JPH0345316B2 - - Google Patents

Info

Publication number
JPH0345316B2
JPH0345316B2 JP58099796A JP9979683A JPH0345316B2 JP H0345316 B2 JPH0345316 B2 JP H0345316B2 JP 58099796 A JP58099796 A JP 58099796A JP 9979683 A JP9979683 A JP 9979683A JP H0345316 B2 JPH0345316 B2 JP H0345316B2
Authority
JP
Japan
Prior art keywords
cooling
section
water tank
unit cell
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58099796A
Other languages
Japanese (ja)
Other versions
JPS59225300A (en
Inventor
Shigeru Sano
Sadaaki Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKO PANTETSUKU KK
Original Assignee
SHINKO PANTETSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKO PANTETSUKU KK filed Critical SHINKO PANTETSUKU KK
Priority to JP9979683A priority Critical patent/JPS59225300A/en
Publication of JPS59225300A publication Critical patent/JPS59225300A/en
Publication of JPH0345316B2 publication Critical patent/JPH0345316B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/003Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus specially adapted for cooling towers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • G05D23/193Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces
    • G05D23/1932Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of a plurality of spaces
    • G05D23/1934Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of a plurality of spaces each space being provided with one sensor acting on one or more control means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Temperature (AREA)

Description

【発明の詳細な説明】 本発明は冷却フアンを備えた複数の単位セル部
分を列設した多セル冷却塔の送出冷却水温度を目
標温度に維持するように制御する方法、特に自動
制御の方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for controlling the temperature of the cooling water sent out from a multi-cell cooling tower in which a plurality of unit cell sections each equipped with a cooling fan are arranged in a row to maintain it at a target temperature, particularly an automatic control method. Regarding.

鉄鋼、化学、電力等のいわゆる用水産業におい
ては、必要とする多量の冷却水を循環使用するに
は、1基の水冷却塔では到底賄い切れないので、
冷却フアンを備えた個別水冷却塔を単位セル部分
として連接した多セル冷却塔とし、さらに多セル
冷却塔を分散配置して塔群とする立地がなされる
ことが少くない。多セル冷却塔とした場合は隣接
する単位セル部分間の側壁は共用または簡略で
き、また下方の冷却水集水用の冷水槽も1槽に集
約できるので、建設費の節減効果が得られ、保守
用在庫品が少くてよい等の利点がある。
In the so-called water industry, such as steel, chemical, and electric power industries, a single water cooling tower is simply not enough to recirculate the large amount of cooling water that is required.
It is not uncommon for individual water cooling towers equipped with cooling fans to be connected as unit cell parts to form a multi-cell cooling tower, and furthermore, multi-cell cooling towers are arranged in a distributed manner to form a tower group. In the case of a multi-cell cooling tower, the side walls between adjacent unit cell parts can be shared or simplified, and the cold water tank for collecting cooling water below can also be consolidated into one tank, resulting in a reduction in construction costs. There are advantages such as requiring less inventory for maintenance.

この種多セル冷却塔は、操業全期を通じて循環
使用する冷却水を必要温度にまで冷却することが
できるよう、冷却能力は最大負荷条件を基準とし
て設計され多くの場合部分負荷で運転されてい
る。そして、時期または時点に必要とされる冷却
能力は、外気湿球温度等の気象条件、冷却水を必
要とするプラントの操業状態等による負荷変動に
より大幅に変化し、例えば外気温が低下する冬期
の必要冷却能力は夏期の約1/3となる。従つて多
セル冷却塔の多数の冷却フアンの全数を常時運転
することは、大低の場合、必要以上の冷却能力を
発揮していることになり、過剰冷却能力のために
無駄なエネルギが消費される。
The cooling capacity of this type of multi-cell cooling tower is designed based on maximum load conditions and is often operated at partial load, so that the cooling water that is circulated during the entire operation period can be cooled to the required temperature. . The cooling capacity required at any given time or point in time varies significantly due to load fluctuations caused by weather conditions such as the outside air wet bulb temperature and the operating status of plants that require cooling water. For example, in winter when the outside temperature drops, The required cooling capacity is approximately 1/3 of that in summer. Therefore, if all of the cooling fans in a multi-cell cooling tower are operated at all times, in the case of large or low temperatures, more cooling capacity than is necessary will be exerted, and energy will be wasted due to excess cooling capacity. be done.

一般に冷却塔の冷却能力は冷却フアンの風量を
調節することによつて変えることができ、その具
体的実施方法としては、冷却フアンの運転台数の
増減により段階的に風量調節したり、あるいはフ
アンプレードのピツチ角度、回転数の変更により
連続的に風量調節したりしている。何れの方法で
も冷却塔の負荷の変動に応じて冷却フアンの風量
調節を行えば冷却塔は必要冷却能力にある程度近
づいた能力で運転されるのでフアン動力の無駄な
消費が節減される。
In general, the cooling capacity of a cooling tower can be changed by adjusting the air volume of the cooling fans, and specific methods include adjusting the air volume in stages by increasing or decreasing the number of operating cooling fans, or by adjusting the fan blade. The air volume is continuously adjusted by changing the pitch angle and rotation speed. In either method, if the air volume of the cooling fan is adjusted in response to fluctuations in the load on the cooling tower, the cooling tower will be operated at a capacity that is somewhat close to the required cooling capacity, thereby reducing unnecessary consumption of fan power.

しかし冷却塔からの送出冷却水の温度を一定に
維持するため各種条件の変動に応じて常に適合す
る冷却能力が発揮されるよう冷却フアンの風量を
自動制御しても、安定した送水冷却水温度を維持
することは容易でない。
However, in order to maintain a constant temperature of the cooling water sent out from the cooling tower, even if the air volume of the cooling fan is automatically controlled so that the appropriate cooling capacity is always exerted in response to fluctuations in various conditions, the temperature of the cooling water sent out from the cooling tower remains stable. is not easy to maintain.

