JP4943880B2 - Cooling water supply / drainage method for cooling tower and cooling water supply / drainage method for cooling tower group using the same - Google Patents

Cooling water supply / drainage method for cooling tower and cooling water supply / drainage method for cooling tower group using the same Download PDF

Info

Publication number
JP4943880B2
JP4943880B2 JP2007022713A JP2007022713A JP4943880B2 JP 4943880 B2 JP4943880 B2 JP 4943880B2 JP 2007022713 A JP2007022713 A JP 2007022713A JP 2007022713 A JP2007022713 A JP 2007022713A JP 4943880 B2 JP4943880 B2 JP 4943880B2
Authority
JP
Japan
Prior art keywords
water
cooling
pipe
cooling tower
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007022713A
Other languages
Japanese (ja)
Other versions
JP2008190731A (en
Inventor
敏明 小川
哲生 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonets Corp
Original Assignee
Tonets Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonets Corp filed Critical Tonets Corp
Priority to JP2007022713A priority Critical patent/JP4943880B2/en
Publication of JP2008190731A publication Critical patent/JP2008190731A/en
Application granted granted Critical
Publication of JP4943880B2 publication Critical patent/JP4943880B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、冷却塔における冷却水の給排水に関する構造と、複数台の開放型冷却塔を連結した冷却塔群における冷却水の給排水に関する構造であって、冷却塔の冷却水給排水構造及びこれを用いた冷却塔群の冷却水給排水構造に関するものである。   The present invention relates to a cooling water supply / drainage structure in a cooling tower and a cooling water supply / drainage structure in a cooling tower group in which a plurality of open type cooling towers are connected. This relates to the cooling water supply / drainage structure of the cooling tower group.

図3は従来の冷却塔群の冷却水給排水構造の概略図である。   FIG. 3 is a schematic diagram of a cooling water supply / drainage structure of a conventional cooling tower group.

図示したように、冷却塔群101は、複数個の開放型冷却塔102を並列に並べて形成される。各冷却塔102は、貯水槽103と、これを覆う冷却塔本体104で構成される。貯水槽103は、冷凍機105と往き配管106及び還り配管107で接続される。往き配管106には、貯水槽103内の冷却水を冷凍機105に送水するためのポンプ121が備わる。還り配管107は、冷却塔本体104の上部に備わる冷却水散水管108と接続される。冷却塔本体104の上部には、冷却水散水管108から散水された冷却水を冷却するためのファン109が備わる。   As illustrated, the cooling tower group 101 is formed by arranging a plurality of open cooling towers 102 in parallel. Each cooling tower 102 includes a water storage tank 103 and a cooling tower main body 104 that covers the water storage tank 103. The water storage tank 103 is connected to the refrigerator 105 by an outgoing pipe 106 and a return pipe 107. The forward piping 106 is provided with a pump 121 for feeding the cooling water in the water storage tank 103 to the refrigerator 105. The return pipe 107 is connected to a cooling water sprinkling pipe 108 provided in the upper part of the cooling tower body 104. A fan 109 for cooling the cooling water sprayed from the cooling water sprinkling pipe 108 is provided in the upper part of the cooling tower main body 104.

貯水槽103には、貯水槽103内の冷却水を排水するためのオーバーフロー管110が備わる。各冷却塔102の貯水槽103に備わるオーバーフロー管110は、共通排水管111に接続される。貯水槽103の底部には、貯水槽103内の清掃時等に冷却水を排水するためのバルブ112により開閉する清掃用排水管113が備わる。   The water storage tank 103 is provided with an overflow pipe 110 for draining the cooling water in the water storage tank 103. An overflow pipe 110 provided in the water storage tank 103 of each cooling tower 102 is connected to a common drain pipe 111. The bottom of the water storage tank 103 is provided with a cleaning drain pipe 113 that is opened and closed by a valve 112 for draining the cooling water when cleaning the water storage tank 103 or the like.

貯水槽103には、貯水槽103内の冷却水の電導度を計測するためのブロー装置114がセンサ115を介して接続される。ブロー装置114は、給水管116に備わる電動バルブ117の開度調整を行う。貯水槽103には、前述した給水管116と別に設けられた給水管118に取り付けられたボールタップ119が備わる。各冷却塔102の貯水槽103に備わる給水管116,118は、共通給水管120に接続される。   A blow device 114 for measuring the conductivity of the cooling water in the water storage tank 103 is connected to the water storage tank 103 via a sensor 115. The blow device 114 adjusts the opening degree of the electric valve 117 provided in the water supply pipe 116. The water storage tank 103 is provided with a ball tap 119 attached to a water supply pipe 118 provided separately from the water supply pipe 116 described above. The water supply pipes 116 and 118 provided in the water storage tank 103 of each cooling tower 102 are connected to the common water supply pipe 120.

このような冷却塔群101において、各冷凍機105で使用された冷却水は、還り配管107から冷却水散水管108を通り、ファン109により冷却塔本体104内で冷却され、貯水槽103に溜められる。このとき、貯水槽103内の冷却水は、冷却塔本体104での冷却中の蒸発等により水分量が減少する。このため、冷却水は濃縮され、電導度が高くなる。電導度が高くなると、水中のイオンが徐々に結晶化して析出し、スケール化が起こる。このようなスケール化が生じた冷却水を放置すると、冷却塔102の腐食や、冷凍機105による冷却効率の低下が生じる。   In such a cooling tower group 101, the cooling water used in each refrigerator 105 passes through the cooling water sprinkling pipe 108 from the return pipe 107, is cooled in the cooling tower body 104 by the fan 109, and is stored in the water storage tank 103. It is done. At this time, the amount of water in the cooling water in the water storage tank 103 decreases due to evaporation or the like during cooling in the cooling tower body 104. For this reason, the cooling water is concentrated and the conductivity is increased. When the conductivity increases, ions in the water gradually crystallize and precipitate, resulting in scaling. If the scaled cooling water is allowed to stand, the cooling tower 102 is corroded and the cooling efficiency by the refrigerator 105 is reduced.

そこで、貯水槽103内の冷却水電導度を低くするため、電導度の高くなった冷却水を貯水槽103から排水し、新たな補給水を貯水槽103に給水している。   Therefore, in order to lower the electrical conductivity of the cooling water in the water storage tank 103, the cooling water having a higher electrical conductivity is drained from the water storage tank 103, and new makeup water is supplied to the water storage tank 103.

貯水槽103への給水は、貯水槽103内の冷却水の電導度をセンサ115を介してブロー装置114により計測し、所定の電導度以上であれば、電動バルブ117を開いて給水管116から貯水槽103に補給水を給水する。また、貯水槽103内の水位が減少して、所定水位以下になればボールタップ119が開状態となり、給水管118から新たな補給水を給水する。貯水槽103からの排水は、上述した給水管116,118からの給水により、貯水槽103内の水位を上昇させ、オーバーフロー管110によりオーバーフローされて排水が行われる。   For water supply to the water storage tank 103, the electric conductivity of the cooling water in the water storage tank 103 is measured by the blow device 114 via the sensor 115. If the electric conductivity is higher than the predetermined electric conductivity, the electric valve 117 is opened and the water supply pipe 116 is opened. Supply water is supplied to the water storage tank 103. Further, when the water level in the water storage tank 103 decreases and falls below the predetermined water level, the ball tap 119 is opened, and new makeup water is supplied from the water supply pipe 118. Drainage from the water storage tank 103 is raised by the water supply from the water supply pipes 116 and 118 described above, the water level in the water storage tank 103 is raised, and overflowed by the overflow pipe 110 to be drained.

