1. A method of manufacturing a semiconductor device, characterized in that exposure is performed by shifting the projection position of an electron beam according to the amount of distortion.
JP7123581A 1981-05-12 1981-05-12 Manufacture of semiconductor device Granted JPS57186331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7123581A JPS57186331A (en) 1981-05-12 1981-05-12 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7123581A JPS57186331A (en) 1981-05-12 1981-05-12 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS57186331A JPS57186331A (en) 1982-11-16
JPH0345527B2 true JPH0345527B2 (en) 1991-07-11

Family

ID=13454826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7123581A Granted JPS57186331A (en) 1981-05-12 1981-05-12 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS57186331A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0740962Y2 (en) * 1990-10-03 1995-09-20 オーツタイヤ株式会社 Light guide plate device
JP2630714B2 (en) * 1992-10-08 1997-07-16 茶谷産業株式会社 Surface lighting device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59178726A (en) * 1983-03-29 1984-10-11 Toshiba Corp Manufacture of pattern transfer mask
JPH0715874B2 (en) * 1984-07-13 1995-02-22 株式会社日立製作所 Electron beam writer
JPS6258621A (en) * 1985-09-09 1987-03-14 Toshiba Corp Fine pattern forming method
US4812661A (en) * 1986-08-20 1989-03-14 Hewlett-Packard Company Method and apparatus for hybrid I.C. lithography
JP2871627B2 (en) * 1996-10-17 1999-03-17 日本電気株式会社 Electron beam exposure method and apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534430A (en) * 1978-08-31 1980-03-11 Fujitsu Ltd Positioning method in electron beam exposure
JPS5640244A (en) * 1979-09-11 1981-04-16 Mitsubishi Electric Corp Beam scanning correction at electron beam exposure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534430A (en) * 1978-08-31 1980-03-11 Fujitsu Ltd Positioning method in electron beam exposure
JPS5640244A (en) * 1979-09-11 1981-04-16 Mitsubishi Electric Corp Beam scanning correction at electron beam exposure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0740962Y2 (en) * 1990-10-03 1995-09-20 オーツタイヤ株式会社 Light guide plate device
JP2630714B2 (en) * 1992-10-08 1997-07-16 茶谷産業株式会社 Surface lighting device

Also Published As

Publication number Publication date
JPS57186331A (en) 1982-11-16

Similar Documents

Publication Publication Date Title
JP2988393B2 (en) Exposure method
US4621371A (en) Method of forming by projection an integrated circuit pattern on a semiconductor wafer
WO2007038134A2 (en) Method of aligning a particle-beam-generated pattern to a pattern on pre-patterned substrate
JPH0244137B2 (en)
JP2000252203A (en) Alignment mark and alignment method
JPS62145103A (en) Method of measuring position of two-dimensional pattern withhigh precision and reference mask
JP2610815B2 (en) Exposure method
US7388213B2 (en) Method of registering a blank substrate to a pattern generating particle beam apparatus and of correcting alignment during pattern generation
US5773180A (en) Measuring method of a relative positional deviation of reticle pattern
JPH0345527B2 (en)
US6639676B1 (en) Method for determining rotational error portion of total misalignment error in a stepper
JPH06349706A (en) Alignment method
JP2002512384A (en) Method for measuring position of pattern structure on mask surface
JP3448826B2 (en) Alignment method, exposure method, and device manufacturing method
JPH11121369A (en) Method and device for pattern drawing
JPH10284396A (en) Method for alignment and method for measuring alignment precision
JPH034895B2 (en)
JPS6258621A (en) Fine pattern forming method
JP3168590B2 (en) Reduction projection exposure method
JP3259190B2 (en) Distortion inspection method for projection optical system
JPS62149127A (en) Device for charged beam exposure
JP3637680B2 (en) Exposure equipment
JPS59178726A (en) Manufacture of pattern transfer mask
JPH11135413A (en) Plotting method
US6662145B1 (en) Method, equipment, and recording medium for controlling exposure accuracy