その原因を種々探求の結果、冷水槽内の保有水
には停滞や短絡流が生じ、これに起因する水温の
不均一性に対応する制御を適正に行うことが困難
であるという問題があることが判つた。特に多セ
ル冷却塔では冷水槽は直線的に長い溝路状となら
ざるを得ないので、冷水槽の出口水温の検出によ
り例えば冷却フアンの運転台数を制御する場合に
は、冷水槽へ落下する冷却水の温度は単位セル部
分の長手方向位置によつて異なる状況となり、温
度による水の密度差によつて冷水槽内の上層ある
いは下層に水が停滞して検出遅れが生じたり、冷
水槽内の上層あるいは下層の水が冷却水送出部に
短絡流したりし、負荷変動時にはこれらに起因し
てかなりの検出誤差が生じ、それにより制御系が
誤操作を起す危険性もあり、冷却フアンのみをい
かに制御しても冷却槽出口水温の変動は避けるこ
とができない。この1つの対応策としては、対象
とする冷却塔の特性を実測または解析し、外気温
等の変動要因と冷水槽出口水温との相関関係をあ
らかじめ求めておき、これに基いて予測制御を行
うことが考えられる。しかしこのようにしても用
水プラントからの戻り水の水量・水温等すべての
変動要因が複数に関連するので、これらを総合的
に判断して制御することは難かしく、設備費が多
額となる割合には充分な効果が得られない。
As a result of various investigations into the causes, it was found that stagnation and short-circuit flow occur in the water held in the cold water tank, and that it is difficult to properly control the water temperature to deal with the unevenness caused by this. I found out. In particular, in multi-cell cooling towers, the cold water tank has to be in the form of a long straight channel, so when controlling the number of operating cooling fans by detecting the temperature of the water at the outlet of the cold water tank, for example, the water that falls into the cold water tank must be in the form of a long straight channel. The temperature of the cooling water varies depending on the longitudinal position of the unit cell, and the difference in water density due to temperature may cause water to stagnate in the upper or lower layer of the cold water tank, causing detection delays, or Water in the upper or lower layer may short-circuit and flow into the cooling water delivery section, and when the load fluctuates, this will cause a considerable detection error, and there is a risk that the control system will malfunction. Even if controlled, fluctuations in the cooling tank outlet water temperature cannot be avoided. One way to deal with this is to actually measure or analyze the characteristics of the cooling tower in question, determine in advance the correlation between fluctuation factors such as outside temperature and the water temperature at the outlet of the cold water tank, and perform predictive control based on this. It is possible that However, even with this method, all the fluctuation factors such as the amount and temperature of water returned from the water plant are related to multiple factors, so it is difficult to judge and control them comprehensively, and the equipment costs are high. cannot obtain sufficient effect.

本発明はこの問題に解決を与えるためになされ
たものであつて、多セル冷却塔の下方の冷水槽内
の冷却水が送出部に向う流れに停滞、短絡流が生
ずることを積極的に防止し、以つて少くとも冷却
水の送出部では均温化された目標温度の水が送出
されるようにすることを第1の目的とする。この
ため多セル冷却塔を構成する単位冷却セル部分お
よびその下方の冷水槽は冷水槽からの冷却水の送
出部との関係において、最下流単位セル部分とそ
れより上流の単位セル部分とに分けられ、前者部
分下方の区劃冷水槽部分と後者下方の共通冷水槽
部分とに分けられ、両冷水槽部分を連通部を有す
る隔壁で区劃し、共通冷水槽部分の水が隔壁の連
通部を通つて区劃冷水槽部分に流入してこの部分
の水とよく混合し、冷却水の送出部に向つて短絡
流したに偏流したり停滞したりすることがないよ
うにする。
The present invention has been made to solve this problem, and actively prevents the occurrence of stagnation and short-circuit flow in the flow of cooling water in the cold water tank below the multi-cell cooling tower toward the delivery section. However, the first objective is to ensure that at least the cooling water delivery section delivers water that is equalized in temperature and has a target temperature. For this reason, the unit cooling cell part that makes up the multi-cell cooling tower and the cold water tank below it are divided into the most downstream unit cell part and the upstream unit cell part in relation to the cooling water delivery part from the cold water tank. The former part is divided into a sectioned cold water tank part below the latter part and a common cold water tank part below the latter part, and both cold water tank parts are separated by a partition wall having a communicating part, and the water in the common cold water tank part flows through the communicating part of the partition wall. The cooling water flows into the section cooling water tank section through the cooling water tank and mixes well with the water in this section, so that there is no short-circuit flow toward the cooling water delivery section or stagnation.

この冷却セルおよび冷水槽の区分構成を前提と
して、区劃冷水槽部分において送出冷却水が目標
温度に最終的に合致するように最下流単位セル部
分の冷却フアンの風量調節の制御を比較的精細に
連続的に行うとともに、この前提としてこの部分
に流入混合する共通冷水槽部分からの冷却水の温
度がこの部分の最終的制御の限界を越える以前に
上流単位セル部分の冷却フアンを比較的粗い温度
範囲で段階的制御することを第2の目的とする。
このため、最下流単位セル部分には、送出部の冷
却水の検出水温に応じて回転数またはフアンブレ
ード角度の変更により風量調節可能な風量可変式
のフアンを用いるとともに、この風量調節値を指
標として上流単位セル部分の冷却フアンの運転台
数を制御するようにする。こうして隔壁の連通部
を通つて区劃冷水槽部分に流入する冷却水の水温
をこの部分の風量可変式冷却フアンにより最下流
で調整可能な範囲に制御し、外気温、戻り水の条
件に急変があつてもこれに即応し速かに追随して
安定な目標送水温度や維持されるようにする。
Based on this divided configuration of cooling cells and cold water tanks, the air volume adjustment of the cooling fan in the most downstream unit cell part is controlled relatively precisely so that the cooling water sent out in the section cold water tank ultimately matches the target temperature. The cooling fan of the upstream unit cell part is controlled relatively coarsely before the temperature of the cooling water from the common cold water tank part flowing into and mixing with this part exceeds the final control limit of this part. The second purpose is to perform stepwise control over a temperature range.
Therefore, in the most downstream unit cell part, we use a variable air volume fan that can adjust the air volume by changing the rotation speed or fan blade angle according to the detected water temperature of the cooling water in the delivery section, and use this air volume adjustment value as an index. The number of operating cooling fans in the upstream unit cell section is controlled as follows. In this way, the temperature of the cooling water that flows into the section cooling water tank through the communication part of the bulkhead is controlled within a range that can be adjusted at the lowest downstream by the variable air volume cooling fan in this part, and the temperature can change suddenly depending on the outside temperature and return water conditions. Even if there is a problem, the target water supply temperature can be maintained at a stable target temperature by immediately responding to it and quickly following it.