このような作用により、貯水槽103内の冷却水が、所定の電導度又は所定の水位となるまで、給水管116又は118から新たな補給水を給水し続ける。   By such an action, new supply water is continuously supplied from the water supply pipe 116 or 118 until the cooling water in the water storage tank 103 reaches a predetermined conductivity or a predetermined water level.

しかし、上述した従来の冷却塔群の冷却水給排水構造では、給水管116,118からの給水が貯水槽103の上方から行われ、オーバーフロー管110の排水口も貯水槽103の上側にある。このため、排水される冷却水には、給水された新たな補給水が多く含まれることになる。したがって、冷却水の入れ替え効率が悪く、よって無駄な給水がされることになる。さらに、開放型冷却塔102の貯水槽103の下部には、砂塵等の塵埃や、枯葉等の異物が溜まっているが、オーバーフロー管110ではこれらを直接排出させることは困難である。また、各冷却塔ごとにブロー装置114、ボールタップ119を設置する必要があるため、装置が複雑化し、多大な設備費用が必要となる。   However, in the cooling water supply / drainage structure of the conventional cooling tower group described above, water supply from the water supply pipes 116 and 118 is performed from above the water storage tank 103, and the drain outlet of the overflow pipe 110 is also above the water storage tank 103. For this reason, the drained cooling water contains a lot of new supplied water. Therefore, the replacement efficiency of the cooling water is poor, and therefore unnecessary water supply is performed. Furthermore, although dust such as sand dust and foreign matters such as dead leaves are accumulated in the lower part of the water storage tank 103 of the open type cooling tower 102, it is difficult to directly discharge them with the overflow pipe 110. Moreover, since it is necessary to install the blow apparatus 114 and the ball tap 119 for each cooling tower, the apparatus becomes complicated and a large equipment cost is required.

このような構成を採用した冷却塔の給排水制御装置が特許文献1に開示されている。特許文献1に記載の給排水構造も、貯水槽の上部からオーバーフローにより排水するものであり、また冷却塔ごとに給水手段を備えるものであり、同様の問題点を有するものである。   Patent Document 1 discloses a cooling tower water supply / drainage control device adopting such a configuration. The water supply / drainage structure described in Patent Document 1 also drains from the upper part of the water storage tank by overflow, and has a water supply means for each cooling tower, and has the same problems.

図4は、従来の別の冷却塔の給排水構造の概略図である。   FIG. 4 is a schematic view of another conventional cooling tower water supply / drainage structure.

図4は、図3で示した冷却塔102の例として、別の冷却塔を示したものである。図示したように、ブロー装置114は、貯水槽103の底面に接続された排水管113の電動バルブ122と接続される。貯水槽103内の冷却水の電導度が所定値以上である場合、ブロー装置114は電動バルブ122を開いて貯水槽103の下部の冷却水を排水する。冷却水が排水されると、水位が減少するため、ボールタップ119の給水管118から補給水が給水される。あるいは、バルブ123を手動で開いて給水管116から給水される。このような構成として、新たな補給水を貯水槽の上方から供給し、電導度の高い貯水槽103の下部の冷却水を、貯水槽103の底面から排水して、冷却水の入れ替え効率を向上させようとしていた。   FIG. 4 shows another cooling tower as an example of the cooling tower 102 shown in FIG. As illustrated, the blow device 114 is connected to the electric valve 122 of the drain pipe 113 connected to the bottom surface of the water storage tank 103. When the electrical conductivity of the cooling water in the water storage tank 103 is equal to or higher than a predetermined value, the blow device 114 opens the electric valve 122 and drains the cooling water below the water storage tank 103. When the cooling water is drained, the water level decreases, so that makeup water is supplied from the water supply pipe 118 of the ball tap 119. Alternatively, the valve 123 is manually opened to supply water from the water supply pipe 116. As such a configuration, new makeup water is supplied from above the water tank, and the cooling water at the bottom of the water tank 103 with high conductivity is drained from the bottom surface of the water tank 103 to improve the efficiency of replacing the cooling water. I was trying to let them.

しかし、上述した従来の冷却塔の排水構造では、貯水槽103内の冷却水の電導度や水位により電動バルブ122の開閉動作が行われる。上述したように、開放型冷却塔102の貯水槽103内の冷却水には、砂塵等の塵埃や、枯葉等の異物が混入していることがあり、これがバルブ122に噛みやすく、電動バルブ122の動作不良が生じる可能性が高い。   However, in the conventional cooling tower drainage structure described above, the opening and closing operation of the electric valve 122 is performed according to the conductivity and water level of the cooling water in the water storage tank 103. As described above, the cooling water in the water storage tank 103 of the open type cooling tower 102 may be mixed with dust such as sand dust or foreign matter such as dead leaves. There is a high possibility that a malfunction will occur.

このような構成を採用した冷却塔給水方法及び装置が特許文献2に開示されている。特許文献2に記載の冷却塔の排水構造も、貯水槽の下部から土砂とともに冷却水を排出するものであり、その排水管の開閉動作はバルブで行われるため、やはりこの土砂がバルブに噛みやすく、同様の問題点を有するものである。   Patent Document 2 discloses a cooling tower water supply method and apparatus employing such a configuration. The drainage structure of the cooling tower described in Patent Document 2 also discharges cooling water together with the earth and sand from the lower part of the water storage tank, and the drain pipe is opened and closed by a valve. Have similar problems.

図5は従来のさらに別の冷却塔群の給排水構造の概略図である。   FIG. 5 is a schematic view of another conventional cooling tower group water supply / drainage structure.

図示したように、各冷却塔102の往き配管106及び還り配管107がそれぞれ共通ヘッダ124、125で連結される。このように共通ヘッダ124,125を設けて、各冷却塔102を個別に制御するのではなく、複数個の冷却塔102からなる冷却塔群101をまとめて制御するものである。これにより、冷凍機105で使用される往きと還りの冷却水を共通ヘッダ124,125で共通し、各冷却塔102間での冷却水導電率を均一化して冷却塔群101としてまとめて管理するものである。   As shown, the forward piping 106 and the return piping 107 of each cooling tower 102 are connected by common headers 124 and 125, respectively. In this way, the common headers 124 and 125 are provided, and each cooling tower 102 is not individually controlled, but the cooling tower group 101 including a plurality of cooling towers 102 is collectively controlled. Accordingly, the forward and return cooling water used in the refrigerator 105 is shared by the common headers 124 and 125, and the cooling water conductivity between the cooling towers 102 is made uniform and collectively managed as the cooling tower group 101. Is.