以上目的、課題、対策を総括して、本発明の多
セル冷却塔の送出冷却水温度の制御方法は、冷却
フアンを備えた複数の単位セル部分からなる多セ
ル冷却塔において、塔下方の冷却水集水用の冷水
槽を冷却水の送出部が位置する最下流単位セル部
分の下方の区劃冷水槽部分と他の上流単位セル部
分の下方の共通冷却槽部分とに連通部を有する隔
壁で区劃し、以つて区劃冷水槽部分で共通冷水槽
部分から流入する冷却水を区劃冷水槽部分内の冷
却水と混合するようにするとともに、最下流単位
セル部分の冷却フアンの風量可変式手段を具備し
たものとして送出部の冷却水の温度に応じて該冷
却フアンの風量を調節し、さらにこの調節風量値
に基いて上流単位セル部分の冷却フアンの運転台
数制御を行うようにしたことを特徴とする。
Summarizing the above objectives, problems, and countermeasures, the present invention provides a method for controlling the temperature of cooling water sent out from a multi-cell cooling tower, in which the cooling water at the bottom of the tower is A partition wall that has a communication part between a cold water tank for collecting water and a section cold water tank part below the most downstream unit cell part where the cooling water delivery part is located and a common cooling tank part below the other upstream unit cell parts. The cooling water flowing from the common cold water tank part is mixed with the cooling water in the compartment cold water tank part in the divided cold water tank part, and the air volume of the cooling fan in the most downstream unit cell part is Equipped with variable means, the air volume of the cooling fan is adjusted according to the temperature of the cooling water in the delivery section, and the number of operating cooling fans in the upstream unit cell section is controlled based on this adjusted air volume value. It is characterized by what it did.

以下、本発明方法を添付図により実施例につき
具体的かつ詳細に説明する。
Hereinafter, the method of the present invention will be explained in detail with reference to the accompanying drawings.

第1図には、本発明方法を実施例により説明す
るため、使用する装置として5セルからなる多セ
ル冷却塔1が例示され、これは後述の構成の冷水
槽2上に設置されている。その単位冷却セル部分
1−1,1−2,1−3,1−4,1−5はそれ
ぞれ冷却フアン3−1,3−2,3−3,3−
4,3−5を備える。冷却水を使用するプラント
からの戻り水は配管4を通じて各単位セル部分に
分配され、それぞれ塔内充填材部を細分して流下
する過程で冷却フアンにより各単位セル部分内に
吸収される大気と接触して冷却された冷水槽2に
落下する。冷水槽2内に保有された冷却水は送出
部の送水ポンプ5によりプラントに送られて循環
再使用される。
In FIG. 1, in order to explain the method of the present invention by way of an example, a multi-cell cooling tower 1 consisting of five cells is illustrated as an apparatus used, and this is installed on a cold water tank 2 having the structure described below. The unit cooling cell portions 1-1, 1-2, 1-3, 1-4, 1-5 are cooling fans 3-1, 3-2, 3-3, 3-, respectively.
4, 3-5. Return water from a plant that uses cooling water is distributed to each unit cell section through piping 4, and in the process of subdividing the column packing material section and flowing down, the water is absorbed into each unit cell section by a cooling fan. It contacts and falls into the cold water tank 2 where it is cooled. The cooling water held in the cold water tank 2 is sent to the plant by the water pump 5 of the delivery section and is circulated and reused.

本発明方法の実施のため、単位冷却セル部分お
よび冷水槽は、冷却水の送出部との関係におい
て、最下流単位セル部分1−5と他の4つの上流
単位セル部分1−1乃至1−4とに分けられ、前
者セル部分1−5下方の区劃冷水槽部分2′と後
者セル部分1−1乃至1−4下方の共通冷水槽部
分2″とに分けられる。具体的には両冷水槽部分
2′,2″は槽を横断する阻流壁状の隔壁6で区劃
されるが、この隔壁は連通部7を有するものとす
る。従つて4つの上流側単位セル部分から共通冷
水槽部分2に落下した冷却水は連通部7を通つて
区劃冷水槽部分2′に流入し、ここで最下流単位
セル部分1−5から落下した保有冷却水と混合さ
れ、その後冷却水送出部から送出される。
In order to carry out the method of the present invention, the unit cooling cell part and the cold water tank are divided into the most downstream unit cell part 1-5 and the other four upstream unit cell parts 1-1 to 1- in relation to the cooling water delivery part. The former section is divided into a section cold water tank section 2' below the cell section 1-5, and the latter common cold water tank section 2'' below the cell sections 1-1 to 1-4. The cold water tank portions 2', 2'' are separated by a partition wall 6 in the form of a baffle wall that crosses the tank, and this partition wall has a communication portion 7. Therefore, the cooling water that has fallen from the four upstream unit cell parts into the common cold water tank part 2 flows through the communication part 7 into the section cold water tank part 2', where it falls from the most downstream unit cell part 1-5. It is mixed with the retained cooling water, and then sent out from the cooling water delivery section.

前記の冷却水の混合を良好とするため、連通部
7は隔壁6の複数個所に開設したり、隔壁6に多
孔板8を前置したりして、共通冷水槽部分2の冷
却水を上層および下層から受入れてできるだけ平
均化した温度の冷却水が流入するようにする。ま
た区劃冷水槽部分2内に隔壁6から離して冷却水
の送出部と相対する阻流壁9を設けて連通部7か
ら流入する上流側冷却水が混合前に送水ポンプ5
の吸入側に短絡流することを防ぐようにするのが
よい。その他、第2図イ,ロは隔壁6に貫通する
連通管10に分布ノズル11を取付け区劃冷水槽
部分2内に配設して、連通部7に置換えたもの
で、隔壁6前後の水位差により連通部7から流入
する冷却水の流速は撹拌に作用するが、ノズル1
1からの噴流状として一層有効に撹拌混合に役立
せることがきる。
In order to improve the mixing of the cooling water, the communication portions 7 may be provided at multiple locations on the partition wall 6, or a perforated plate 8 may be placed in front of the partition wall 6, so that the cooling water in the common cold water tank portion 2 can be mixed in an upper layer. Cooling water is received from the lower layer and the temperature is as averaged as possible. In addition, a baffle wall 9 is provided in the section cooling water tank portion 2 at a distance from the partition wall 6 and facing the cooling water delivery section, so that the upstream cooling water flowing from the communication section 7 is mixed with the water pump 5.
It is best to prevent short-circuit current from flowing to the suction side. In addition, Fig. 2 A and B show a distribution nozzle 11 attached to a communication pipe 10 penetrating the partition wall 6 and disposed inside the cold water tank section 2 to replace the communication section 7, and the water level before and after the partition wall 6 Due to the difference, the flow rate of the cooling water flowing in from the communication part 7 affects stirring, but the
1 can be used for stirring and mixing more effectively.

本発明では特に最下流単位冷却セル部分1−5
の冷却フアン3−5は回転数変更、ブレード変角
等による風量可変手段を具備したものとする。こ
の例では風量可変手段は冷却フアン3−5の回転
数可変手段12としてある。この風量変更のた
め、冷却水の送出部に該当するポンプ5の吸込側
の近くに水温検知器13を設け、検知水温に応じ
て回転数可変手段12を介し最下流冷却フアン3
−5の回転数を変更して風量を変化させる。回転
数可変手段12としては周波数変換機や無段変速
機を用いて検知水温に追従して連続的に回転数を
変化させてもよく、多段階的に回転数を変化させ
てもよい。
In particular, in the present invention, the most downstream unit cooling cell portion 1-5
The cooling fan 3-5 is equipped with means for varying the air volume by changing the rotation speed, changing the blade angle, etc. In this example, the air volume variable means is the rotation speed variable means 12 of the cooling fan 3-5. In order to change the air volume, a water temperature detector 13 is provided near the suction side of the pump 5 corresponding to the cooling water delivery section, and the most downstream cooling fan 3 is
Change the air volume by changing the rotation speed of -5. As the rotation speed variable means 12, a frequency converter or a continuously variable transmission may be used to continuously change the rotation speed in accordance with the detected water temperature, or the rotation speed may be changed in multiple stages.

本発明ではさらに冷却フアンの調節風量値また
はそれに該当する他の信号値を運転台数制御装置
14に送り、それにより上流単位セル部分1−1
の冷却フアン3−1乃至3−4の起動、停止を指
令する。
In the present invention, the adjusted air volume value of the cooling fan or other signal value corresponding thereto is further sent to the operating number control device 14, thereby controlling the upstream unit cell portion 1-1.
The cooling fans 3-1 to 3-4 are commanded to start and stop.

この上流単位セル部分1−1乃至1−4の冷却
フアン3−1乃至3−4の運転台数制御はそのセ
ル数によつて異る。すなわち、上流側セル数が多
いほど、最下流単位セル部分1−5の冷却フアン
3−5により目標送水温度に向つて調整すること
を必要とする温度差の幅は小さくなるが、その一
方で区劃冷水槽部分2′での冷却水の滞留時間が
短かく従つてその温度調整時間が短かくなり、ま
た上流側セルの冷却フアン1−1乃至1−4の起
動、停止の影響が区劃冷水槽部分2′にあらわれ
る時間が概して延引しすなわち時間遅れを伴う傾
向があるので、前記起動停止の指令は冷却フアン
3−5の風量調整能力に余裕がある段階で発冷す
る。例えば冷却フアン3−5の回転数がその変更
調節幅の75%を起えた段階で上流側セルの冷却フ
アンの1台の起動を指令する。この1台の上流側
セルの冷却フアンの起動によつて共通冷却槽部分
2″から温度の低下した冷却水が区劃冷却槽部分
2′が流入するまでは冷却フアン3−5の回転数
は高速領域に維持され、送出冷却水が目標温度に
維持される。反対に冷却フアン3−5の回転数が
その変更可能幅の25%より少なくなる段階で上流
側セルの冷却フアンの1台の停止を指令し、前同
様であるが反対の過程により送出冷却水温度を目
標温度に維持する。
Control of the number of operating cooling fans 3-1 to 3-4 of the upstream unit cell portions 1-1 to 1-4 differs depending on the number of cells. That is, as the number of upstream cells increases, the width of the temperature difference that needs to be adjusted toward the target water supply temperature by the cooling fan 3-5 of the most downstream unit cell portion 1-5 becomes smaller; The residence time of the cooling water in the section cooling water tank section 2' is short, so the temperature adjustment time is shortened, and the effects of starting and stopping the cooling fans 1-1 to 1-4 of the upstream cells are significantly reduced. Since the time that appears in the cooling water tank portion 2' generally tends to be prolonged, that is, accompanied by a time delay, the start/stop command is issued at a stage when the cooling fan 3-5 has sufficient capacity to adjust the air volume. For example, when the rotational speed of the cooling fan 3-5 reaches 75% of its change adjustment width, a command is given to start one of the cooling fans in the upstream cell. The rotational speed of the cooling fan 3-5 is low until cooling water whose temperature has decreased from the common cooling tank section 2'' flows into the section cooling tank section 2' due to the activation of the cooling fan of this one upstream cell. The cooling water is maintained in the high speed region and the cooling water sent out is maintained at the target temperature.On the contrary, when the rotation speed of the cooling fans 3-5 becomes less than 25% of its changeable range, one of the cooling fans of the upstream cell is A shutdown is commanded and the outgoing cooling water temperature is maintained at the target temperature by the same but opposite process as before.