また、各貯水槽103同士は連通管126で連結される。これにより、さらに各貯水槽103間での冷却水の導電率を均一化して、各貯水槽103間での冷却水の水位を揃えるものである。なお、その他の構成は図3と同様である。   Further, the water storage tanks 103 are connected to each other by a communication pipe 126. As a result, the conductivity of the cooling water between the water storage tanks 103 is further made uniform, and the water level of the cooling water between the water storage tanks 103 is made uniform. Other configurations are the same as those in FIG.

しかし、上述した冷却塔群の給排水構造においても、やはりオーバーフロー管110による排水構造であり、入れ替え効率の向上を図ることはできない。またブロー装置114も各貯水槽103に備えることが必要であり、さらに水位を計測するにも各貯水槽103ごとにボールタップ119を配設する必要がある。   However, the above-described water supply / drainage structure of the cooling tower group is also a drainage structure using the overflow pipe 110, and the replacement efficiency cannot be improved. Further, it is necessary to provide the blow device 114 in each water storage tank 103, and it is necessary to dispose a ball tap 119 for each water storage tank 103 in order to measure the water level.

特開2005−61680号公報JP 2005-61680 A 特開平9−138094号公報Japanese Patent Laid-Open No. 9-138094 特開平7−91878号公報JP-A-7-91878

共通ヘッダを用いた冷却塔水槽の水位制御方法及び水位制御装置が特許文献3に開示されている。この水位の制御は、各冷却塔内の水位を連通管を用いて揃えるのではなく、水位が異なることを前提として運転台数等のパラメータから計算により求めた水位を水位計に示すものである。すなわち、冷却塔通水基数の各ブロック間での差異を許容限度以内におさめるよう、通水する冷却塔を選ぶとともに、同通水基数がゼロのブロックの水槽と水位が等しい水位計による設定水位を冷却塔の全通水基数に対応させて変更すべく、制御弁等によって補給水量を調整するものであり、通水基数に応じて冷却水往きヘッダに取り付けた水位計の設定値を変えるものである。このような制御は、演算手法が複雑であり、そのための機構も複雑となり、制御方法全体としても複雑である。また、特許文献3には排水についての機構が明記されていない。   Patent Document 3 discloses a water level control method and a water level control device for a cooling tower water tank using a common header. The control of the water level is not to make the water level in each cooling tower uniform using a communication pipe, but to indicate the water level obtained by calculation from parameters such as the number of operating units on the water level meter on the assumption that the water level is different. In other words, in order to keep the difference in the number of water passing through the cooling tower between each block within the allowable limit, select a cooling tower that passes water, and set the water level with a water gauge that has the same water level as the water tank of the block with the same water passing base. Is to adjust the amount of water to be supplied by a control valve, etc., in order to change it according to the total number of water passing through the cooling tower, and to change the setting value of the water level gauge attached to the cooling water outlet header according to the number of water passing through It is. Such control is complicated in calculation method, complicated in its mechanism, and complicated as a whole control method. Patent Document 3 does not specify a mechanism for drainage.

本発明は、上記従来技術を考慮したものであって、簡単な構造で、冷却塔の貯水槽内の冷却水の入れ替え効率を向上して補給水の節水を図ることができ、各冷却塔ごとに冷却水の電導度や水位を計測するための機器を設置することを不要とし、一括して管理可能な冷却塔の冷却水給排水構造及びこれを用いた冷却塔群の冷却水給排水構造の提供を目的とするものである。   The present invention takes the above-mentioned conventional technology into consideration, has a simple structure, can improve the replacement efficiency of the cooling water in the water storage tank of the cooling tower, and can save the makeup water. Providing a cooling water supply / drainage structure for a cooling tower that can be managed in a batch and a cooling water supply / drainage structure for a cooling tower group using the same without the need to install equipment for measuring the conductivity and water level of the cooling water It is intended.

前記目的を達成するため、請求項1の発明では、冷凍機に供給する冷却水を冷却するための冷却塔と、当該冷却塔の下部に備わり、前記冷却水を溜める貯水槽と、当該貯水槽から前記冷却水を排水するための排水管と、前記貯水槽の上側から前記冷却水の補給水を供給するための給水管とが備わり、前記排水管は、立ち上がり部と下がり部で構成され、当該立ち上がり部の端部には、前記貯水槽の下部に配設される排水口が備わり、前記下がり部の端部には、前記貯水槽の外部に配設される排出口が備わり、前記立ち上がり部と前記下がり部は、前記排水口より高い位置で、かつ、前記貯水槽の側壁高さより低い位置で連結され、前記下がり部の上端には開口部が備わり、前記給水管から貯水槽内に補給水を補給し、当該貯水槽の水位が上昇すると同時に前記立ち上がり部内の水位が上昇し、前記立ち上がり部内の水が前記連結部の高さを超えると、当該連結部を通って前記下がり部へ流れ、当該下がり部の排水口から排水することを特徴とする冷却塔の冷却水給排水方法を提供する。 To achieve the above object, according to the first aspect of the present invention, there is provided a cooling tower for cooling the cooling water supplied to the refrigerator, a water tank provided at the lower part of the cooling tower for storing the cooling water, and the water tank. A drainage pipe for draining the cooling water from, and a water supply pipe for supplying the cooling water makeup water from the upper side of the water storage tank, the drainage pipe is composed of a rising part and a lowering part, An end portion of the rising portion is provided with a drain port disposed at a lower portion of the water storage tank, and an end portion of the lowering portion is provided with a discharge port disposed outside the water storage tank. The lower part and the lower part are connected at a position higher than the drain outlet and at a position lower than the side wall height of the water storage tank, an upper end of the lower part is provided with an opening, and the water supply pipe enters the water storage tank. Supply water is replenished, and the water level of the water tank rises At the same time the water level in the rising part rises, and when the water in the rising part exceeds the height of the connecting part, it flows through the connecting part to the falling part and drains from the drain outlet of the falling part. A cooling water supply / drainage method for a cooling tower is provided.

請求項2の発明では、請求項1の発明において、前記排水口は、前記貯水槽の底面又は下部の側面に形成されることを特徴としている。   According to a second aspect of the present invention, in the first aspect of the present invention, the drain port is formed on a bottom surface or a lower side surface of the water storage tank.

請求項3の発明では、請求項1又は2の発明の前記冷却塔が複数個配設された冷却塔群に適用され、前記冷却塔の上部に備わり、前記給水管の役目を果たす冷却水散水管と、前記冷却塔と冷凍機の間に配設される冷却水の往き配管及び還り配管と、前記複数個の冷却塔の還り配管同士を連通させる還り共通ヘッダとが備わり、前記還り共通ヘッダ内の冷却水の電導度を計測する制御装置と、前記還り共通ヘッダと連通する補給水供給管と、当該補給水供給管に電動バルブとが備わり、前記制御装置の電導度の計測結果に基づいて前記還り共通ヘッドに対する給水量を前記電動バルブで調整する冷却塔群の冷却水給排水方法を提供するThe invention of claim 3 is applied to a cooling tower group in which a plurality of the cooling towers of the invention of claim 1 or 2 are arranged, and is provided in the upper part of the cooling tower and serves as a water supply pipe. The return common header includes a water pipe, a return pipe and return pipe for cooling water disposed between the cooling tower and the refrigerator, and a return common header for communicating the return pipes of the plurality of cooling towers. A control device for measuring the electrical conductivity of the cooling water in the interior, a supplementary water supply pipe communicating with the return common header, an electric valve in the supplementary water supply pipe, and based on the electrical conductivity measurement result of the control device And a cooling water supply / drainage method for a cooling tower group, wherein the water supply amount to the return common head is adjusted by the electric valve .