そして、上流単位セル部分1−1乃至1−4の
数が多い場合には、その冷却フアン3−1乃至3
−4の起動、停止する台数によつて共通冷水槽部
分2′から区劃冷水槽部分2′に流入する冷却水に
ついて温度の比較的細かい段階制御ができまたそ
の水量割合が増すので、冷却フアン3−5の速度
制御により調整すべき水温の変化幅が小さくな
る。このような場合には、最下流の冷却フアン3
−5の回転数可変手段12として極数変換モータ
を使用して全速、半速、停止の回転数変更を可能
とし、常態では半速で運転し、冷却水温の上昇に
より全速回転を必要とするようになつた段階で上
流側セルの冷却フアン3−1乃至3−4の1台を
起動し、反対に冷却水温の下降により最下流冷却
フアン3−5が停止した段階で上流側セルの冷却
フアンの1台を停止する運転方法によつても、安
定した目標送水温度が維持できるようになる。
When the number of upstream unit cell parts 1-1 to 1-4 is large, the cooling fans 3-1 to 3
-4, the temperature can be controlled in relatively fine steps with respect to the cooling water flowing from the common cooling water tank section 2' to the sectional cooling water tank section 2', and the proportion of the water amount can be increased depending on the number of units started and stopped. The speed control in step 3-5 reduces the range of change in water temperature to be adjusted. In such a case, the most downstream cooling fan 3
A pole number converting motor is used as the rotation speed variable means 12 in -5 to enable changing the rotation speed between full speed, half speed, and stop, and normally operates at half speed, but requires full speed rotation as the cooling water temperature rises. When this happens, one of the cooling fans 3-1 to 3-4 of the upstream cell is started, and conversely, when the most downstream cooling fan 3-5 stops due to a drop in cooling water temperature, cooling of the upstream cell is started. Even with an operating method in which one of the fans is stopped, a stable target water supply temperature can be maintained.

このようにして、上流セル部分の冷却フアン3
−1乃至3−4の運転台数は、区劃冷水槽部分
2′において冷却フアン3−5によつて送出水温
の微調整が可能な範囲に流入冷却水温を粗制御で
きる台数であればよいので、共通冷水槽部分2″
での水の停滞等による遅れの影響が少なく、また
冷却フアンの起動、停止の頻度は通常の多セル冷
却塔のフアンの運転台数制御方式に較べて少くな
り、それだれ冷却フアンの寿命が延びることにな
る。また起動停止する上流セル部分の冷却フアン
3−1乃至3−4の選択は、最下流セル部分に近
い順序によりフアン3−4,3−3の順に起動
し、停止する場合も同順序でフアン3−4,3−
3の順に停止するようにすれば、上流セル部分の
冷却フアン3−1乃至3−4の稼動時間が均一化
され、長期運転停止による回転部分の油切れが防
止される。
In this way, the cooling fan 3 in the upstream cell section
-1 to 3-4 can be operated as long as they can roughly control the inflow cooling water temperature within a range that allows fine adjustment of the sending water temperature by the cooling fan 3-5 in the section cooling water tank section 2'. , common cold water tank part 2″
The effect of delays caused by stagnation of water in the cooling tower is reduced, and the frequency of starting and stopping the cooling fans is reduced compared to the control method for the number of operating fans in a normal multi-cell cooling tower, which extends the life of each cooling fan. It turns out. In addition, the selection of the cooling fans 3-1 to 3-4 in the upstream cell part to be started and stopped is as follows: fans 3-4 and 3-3 are started in the order closest to the most downstream cell part, and when stopped, the fans are selected in the same order. 3-4, 3-
If the cooling fans 3-1 to 3-4 in the upstream cell portion are stopped in the order of 3, the operating time of the cooling fans 3-1 to 3-4 in the upstream cell portion is made uniform, and oil shortage in the rotating portion due to long-term operation stoppage is prevented.

なお、上流セル部分の冷却フアン3−1乃至3
−4に極数変換モータを使用することが可能で、
この場合は回転数は2段階に変更でき、共通冷水
槽部分2′で水温の一層細かい段階制御ができ、
冷却フアンの動力も大幅に低減される。
In addition, the cooling fans 3-1 to 3 in the upstream cell section
It is possible to use a pole number conversion motor for -4.
In this case, the rotation speed can be changed in two steps, and the water temperature can be controlled in finer steps in the common cold water tank section 2'.
The power of the cooling fan is also significantly reduced.

本発明方法は、装置に種々の付加、変更を行な
つて有利に実施することができる。例えば、第3
図は、共通冷水槽部分2″内に隔壁6を貫通し先
端が開口した導水管15を配設して上流寄りセル
部分1−1から落下した冷却水に受入れを促進す
るようにしたものを示す。このような方法は、上
流単位冷却セル部分1−1乃至1−4の数が多く
て、その最上流セル部分1−1の冷却フアン3−
1の影響が区劃冷水槽部分2′に到達するのに時
間がかかつて冷却フアン3−5により調整可能な
限界を越える虞がある場合に、有利に採用でき
る。なお導水管15を複数本設けて各上流セル部
分からの冷却水の受入に時間差を少なくするよう
にするのがよい。これらは各上流セル部分からの
冷却水を均等に集水するのに有効に役立つ。また
導水管15に立上り管16をこの例では2本設け
て共通冷水槽部分2″内の上層の水の溢流入によ
る集水を行い、また導水管16の壁に集水孔17
を設けて下層の水の集水も同時に行うようにすれ
ば、死水領域が消滅して冷水槽部分2″の全域が
有効に利用され、落下冷却水の急激な温度変化が
吸収できるので、各種負荷急変時における制御の
安定化に役立つ。
The method of the present invention can be carried out advantageously by making various additions and changes to the apparatus. For example, the third
The figure shows a water pipe 15 that penetrates the partition wall 6 and has an open end in the common cold water tank section 2'' to facilitate the reception of cooling water that has fallen from the upstream cell section 1-1. In this method, when there are many upstream unit cooling cell parts 1-1 to 1-4, the cooling fan 3-1 of the most upstream unit cooling cell part 1-1 is
This can be advantageously employed in cases where the influence of cooling fan 3-5 is likely to exceed the limit adjustable by cooling fan 3-5 if it takes a long time for the influence of cooling fan 3-5 to reach section 2'. Note that it is preferable to provide a plurality of water conduit pipes 15 to reduce the time difference in receiving cooling water from each upstream cell portion. These serve effectively to collect cooling water evenly from each upstream cell section. In this example, two riser pipes 16 are provided in the water pipe 15 to collect water from the overflow of water in the upper layer in the common cold water tank portion 2''.
If the water from the lower layer is also collected at the same time, the dead water area will disappear and the entire area of the cold water tank 2'' will be effectively used, and the rapid temperature changes of the falling cooling water can be absorbed, making it possible to absorb various types of water. Helps stabilize control during sudden load changes.

第4図イ,ロは区劃冷水槽部分2′内の上位に
集水トラフ18を設け、区劃冷水槽部分2′の下
方から上昇して来る共通冷水槽部2″からの流入
冷却水と最下流単位セル部分1−5から落下する
冷却水とを混合させて集水トラフ18に取水し、
ここから冷却水を送出するようにしたものであ
る。この実施例方法では、外気温、戻り水の水
量、水温が急激に変化した場合に、その影響の早
くできる最下流単位セル部分1−5からの冷却水
を優先取水できるので、上流セル部分の冷却フア
ン3−1乃至3−4の運転台数制御が迅速にでき
る。
4A and 4B, a water collection trough 18 is provided at the upper part of the section cooling water tank section 2', and the inflow cooling water from the common cold water tank section 2'' rising from below the section cooling water tank section 2' is shown. and the cooling water falling from the most downstream unit cell portion 1-5 are mixed and taken into the water collection trough 18,
Cooling water is sent out from here. In this embodiment method, when the outside temperature, the amount of return water, and the water temperature suddenly change, the cooling water can be preferentially taken from the most downstream unit cell part 1-5, which is affected quickly by the change, so that the cooling water can be taken from the upstream cell part. The number of operating cooling fans 3-1 to 3-4 can be quickly controlled.

第1図には多セル冷却塔のセル列の端部セルを
最下流単位冷却セル部分1−5としその下方の区
劃冷水槽部分2′から冷却水を送出する実施例を
示し詳細に説明したが、本発明はこの配列による
実施方法のみに限られない。例えば、第5図に示
すようにセル列の中央部セルを最下流単位冷却セ
ル部分1cとし、その両側に上流単位セル部分1
b,1aが配置されるようにし、最下流単位セル
部分1cの冷水槽部分を区劃冷水槽部分2´とし
てその両隣に共通冷水槽部分2″,2″があるよう
にし、区劃冷水槽部分2′から冷却水を送出する
ようにすることができる。列設セル部分について
の最下流とは、冷却水の送出部のある区劃冷水槽
部分2の上方に位置する単位冷却セル部分を意味
するものと理解すべきである。第5図については
単位冷却セル部分1a,1b,1cの冷却フアン
を3a,3b,3cの符号によりその他の部分は
第1図中の均等部分と符号を一致させて示してあ
る。
FIG. 1 shows an embodiment in which the end cell of the cell row of a multi-cell cooling tower is the most downstream unit cooling cell section 1-5, and cooling water is sent from the section cooling water tank section 2' below it, and will be described in detail. However, the present invention is not limited to implementation using this arrangement. For example, as shown in FIG. 5, the central cell of the cell row is the most downstream unit cooling cell section 1c, and the upstream unit cell sections 1c are on both sides.
b, 1a are arranged, and the cold water tank part of the most downstream unit cell part 1c is made into a sectional cold water tank part 2', with common cold water tank parts 2'', 2'' on both sides thereof, Cooling water can be delivered from part 2'. The most downstream with respect to the arrayed cell section is to be understood as meaning the unit cooling cell section located above the section cooling water tank section 2 where the cooling water outlet is located. In FIG. 5, the cooling fans of the unit cooling cell portions 1a, 1b, and 1c are shown with reference numerals 3a, 3b, and 3c, and the other parts are shown with the same reference numerals as the equivalent parts in FIG.