さらに、請求項4の発明では、請求項の発明において、前記複数個の冷却塔の貯水槽には、当該貯水槽同士を連通させる連通管が備わり、当該連通管に前記貯水槽内の水位を計測するための水位計が配設され、前記制御装置は、前記水位計の計測結果に基づいて前記電動バルブの開度を調整することを特徴とする冷却塔群の冷却水給排水方法を提供するFurther, in the invention of claim 4, in the invention of claim 3 , the water storage tanks of the plurality of cooling towers are provided with a communication pipe for communicating the water storage tanks, and the water level in the water storage tank is connected to the communication pipe. A cooling water supply / drainage method for a cooling tower group is provided , wherein a water level meter for measuring the temperature is disposed, and the control device adjusts an opening degree of the electric valve based on a measurement result of the water level meter. To do .

請求項1の発明によれば、貯水槽から冷却水を排水するために、立ち上がり部と下がり部で構成される排水管を用いるため、貯水槽内の冷却水は、排水口から立ち上がり部に浸入し、貯水槽内の冷却水の水位の上昇とともに、立ち上がり部内を上昇し、下がり部に備わる排水口から排出することができる。この立ち上がり部に備わる排水口は、貯水槽の下部に配設されるため、貯水槽の上側から補給水が供給された場合に、貯水槽下部から冷却水を排水できる。したがって、貯水槽の上側から供給される新たな補給水がすぐに排水されることを抑制でき、使用により電導度の高くなった冷却水と新たな補給水との入れ替え効率を向上することができ、無駄な給水を抑制できる。また、下がり部の上端には、排水管内のサイフォン現象を防止するための開口部が備わるため、下がり部の排出口が立ち上がり部の排水口より低い位置にある場合に、サイフォン現象が発生して貯水槽内の冷却水が排水され続けることを防止できる。 According to the first aspect of the present invention, since the drain pipe composed of the rising part and the falling part is used to drain the cooling water from the water tank, the cooling water in the water tank enters the rising part from the drain port. However, as the cooling water level in the water storage tank rises, it can rise in the rising portion and be discharged from the drain outlet provided in the falling portion. Since the drain port provided in the rising portion is disposed at the lower part of the water storage tank, the cooling water can be drained from the lower part of the water storage tank when makeup water is supplied from the upper side of the water storage tank. Therefore, it is possible to prevent the new makeup water supplied from the upper side of the water tank from being drained immediately, and to improve the replacement efficiency of the cooling water whose conductivity has been increased by use and the new makeup water. , Useless water supply can be suppressed. In addition, the upper end of the falling part is provided with an opening to prevent siphoning in the drainage pipe, so that the siphoning phenomenon occurs when the outlet of the lowering part is lower than the outlet of the rising part. It is possible to prevent the cooling water in the water storage tank from being continuously drained.

また、請求項2の発明によれば、排水口が、貯水槽の底面又は下部の側面に形成されるため、貯水槽底部に溜まった砂塵等の塵埃や、枯葉等の異物を排水口から容易に排出させることができる。この排出は、立ち上がり部と下がり部からなる排水管を利用して排水を行うものであるため、排水管にバルブを必要としない。このため、塵埃や異物がバルブに噛まれて、バルブの動作不良が生じることはない。   According to the invention of claim 2, since the drainage port is formed on the bottom surface or the lower side surface of the water storage tank, dust such as dust collected at the bottom of the water storage tank and foreign matter such as dead leaves can be easily removed from the drainage port. Can be discharged. Since this discharge is performed using a drain pipe composed of a rising part and a falling part, a valve is not required for the drain pipe. For this reason, dust and foreign matter are not bitten by the valve, and the valve does not malfunction.

また、請求項の発明によれば、各冷却塔への還り配管と接続される還り共通ヘッダに電導度を計測するための制御装置が備わるため、個々の冷却塔に備わる貯水槽に電導度を計測するための機器を配設することが不要となる。このため、装置が簡略化し、多大な設備費用を必要としない。また、この制御装置による計測結果から、還り共通ヘッダを利用して、補給水供給管から電動バルブにより補給水量を調整するため、一括して冷却塔群の冷却水の電導度の管理を行うことができる。 Further, according to the invention of claim 3 , since the control device for measuring the conductivity is provided in the return common header connected to the return pipe to each cooling tower, the conductivity is provided in the water tank provided in each cooling tower. It is not necessary to provide a device for measuring the above. For this reason, an apparatus is simplified and a huge installation expense is not required. In addition, from the measurement result by this control device, the return common header is used to adjust the amount of makeup water from the makeup water supply pipe by the electric valve, so the conductivity of the cooling water in the cooling tower group is managed collectively. Can do.

また、請求項の発明によれば、連通管により、各貯水槽の水位を揃えることができる。したがって、連通管に水位計を設けることにより、各貯水槽の水位を把握することができる。このため、個々の貯水槽に水位計やボールタップ等を設ける必要がなく、簡単な構造で各貯水槽の水位を計測し、補給水供給管に備わる電動バルブを調整して水位の制御を行うことができる。したがって、バルブ制御に関し、複雑な演算や制御方法を必要としない。 According to the invention of claim 4 , the water level of each water tank can be made uniform by the communication pipe. Therefore, the water level of each water tank can be grasped by providing a water level meter in the communication pipe. For this reason, it is not necessary to provide a water level gauge or ball tap in each water tank, and the water level of each water tank is measured with a simple structure, and the water level is controlled by adjusting the electric valve provided in the makeup water supply pipe. Can do. Therefore, no complicated calculation or control method is required for valve control.