以上説明したように、本発明方法によれば、多
セル冷却塔の冷水槽での水の停滞、短絡流等に起
因する制御上の困難な問題が解消されるので、戻
り水の水量、水温、外気温等の条件が急変する場
合にも安定した自動制御が可能となり目標送水温
度が維持される。冷却フアンの駆動装置および自
動制御系は高級複雑化する必要がないので、多く
の費用がかかなず信頼性が高い。また既設の多セ
ル冷却塔の送水温度を制御する場合にも、本発明
方法を適用すれば、僅かの付加費用で常に最適の
冷却能力が維持されフアン動力の浪費が防がれ安
定した温度および量の冷却水の送出が可能である
等の諸効果が得られる。
As explained above, according to the method of the present invention, difficult problems in control caused by water stagnation, short-circuit flow, etc. in the cold water tank of a multi-cell cooling tower are solved, so the amount of return water and the water temperature are reduced. Even when conditions such as outside temperature suddenly change, stable automatic control is possible and the target water supply temperature is maintained. The driving device and automatic control system of the cooling fan do not need to be sophisticated and complicated, so they are inexpensive and highly reliable. Furthermore, when controlling the water temperature of an existing multi-cell cooling tower, if the method of the present invention is applied, the optimum cooling capacity will always be maintained at a small additional cost, the wastage of fan power will be prevented, and stable temperature and Various effects such as being able to send out a large amount of cooling water can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の1実施例に用いる多セル
冷却塔の全体的構成を示す部分縦断側面図、第2
図イは本発明に用いる多セル冷却塔の隔壁近傍部
分の異なる構成を示す縦断側面図、第2図ロはそ
の縦断端面図、第3図は本発明に用いる多セル冷
却塔の共通冷水槽部分の異なる構成を示す縦断側
面図、第4図イは本発明に用いる多セル冷却塔の
区劃冷水槽部分の異なる構成を示す縦断側面図、
第4図ロはその縦断端面図、第5図は本発明方法
の他の実施例に用いる多セル冷却塔の全体的構成
を示す部分縦断側面図である。 1……多セル冷却塔、1−1,1−2,1−
3,1−4,1a,1b……上流単位冷却セル部
分、1−5,1c……最下流単位冷却セル部分、
2……冷水槽、2′……区劃冷水槽部分、2″……
共通冷水槽部分、3−1,3−2,3−3,3−
4,3−5,3a,3b,3c……冷却フアン、
4……配管、5……送水ポンプ、6……隔壁、8
……連通部、9……阻流壁、10……連通管、1
1……ノズル、12……回転数可変手段、風量可
変手段、13……水温検知器、14……運転台数
制御装置、15……導水管、16……立上り管、
17……集水孔、18……集水トラフ。
FIG. 1 is a partial vertical side view showing the overall configuration of a multi-cell cooling tower used in one embodiment of the method of the present invention;
Figure A is a vertical cross-sectional side view showing different configurations of the portion near the partition wall of the multi-cell cooling tower used in the present invention, Figure 2 B is a vertical cross-sectional end view thereof, and Figure 3 is a common cold water tank of the multi-cell cooling tower used in the present invention. FIG. 4A is a vertical side view showing different configurations of the section cooling water tank portion of the multi-cell cooling tower used in the present invention;
FIG. 4B is a vertical cross-sectional end view thereof, and FIG. 5 is a partial vertical cross-sectional side view showing the overall configuration of a multi-cell cooling tower used in another embodiment of the method of the present invention. 1...Multi-cell cooling tower, 1-1, 1-2, 1-
3, 1-4, 1a, 1b... Upstream unit cooling cell part, 1-5, 1c... Most downstream unit cooling cell part,
2... Cold water tank, 2'... Sectional cold water tank part, 2''...
Common cold water tank part, 3-1, 3-2, 3-3, 3-
4, 3-5, 3a, 3b, 3c...cooling fan,
4... Piping, 5... Water pump, 6... Bulkhead, 8
...Communication section, 9...Break wall, 10...Communication pipe, 1
DESCRIPTION OF SYMBOLS 1...Nozzle, 12...Rotation speed variable means, air volume variable means, 13...Water temperature detector, 14...Operation number control device, 15...Water pipe, 16...Rise pipe,
17...Water collection hole, 18...Water collection trough.

Claims (1)

【特許請求の範囲】 1 冷却フアンを備えた複数の単位セル部分から
なる多セル冷却塔において、塔下方の冷却水集水
用の冷水槽を冷却水を送出部が位置する最下流単
位セル部分の下方の区劃冷水槽部分と他の上流単
位セル部分の下方の共通冷水槽部分とに連通部を
有する隔壁で区劃し、以て区劃冷水槽部分におい
て共通冷水槽部分から流入する冷却水を区劃冷水
槽部分内の冷却水と撹拌混合するようにするとと
もに、最下流単位セル部分の冷却フアンを風量可
変手段を具備したものとして送出部の冷却水の温
度に応じて該冷却フアンの風量を調節し、さらに
この調節風量値に基いて上流単位セル部分の冷却
フアンの運転台数制御を行うようにしたことを特
徴とする多セル冷却塔の送出冷却水温度の制御方
法。 2 最下流単位セル部分の風量可変手段を具備し
た冷却フアンとして回転数連続可変式冷却フアン
を用いて、送出部の冷却水の温度に応じて該冷却
フアンの回転数を連続的に変化させ、この回転数
値に基いて上流単位セル部分の冷却フアンの運転
台数制御を行うようにしたことを特徴とする特許
請求の範囲第1項の制御方法。 3 最下流単位セル部分の風量可変手段を具備し
た冷却フアンとして極数変換モータ駆動の冷却フ
アンを用いて、極数変換モータの全速回転時に上
流単位セル部分の冷却フアン1台を起動し、停止
時に上流単位セル部分の冷却フアン1台を停止す
るよう運転台数制御を行うようにしたことを特徴
とする特許請求の範囲第1項の制御方法。 4 共通冷水槽部分から流入する冷却水により区
劃冷水槽部分内の冷却水に水流撹拌を与えるよう
にしたことを特徴とする特許請求の範囲第1項の
制御方法。 5 隔壁の上流側に導水管を設けて各上流単位セ
ル部分から落下する冷却水を均等集水するように
したことを特徴とする特許請求の範囲第1項の制
御方法。 6 区劃冷水槽部分に集水トラフを設けて最下流
単位セル部分から落下する冷却水を優先集水する
ようにしたことを特徴とする特許請求の範囲第1
項の制御方法。
[Scope of Claims] 1. In a multi-cell cooling tower consisting of a plurality of unit cell sections equipped with cooling fans, a cold water tank for collecting cooling water at the bottom of the tower is connected to the most downstream unit cell section where the cooling water delivery section is located. The lower section cold water tank part and the lower common cold water tank part of other upstream unit cells are separated by a partition wall having a communicating part, so that cooling flows into the section cold water tank part from the common cold water tank part. The water is stirred and mixed with the cooling water in the section cooling water tank section, and the cooling fan in the most downstream unit cell section is equipped with an air volume variable means, so that the cooling fan is adjusted according to the temperature of the cooling water in the delivery section. A method for controlling the temperature of cooling water sent out from a multi-cell cooling tower, characterized in that the number of operating cooling fans in the upstream unit cell section is controlled based on the adjusted air volume value. 2. Using a continuously variable rotational speed cooling fan as a cooling fan equipped with an air volume variable means in the most downstream unit cell portion, continuously changing the rotational speed of the cooling fan according to the temperature of the cooling water in the delivery section, 2. The control method according to claim 1, wherein the number of operating cooling fans in the upstream unit cell portion is controlled based on this rotational value. 3 Using a cooling fan driven by a pole number conversion motor as a cooling fan equipped with an air volume variable means for the most downstream unit cell part, one cooling fan in the upstream unit cell part is started and stopped when the pole number conversion motor is rotating at full speed. 2. The control method according to claim 1, wherein the number of cooling fans in operation is controlled so that one cooling fan in the upstream unit cell section is stopped at a certain time. 4. The control method according to claim 1, characterized in that the cooling water flowing in from the common cold water tank portion provides water flow agitation to the cooling water in the separate cold water tank portions. 5. The control method according to claim 1, wherein a water conduit pipe is provided on the upstream side of the partition wall to uniformly collect the cooling water falling from each upstream unit cell portion. 6. Claim 1 characterized in that a water collection trough is provided in the section cooling water tank section to preferentially collect cooling water falling from the most downstream unit cell section.
How to control terms.
JP9979683A 1983-06-04 1983-06-04 Method for controlling temperature in cooling water fed out of multi-cell cooling tower Granted JPS59225300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9979683A JPS59225300A (en) 1983-06-04 1983-06-04 Method for controlling temperature in cooling water fed out of multi-cell cooling tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9979683A JPS59225300A (en) 1983-06-04 1983-06-04 Method for controlling temperature in cooling water fed out of multi-cell cooling tower

Publications (2)

Publication Number Publication Date
JPS59225300A JPS59225300A (en) 1984-12-18
JPH0345316B2 true JPH0345316B2 (en) 1991-07-10

Family

ID=14256867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9979683A Granted JPS59225300A (en) 1983-06-04 1983-06-04 Method for controlling temperature in cooling water fed out of multi-cell cooling tower

Country Status (1)

Country Link
JP (1) JPS59225300A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4505188B2 (en) * 2003-01-30 2010-07-21 本田技研工業株式会社 Fuel cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2565803B2 (en) * 1991-04-09 1996-12-18 川崎重工業株式会社 Cooling water temperature control method on the outlet side of the cooling tower

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556599A (en) * 1978-10-23 1980-04-25 Sumitomo Chem Co Ltd Cooling tower controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556599A (en) * 1978-10-23 1980-04-25 Sumitomo Chem Co Ltd Cooling tower controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4505188B2 (en) * 2003-01-30 2010-07-21 本田技研工業株式会社 Fuel cell

Also Published As

Publication number Publication date
JPS59225300A (en) 1984-12-18

Similar Documents

Publication Publication Date Title
US20020073720A1 (en) Dual evaporative pre-cooling system and method therefor
US4579692A (en) Water distribution method and flume for water cooling tower
EP2532993B1 (en) Cooling device and method
JPH0345316B2 (en)
JP4943880B2 (en) Cooling water supply / drainage method for cooling tower and cooling water supply / drainage method for cooling tower group using the same
CN216924023U (en) Crude oil buffer tank control system
US4720358A (en) Zoned hot water distribution system for counterflow towers
CN109708226B (en) User variable frequency distributed water mixing access system and method for regional cooling
CN209978296U (en) Electric valve energy-saving control device of central air-conditioning water distribution and collection device
DE102017117565A1 (en) COOLING SYSTEM AND METHOD FOR CONTROLLING A REFRIGERATOR
US2887308A (en) Self-regulating circulating and cooling system
CN100356127C (en) Fast spraying freezing coldproof method
CN219494977U (en) Water distribution equipment suitable for natural ventilation wet cooling tower
CN219977193U (en) Cold and hot energy storage rapid temperature homogenizing device
CN218443422U (en) Self-balancing cooling water system
CN217900078U (en) Hydraulic power distribution device for regulating temperature of water mixing pump
CN218627475U (en) Industrial water chilling unit
CN220875153U (en) Centralized dynamic temperature control grain storage system for building bin
CN216501554U (en) Laminar cooling water saving system
CN219736032U (en) Cooling circulating water system
CN212057607U (en) Balanced defeated distribution integrated device that stabilizes of assembled air conditioner water system
CN214745666U (en) Low-load stable operation and drainage recovery system of low-pressure drainage pump
CN217902328U (en) Automatic temperature control system
CN1131985C (en) Recooling system
CN210512727U (en) Air cooler water spray temperature adjusting device