本発明は、冷凍機に供給する冷却水を冷却するための冷却塔と、当該冷却塔の下部に備わり、前記冷却水を溜める貯水槽と、当該貯水槽から前記冷却水を排水するための排水管と、前記貯水槽の上側から前記冷却水の補給水を供給するための給水管とが備わり、
前記排水管は、立ち上がり部と下がり部で構成され、当該立ち上がり部の端部には、前記貯水槽の下部に配設される排水口が備わり、前記下がり部の端部には、前記貯水槽の外部に配設される排出口が備わり、前記立ち上がり部と前記下がり部は、前記排水口より高い位置で、かつ、前記貯水槽の側壁高さより低い位置で連結され、前記下がり部の上端には開口部が備わり、前記給水管から貯水槽内に補給水を補給し、当該貯水槽の水位が上昇すると同時に前記立ち上がり部内の水位が上昇し、前記立ち上がり部内の水が前記連結部の高さを超えると、当該連結部を通って前記下がり部へ流れ、当該下がり部の排水口から排水するものとし、簡単な構造で、冷却塔の貯水槽内の冷却水の入れ替え効率を向上して補給水の節水を図ることができ、各冷却塔ごとに冷却水の電導度や水位を計測するための機器を設置することを不要とし、一括して管理可能とした冷却塔の冷却水給排水方法及びこれを用いた冷却塔群の給排水方法である。
The present invention includes a cooling tower for cooling cooling water supplied to a refrigerator, a water storage tank provided in a lower part of the cooling tower for storing the cooling water, and drainage for draining the cooling water from the water storage tank. A pipe and a water supply pipe for supplying makeup water for the cooling water from the upper side of the water tank,
The drain pipe is constituted by a rising portion and a falling portion, and an end portion of the rising portion is provided with a drain outlet disposed at a lower portion of the water storage tank, and the water storage tank is provided at an end portion of the falling portion. The outlet and the lowering portion are connected to each other at a position higher than the drainage port and lower than the height of the side wall of the water storage tank, and are connected to an upper end of the lowering portion. Is provided with an opening, replenishing makeup water into the reservoir from the water supply pipe, the water level in the rising portion rises at the same time as the water level of the reservoir rises, and the water in the rising portion rises to the height of the connecting portion. If it exceeds, it will flow to the descending part through the connecting part and drain from the drain part of the descending part, and with a simple structure, the efficiency of replacing cooling water in the water tank of the cooling tower is improved and replenished Can save water To install equipment for measuring the conductivity and the water level of the cooling water in each cooling tower becomes unnecessary, the cooling water supply and discharge method and cooling tower group using the same cooling tower which enables managed together plumbing Is the method .

図1は本発明に係る冷却塔の冷却水給排水構造の概略断面図である。   FIG. 1 is a schematic sectional view of a cooling water supply / drainage structure of a cooling tower according to the present invention.

図示したように、冷却塔2は、冷却水が溜められる貯水槽3と、これを上方から覆う冷却塔本体4で構成される。冷却塔本体4には、冷凍機5(図2参照)から還ってくる冷却水が供給される冷却水散水管8と、この冷却水を冷却するためのファン9及び充填材10が備わる。充填材10の外側には、ルーバ11が配設される。冷却された冷却水は、貯水槽3に溜められる。溜められた冷却水は、貯水槽3に接続された往き配管6(図2参照)から冷凍機5(図2参照)に送水される。   As shown in the drawing, the cooling tower 2 includes a water storage tank 3 in which cooling water is stored and a cooling tower body 4 that covers the water tank 3 from above. The cooling tower body 4 includes a cooling water sprinkling pipe 8 to which cooling water returned from the refrigerator 5 (see FIG. 2) is supplied, and a fan 9 and a filler 10 for cooling the cooling water. A louver 11 is disposed outside the filler 10. The cooled cooling water is stored in the water storage tank 3. The accumulated cooling water is sent from the forward piping 6 (see FIG. 2) connected to the water storage tank 3 to the refrigerator 5 (see FIG. 2).

貯水槽3には、排水管27が備わる。排水管27は、立ち上がり部となる立ち上がり管28と、下がり部となる下がり管29と、これらを連結する連結管30で構成される。立ち上がり管28には、引き込み管31が連結され、その端部に排水口32が開口する。立ち上がり管28には、貯水槽3内の清掃時等に冷却水を排水するためのバルブ12により開閉する清掃用排水管13が接続される。なお、この清掃用排水管13は貯水槽3の底部に直接接続して設けてもよい。   The water storage tank 3 is provided with a drain pipe 27. The drain pipe 27 includes a rising pipe 28 that is a rising part, a falling pipe 29 that is a falling part, and a connecting pipe 30 that connects them. A lead-in pipe 31 is connected to the riser pipe 28, and a drain port 32 is opened at an end thereof. The rising pipe 28 is connected to a cleaning drain pipe 13 that is opened and closed by a valve 12 for draining the cooling water during cleaning of the water storage tank 3 or the like. The cleaning drain pipe 13 may be provided directly connected to the bottom of the water storage tank 3.

立ち上がり管28は、その上端部が排水口32より上側であって貯水槽3の側壁高さより低い位置となるように配設される。下がり管29は、その端部に排出口33を備え、この排出口33は貯水槽3の外部に配される。下がり管29の、排出口33と反対側の端部は、排出口33より上側であって貯水槽3の側壁高さより低い位置となるように配設される。これにより、後述するように、サイフォン現象を防止できる。連結管30は、貯水槽3の側壁高さより低い位置で立ち上がり管28と下がり管29の上端を相互に略水平に連結する。   The riser pipe 28 is disposed so that the upper end portion thereof is located above the drain port 32 and is lower than the side wall height of the water storage tank 3. The downcomer 29 has a discharge port 33 at its end, and this discharge port 33 is arranged outside the water storage tank 3. The end of the downcomer 29 opposite to the discharge port 33 is disposed above the discharge port 33 and at a position lower than the side wall height of the water storage tank 3. Thereby, the siphon phenomenon can be prevented as will be described later. The connecting pipe 30 connects the upper ends of the rising pipe 28 and the lowering pipe 29 substantially horizontally to each other at a position lower than the side wall height of the water storage tank 3.

冷却塔2内への給水は、後述するように、冷却水散水管8から行われる。すなわち、冷却水散水管8からは、冷凍機5(図2参照)からの冷却水と、新たな補給水が供給される。したがって、冷却水散水管8が本発明における給水管となる。   Water supply to the cooling tower 2 is performed from the cooling water sprinkling pipe 8 as described later. That is, the cooling water sprinkling pipe 8 is supplied with cooling water from the refrigerator 5 (see FIG. 2) and new makeup water. Therefore, the cooling water sprinkling pipe 8 is a water supply pipe in the present invention.

このような構造において、冷却塔2における給排水は以下のように行われる。貯水槽3内の冷却水の電導度が高くなる、あるいは水位が低くなる(すなわち給水開始水位Sまで水位が下がる)と、冷却水散水管8から補給水が給水される。これにより、貯水槽3内の水位が上昇する。これとともに、立ち上がり管28内の水位も上昇する。電導度が高い場合は、オーバーフロー水位Uを超える高さまで給水される。したがって、立ち上がり管28内の水位が連結管30まで到達するため、冷却水は連結管30を通り、下がり管29内を通って排出口33より排出される。電導度が所定値以内であって、単に水位が低い場合は、給水終了水位Tまで給水される。   In such a structure, water supply / drainage in the cooling tower 2 is performed as follows. When the conductivity of the cooling water in the water storage tank 3 is increased or the water level is lowered (that is, the water level is lowered to the water supply start water level S), makeup water is supplied from the cooling water sprinkling pipe 8. Thereby, the water level in the water storage tank 3 rises. Along with this, the water level in the riser 28 also rises. When the electrical conductivity is high, water is supplied to a height exceeding the overflow water level U. Therefore, since the water level in the rising pipe 28 reaches the connecting pipe 30, the cooling water passes through the connecting pipe 30, passes through the descending pipe 29, and is discharged from the discharge port 33. When the electrical conductivity is within a predetermined value and the water level is simply low, the water is supplied up to the water supply end water level T.

排水口32は、貯水槽3の下部に配設されるため、貯水槽3の上側から補給水が給水しても、給水された新たな補給水がすぐに排水されることはない。したがって、使用により電導度の高くなった冷却水と新たな補給水との入れ替え効率を向上することができ、無駄な給水を抑制できる。すなわち、補給水の節水を図ることができる。   Since the drain port 32 is disposed in the lower part of the water storage tank 3, even if makeup water is supplied from the upper side of the water storage tank 3, new supplied water is not immediately drained. Therefore, it is possible to improve the efficiency of replacement of the cooling water whose conductivity has been increased by use and the new makeup water, and to suppress useless water supply. That is, it is possible to save water.

また、この排水口32は、貯水槽3の底面(図の点線)又は下部の側面(図の実線)に形成されるため、貯水槽3の底部に溜まった砂塵等の塵埃や、枯葉等の異物を流水の力で引き込み管31から排出させることができる。この排出に関し、排水管27にはバルブが形成されないため、塵埃や異物がバルブに噛まれて、バルブの動作不良が生じることはない。排水口32を貯水槽3の底面や下部の側面のいずれに形成するかは、適宜選択可能である。また、流水の力で排出できない大きな砂塵等は清掃用排水管側に溜まり、定期的な清掃時に排水される。   Further, the drain port 32 is formed on the bottom surface (dotted line in the figure) or the lower side surface (solid line in the figure) of the water tank 3, so that dust such as dust collected at the bottom of the water tank 3, dead leaves, etc. The foreign matter can be discharged from the drawing tube 31 by the force of running water. Regarding this discharge, since no valve is formed in the drain pipe 27, dust and foreign matter are not bitten by the valve, and malfunction of the valve does not occur. Whether the drain port 32 is formed on the bottom surface or the lower side surface of the water storage tank 3 can be appropriately selected. Also, large dust that cannot be discharged by the power of running water accumulates on the cleaning drain pipe side and is drained during regular cleaning.

また、下がり管29の上端には、排水管27内のサイフォン現象を防止するための開口部34が備わる。これにより、下がり管29の排出口33が、立ち上がり管28の排水口32より低い位置にある場合、サイフォン現象が発生して貯水槽3内の冷却水が排水され続けることを防止できる。   Moreover, an opening 34 for preventing siphon phenomenon in the drain pipe 27 is provided at the upper end of the down pipe 29. Thereby, when the discharge port 33 of the down pipe 29 is at a position lower than the drain port 32 of the rise pipe 28, it is possible to prevent the siphon phenomenon from occurring and the cooling water in the water storage tank 3 from being continuously drained.

図2は本発明に係る冷却塔群の給排水構造の概略図である。   FIG. 2 is a schematic view of the water supply / drainage structure of the cooling tower group according to the present invention.

図示したように、冷却塔群1は、複数個の開放型冷却塔2を並列に並べて形成される。各冷却塔2は、上述したように、貯水槽3と、これを覆う冷却塔本体4で構成される。この冷却塔2の冷却水散水管8及び排水管27を用いた給排水構造は、図1で示した例と同様である。貯水槽3は、冷凍機5と往き配管6及び還り配管7で接続される。往き配管6には、貯水槽3内の冷却水を冷凍機5に送水するためのポンプ21が備わる。還り配管7は、冷却塔本体4の上部に備わる冷却水散水管8と接続される。各冷却塔2の往き配管6及び還り配管7は、それぞれ往き共通ヘッダ24及び還り共通ヘッダ25で連結される。   As illustrated, the cooling tower group 1 is formed by arranging a plurality of open cooling towers 2 in parallel. As described above, each cooling tower 2 includes a water tank 3 and a cooling tower body 4 that covers the water tank 3. The water supply / drainage structure using the cooling water sprinkling pipe 8 and the drainage pipe 27 of the cooling tower 2 is the same as the example shown in FIG. The water storage tank 3 is connected to the refrigerator 5 by a forward pipe 6 and a return pipe 7. The forward piping 6 is provided with a pump 21 for feeding the cooling water in the water storage tank 3 to the refrigerator 5. The return pipe 7 is connected to a cooling water sprinkling pipe 8 provided at the upper part of the cooling tower body 4. The outgoing pipe 6 and the return pipe 7 of each cooling tower 2 are connected by an outgoing common header 24 and a return common header 25, respectively.

還り共通ヘッダ25からは、サンプリング配管35が分岐する。このサンプリング配管35には、サンプリング配管35内の冷却水の電導度を計測するためのセンサ15が備わる。センサ15は、制御装置14と接続される。このように、サンプリング配管35内の冷却水の電導度を計測することにより、これと連通する各冷却塔2に供給される冷却水の電導度を計測できる。   A sampling pipe 35 branches from the return common header 25. The sampling pipe 35 is provided with a sensor 15 for measuring the conductivity of the cooling water in the sampling pipe 35. The sensor 15 is connected to the control device 14. Thus, by measuring the electric conductivity of the cooling water in the sampling pipe 35, the electric conductivity of the cooling water supplied to each cooling tower 2 communicating with this can be measured.

還り共通ヘッダ25には、これと連通する補給水供給管36が備わる。補給水供給管36には、制御装置14の計測結果に基づいて還り共通ヘッダ25に対する給水量を調整するための電動バルブ17が備わる。この電動バルブ17は、制御装置14と接続され、制御装置14により開度調整される。   The return common header 25 is provided with a makeup water supply pipe 36 communicating therewith. The makeup water supply pipe 36 is provided with an electric valve 17 for adjusting the amount of water supplied to the return common header 25 based on the measurement result of the control device 14. The electric valve 17 is connected to the control device 14 and the opening degree is adjusted by the control device 14.

これにより、冷却水が濃縮されて電導度が高くなった場合に、これをセンサ15で計測し、制御装置14にて電動バルブ17を開けて、補給水を供給できる。補給水は、冷却水散水管8から貯水槽3に供給され、貯水槽3内の水位の上昇とともに、排水管27から冷却水が排水される。このようにして、補給水と冷却水の入れ替えが行われる。貯水槽3内の冷却水の電導度が、所定値まで下がると、制御装置14は電動バルブ17を閉じ、補給水の供給を止める。これにより、各冷却塔2に電導度の計測装置を設けずに、冷却塔群1内を流通する冷却水の電導度を、一括して管理することができる。   Thereby, when the cooling water is concentrated and the conductivity is increased, this can be measured by the sensor 15, and the electric valve 17 can be opened by the control device 14 to supply makeup water. The makeup water is supplied from the cooling water sprinkling pipe 8 to the water storage tank 3, and the cooling water is drained from the drain pipe 27 as the water level in the water storage tank 3 rises. In this way, the makeup water and the cooling water are switched. When the electrical conductivity of the cooling water in the water storage tank 3 falls to a predetermined value, the control device 14 closes the electric valve 17 and stops the supply of makeup water. Thereby, the electrical conductivity of the cooling water flowing through the cooling tower group 1 can be collectively managed without providing a measuring device for the electrical conductivity in each cooling tower 2.

各貯水槽3同士は連通管26で連結される。この連通管26には、水位計37が備わる。連通管26を配設したことにより、各貯水槽3内の水位が揃うため、この連通管26に水位計37を備えることにより、貯水槽3全ての水位を計測することができる。したがって、個々の貯水槽3に水位計やボールタップ等を設ける必要がない。水位計37は、制御装置14と接続される。各貯水槽3内の水位が低下すると、制御装置14により電動バルブ17を開けて、補給水が給水される。したがって、簡単な構造で、複雑な演算や制御方法を必要とせずに、水位の制御を行うことができる。なお、水位計37は、連結管26に設けなくても、いずれか一個の貯水槽3に設けてもよい。   The water tanks 3 are connected to each other through a communication pipe 26. The communication pipe 26 is provided with a water level gauge 37. By providing the communication pipes 26, the water levels in the respective water storage tanks 3 are aligned. Therefore, the water level gauge 37 is provided in the communication pipes 26, whereby the water levels of all the water storage tanks 3 can be measured. Therefore, it is not necessary to provide a water level gauge, a ball tap or the like in each water tank 3. The water level gauge 37 is connected to the control device 14. When the water level in each water tank 3 is lowered, the control device 14 opens the electric valve 17 to supply makeup water. Therefore, the water level can be controlled with a simple structure and without requiring a complicated calculation or control method. The water level gauge 37 may not be provided in the connecting pipe 26 but may be provided in any one of the water storage tanks 3.

本発明に係る冷却塔の冷却水給排水構造の概略断面図である。It is a schematic sectional drawing of the cooling water supply / drainage structure of the cooling tower which concerns on this invention. 本発明に係る冷却塔群の給排水構造の概略図である。It is the schematic of the water supply / drainage structure of the cooling tower group which concerns on this invention. 従来の冷却塔群の冷却水給排水構造の概略図である。It is the schematic of the cooling water supply / drainage structure of the conventional cooling tower group. 従来の別の冷却塔の給排水構造の概略図である。It is the schematic of the water supply / drainage structure of another conventional cooling tower. 従来のさらに別の冷却塔群の給排水構造の概略図である。It is the schematic of the conventional water supply / drainage structure of another cooling tower group.

符号の説明Explanation of symbols

1:冷却塔群、2:冷却塔、3:貯水槽、4:冷却塔本体、5:冷凍機、6:往き配管、7:還り配管、8:冷却水散水管、9:ファン、10:充填材、11:ルーバ、12:バルブ、13:清掃用排水管、14:制御装置、15:センサ、17:電動バルブ、21:ポンプ、24:往き共通ヘッダ、25:還り共通ヘッダ、26:連通管、27:排水管、28:立ち上がり管、29:下がり管、30:連結管、31:引き込み管、32:排水口、33:排出口、34:開口部、35:サンプリング配管、36:補給水供給管、37:水位計、101:冷却塔群、102:冷却塔、103:貯水槽、104:冷却塔本体、105:冷凍機、106:往き配管、107:還り配管、108:冷却水散水管、109:ファン、110:オーバーフロー管、111:共通排水管、112:バルブ、113:清掃用排水管、114:ブロー装置、115:センサ、116:給水管、117:電動バルブ、118:給水管、119:ボールタップ、120:共通給水管、121:ポンプ、122:電動バルブ、123:バルブ、124:往き共通ヘッダ、125:還り共通ヘッダ、126:連通管 1: Cooling tower group, 2: Cooling tower, 3: Water storage tank, 4: Cooling tower body, 5: Refrigerator, 6: Outward piping, 7: Return piping, 8: Cooling water sprinkling pipe, 9: Fan, 10: Filler, 11: louver, 12: valve, 13: drainage pipe for cleaning, 14: controller, 15: sensor, 17: electric valve, 21: pump, 24: forward common header, 25: return common header, 26: Communication pipe, 27: drain pipe, 28: rise pipe, 29: down pipe, 30: connecting pipe, 31: lead-in pipe, 32: drain outlet, 33: discharge outlet, 34: opening, 35: sampling pipe, 36: Makeup water supply pipe, 37: Water level gauge, 101: Cooling tower group, 102: Cooling tower, 103: Water tank, 104: Cooling tower body, 105: Refrigerator, 106: Outward piping, 107: Return piping, 108: Cooling Water sprinkling pipe, 109: Fan, 110: Overflow -Pipe, 111: Common drain pipe, 112: Valve, 113: Cleaning drain pipe, 114: Blow device, 115: Sensor, 116: Water supply pipe, 117: Electric valve, 118: Water supply pipe, 119: Ball tap, 120: Common water supply pipe, 121: pump, 122: electric valve, 123: valve, 124: forward common header, 125: return common header, 126: communication pipe

Claims (4)

冷凍機に供給する冷却水を冷却するための冷却塔と、
当該冷却塔の下部に備わり、前記冷却水を溜める貯水槽と、
当該貯水槽から前記冷却水を排水するための排水管と、
前記貯水槽の上側から前記冷却水の補給水を供給するための給水管とが備わり、
前記排水管は、立ち上がり部と下がり部で構成され、当該立ち上がり部の端部には、前記貯水槽の下部に配設される排水口が備わり、前記下がり部の端部には、前記貯水槽の外部に配設される排出口が備わり、
前記立ち上がり部と前記下がり部は、前記排水口より高い位置で、かつ、前記貯水槽の側壁高さより低い位置で連結され、前記下がり部の上端には開口部が備わり、
前記給水管から貯水槽内に補給水を補給し、当該貯水槽の水位が上昇すると同時に前記立ち上がり部内の水位が上昇し、前記立ち上がり部内の水が前記連結部の高さを超えると、当該連結部を通って前記下がり部へ流れ、当該下がり部の排水口から排水することを特徴とする冷却塔の冷却水給排水方法。
A cooling tower for cooling the cooling water supplied to the refrigerator,
A water storage tank provided in a lower part of the cooling tower for storing the cooling water;
A drain pipe for draining the cooling water from the water tank;
A water supply pipe for supplying makeup water for the cooling water from the upper side of the water tank,
The drain pipe is constituted by a rising portion and a falling portion, and an end portion of the rising portion is provided with a drain outlet disposed at a lower portion of the water storage tank, and the water storage tank is provided at an end portion of the falling portion. There is a discharge port arranged outside the
The rising portion and the lowering portion are connected at a position higher than the drain outlet and at a position lower than the side wall height of the water storage tank, and an upper end of the lowering portion is provided with an opening,
When replenishment water is replenished into the water tank from the water supply pipe, the water level in the rising part rises at the same time as the water level of the water tank rises, and the water in the rising part exceeds the height of the connecting part, the connection A cooling water supply / drainage method for a cooling tower, wherein the cooling water flows through the part to the descending part and drains from the drainage port of the descending part.
前記排水口は、前記貯水槽の底面又は下部の側面に形成されることを特徴とする請求項1に記載の冷却塔の冷却水給排水方法The cooling water supply / drainage method of a cooling tower according to claim 1, wherein the drainage port is formed on a bottom surface or a lower side surface of the water storage tank. 前記請求項1又は2に記載の前記冷却塔が複数個配設された冷却塔群に適用され、
前記冷却塔の上部に備わり、前記給水管の役目を果たす冷却水散水管と、
前記冷却塔と冷凍機の間に配設される冷却水の往き配管及び還り配管と、
前記複数個の冷却塔の還り配管同士を連通させる還り共通ヘッダとが備わり、
前記還り共通ヘッダ内の冷却水の電導度を計測する制御装置と、
前記還り共通ヘッダと連通する補給水供給管と、
当該補給水供給管に電動バルブとが備わり、前記制御装置の電導度の計測結果に基づいて前記還り共通ヘッドに対する給水量を前記電動バルブで調整することを特徴とする冷却塔群の冷却水給排水方法
It is applied to a cooling tower group in which a plurality of the cooling towers according to claim 1 or 2 are arranged,
A cooling water sprinkling pipe provided at an upper part of the cooling tower and serving as the water supply pipe;
Outward piping and return piping for cooling water disposed between the cooling tower and the refrigerator,
A return common header for communicating the return pipes of the plurality of cooling towers;
A control device for measuring the conductivity of the cooling water in the return common header;
A makeup water supply pipe communicating with the return common header;
A cooling water supply / drainage for a cooling tower group, wherein the makeup water supply pipe is provided with an electric valve, and an amount of water supplied to the return common head is adjusted by the electric valve based on a measurement result of conductivity of the control device. Way .
前記複数個の冷却塔の貯水槽には、当該貯水槽同士を連通させる連通管が備わり、
当該連通管に前記貯水槽内の水位を計測するための水位計が配設され、
前記制御装置は、前記水位計の計測結果に基づいて前記電動バルブの開度を調整することを特徴とする請求項に記載の冷却塔群の冷却水給排水方法
The water storage tanks of the plurality of cooling towers are provided with communication pipes that allow the water storage tanks to communicate with each other.
A water level meter for measuring the water level in the water tank is disposed in the communication pipe,
The said control apparatus adjusts the opening degree of the said electric valve | bulb based on the measurement result of the said water level meter, The cooling water supply / drainage method of the cooling tower group of Claim 3 characterized by the above-mentioned.
JP2007022713A 2007-02-01 2007-02-01 Cooling water supply / drainage method for cooling tower and cooling water supply / drainage method for cooling tower group using the same Active JP4943880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007022713A JP4943880B2 (en) 2007-02-01 2007-02-01 Cooling water supply / drainage method for cooling tower and cooling water supply / drainage method for cooling tower group using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007022713A JP4943880B2 (en) 2007-02-01 2007-02-01 Cooling water supply / drainage method for cooling tower and cooling water supply / drainage method for cooling tower group using the same

Publications (2)

Publication Number Publication Date
JP2008190731A JP2008190731A (en) 2008-08-21
JP4943880B2 true JP4943880B2 (en) 2012-05-30

Family

ID=39750997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007022713A Active JP4943880B2 (en) 2007-02-01 2007-02-01 Cooling water supply / drainage method for cooling tower and cooling water supply / drainage method for cooling tower group using the same

Country Status (1)

Country Link
JP (1) JP4943880B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5404132B2 (en) 2009-03-30 2014-01-29 三菱重工業株式会社 Heat source system and control method thereof
CN105115350A (en) * 2015-09-24 2015-12-02 中国能源建设集团广东省电力设计研究院有限公司 Circulation water supply system and method for high-position cooling tower
CN107367175A (en) * 2017-06-24 2017-11-21 江苏宝融环境技术有限公司 A kind of uniform inlet water divider of cooling tower group
CN107782167A (en) * 2017-10-27 2018-03-09 珠海格力电器股份有限公司 A kind of cooling-water machine system
JP7284634B2 (en) * 2019-05-20 2023-05-31 アクアス株式会社 Cooling tower water quality control device and its water quality control method
CN116734358B (en) * 2023-08-15 2023-11-10 深圳市前海能源科技发展有限公司 Siphon type fluid delivery and distribution system diagnosis method and open ice cold accumulation system delivery and distribution system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52116946A (en) * 1976-03-25 1977-09-30 Koumei Tei Automatic draining device of cooling water of cooling tower
JPS52116947A (en) * 1976-03-25 1977-09-30 Koumei Tei Automatic draining device of cooling water of cooling tower
JP3256940B2 (en) * 1993-09-28 2002-02-18 川崎重工業株式会社 Water level control method and water level control device for cooling tower water tank
JPH09138094A (en) * 1995-11-10 1997-05-27 Hitachi Plant Eng & Constr Co Ltd Method for supplying water to cooling tower and device for it
JPH11248394A (en) * 1998-03-04 1999-09-14 Rohm Co Ltd Cooling water controller in cooling water circulation system having cooling tower
JP2006164837A (en) * 2004-12-09 2006-06-22 Toshiba Fuel Cell Power Systems Corp Solid polymer fuel cell system

Also Published As

Publication number Publication date
JP2008190731A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
JP4943880B2 (en) Cooling water supply / drainage method for cooling tower and cooling water supply / drainage method for cooling tower group using the same
KR101279932B1 (en) Apparatus and method for controlled cooling
EP3070413A1 (en) Heat exchange device for air cooling for conditioning and climate control systems for server rooms and the like
JP2009047321A (en) Water heater
JP2011137599A (en) Water quality management method for cooling tower, and the cooling tower using the water quality management method
JP5085378B2 (en) Wall greening system
CN2921683Y (en) Immediate boiling quick heating water boiling machine
JP3712402B2 (en) Cooling tower water supply / drainage control device
CN215892631U (en) Automatic drainage and cooling device of electrode humidifier
JP2006057434A (en) Cooling water and rainwater utilization system
JP6132104B2 (en) How to clean the filter
FI102318B (en) A method and apparatus for maintaining a fluid at working pressure in a substantially closed fluid circulation system
CN113541399B (en) Generator is decided cooling water system
JPH1163746A (en) Device for preventing condensation of cooling water in cooling tower
KR200358960Y1 (en) Condensation water and water supply apparatus for steam boiller
JP4135635B2 (en) Cooling equipment
JP2011140815A (en) Water intake and discharge equipment
JP7019340B2 (en) Grout equipment and cooling tower equipment
CN216523366U (en) Water distribution device applicable to cross-flow cooling tower and counter-flow cooling tower simultaneously
CN209745036U (en) Closed cooling tower
CN104048404A (en) Water heater
CN219372187U (en) Water receiving device for air-water cooler
CN219656645U (en) Air cooling unit steam exhaust device provided with liquid level auxiliary regulating system
JP3757822B2 (en) Air conditioner
JP2007178035A (en) Closed type cooling tower facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120301

R150 Certificate of patent or registration of utility model

Ref document number: 4943880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3