JPH0345291B2 - - Google Patents

Info

Publication number
JPH0345291B2
JPH0345291B2 JP5044783A JP5044783A JPH0345291B2 JP H0345291 B2 JPH0345291 B2 JP H0345291B2 JP 5044783 A JP5044783 A JP 5044783A JP 5044783 A JP5044783 A JP 5044783A JP H0345291 B2 JPH0345291 B2 JP H0345291B2
Authority
JP
Japan
Prior art keywords
exhaust
differential pressure
air volume
chamber
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5044783A
Other languages
Japanese (ja)
Other versions
JPS59176530A (en
Inventor
Atsushi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP5044783A priority Critical patent/JPS59176530A/en
Publication of JPS59176530A publication Critical patent/JPS59176530A/en
Publication of JPH0345291B2 publication Critical patent/JPH0345291B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ventilation (AREA)

Description

【発明の詳細な説明】 本発明は、ホツト実験施設(人体に対して有害
又は危険な物質や微生物等の実験を行なう施設)
や放射性廃棄物処理施設の如き高い気密性能が要
求される施設であつてかつその室内に実験用ある
いは処理操作用のドラフトチヤンバーが設置され
る施設における室間微差圧制御と換気省動力制御
を同時に実施できるようにした室間微差圧換気省
動力制御設備に関する。
[Detailed description of the invention] The present invention is a hot experimental facility (a facility where experiments are conducted on substances and microorganisms that are harmful or dangerous to the human body).
Room-to-room micro-differential pressure control and ventilation power-saving control in facilities that require high airtight performance, such as radioactive waste processing facilities, and which have draft chambers installed for experiments or processing operations. This invention relates to power-saving control equipment for room-to-room micro-differential-pressure ventilation that enables simultaneous implementation of the following.

高い気密性能が要求されるホツト実験施設や放
射性廃棄物処理施設のように高い気密性能が要求
される施設の空調設備としては、清浄空気の供
給、排気の浄化、並びに各室での定風量定室圧の
維持が基本的に重要となる。各室での定風量定室
圧の維持については、これが維持できないと、室
間の相互汚染の問題が生ずる。従来は、この定風
量定室圧の維持は、定風量弁(通称、CVAユニ
ツト)を給気側と排気側のダクトに設置して行つ
ていた。しかし、この定風量弁による場合には、
ダクト・フイルタ系の圧力損失経時変化によつて
バランスの変動を引き起こすことが避けられず、
また、ある室に対して除洗作業その他の理由によ
り給排気を停止すると、他の室に設定風量より多
くの風量が分配されて定風量定室圧の維持が困難
になる。また、CAV弁に静圧を70mmAq以上にか
けることができないようなところでの制御にはこ
の定風量弁はその構造上不向きであるという基本
的な問題がある。さらに、室内に強制排気を必要
とするドラフトチヤンバーが設置される場合には
このドラフトチヤンバーを使用すると室内に大き
な負圧が急激に発生し、幾台もの使用不使用の発
停ごとに差圧制御が複雑化する。また、ドラフト
チヤンバーの排気側フアンについて言えば、ドラ
フトチヤンバーの全台数使用時の排気能力を確保
しこの設計能力で常時稼動すれば不使用ドラフト
チヤンバーがある場合に動力の無駄が生ずること
になる。
Air conditioning equipment for facilities that require a high level of airtightness, such as hot experimental facilities and radioactive waste processing facilities, is required to supply clean air, purify exhaust air, and to set a constant air volume in each room. Maintaining room pressure is fundamentally important. Regarding the maintenance of constant air volume and constant room pressure in each room, if this cannot be maintained, the problem of cross contamination between rooms will occur. Conventionally, constant air volume and constant room pressure were maintained by installing constant air volume valves (commonly known as CVA units) in the air supply and exhaust ducts. However, when using this constant air volume valve,
It is unavoidable that pressure loss in the duct and filter system changes over time, causing balance fluctuations.
Furthermore, if supply and exhaust are stopped for a certain room due to cleaning work or other reasons, a larger amount of air than the set amount of air will be distributed to other rooms, making it difficult to maintain a constant air volume and constant room pressure. Additionally, there is a basic problem in that this constant air flow valve is unsuitable due to its structure for control in places where static pressure of 70 mmAq or more cannot be applied to the CAV valve. Furthermore, if a draft chamber that requires forced exhaust is installed in the room, a large negative pressure will suddenly occur in the room if this draft chamber is used, and the Pressure control becomes complicated. Also, regarding the exhaust side fan of the draft chamber, if the exhaust capacity is ensured when all draft chambers are in use and the design capacity is maintained at all times, power will be wasted if there is an unused draft chamber. become.

本発明はこのような問題の解決を目的としてな
されたもので、ホツト実験施設や放射性廃棄物処
理施設の如き高い気密性能が要求される施設であ
つてかつその室内に実験用あるいは処理操作用の
ドラフトチヤンバーが設置される施設における室
間微差圧制御と換気省動力制御を同時に実施でき
るようにした室間微差圧換気省動力制御設備を提
供するものである。即ち、本発明の室間微差圧換
気省動力制御設備は、図面に示したように、一つ
の室1内に単数または複数のドラフトチヤンバー
2を設け、このドラフトチヤンバー2の使用の有
無にかかわらず室1と室外との差圧を一定に維持
すると同時にドラフトチヤンバー2の使用状況に
応じて排風機3並びに給風機10の風量を制御す
る給排気設備において、各ドラフトチヤンバー2
の排気ダクト4にオンオフダンパ5を介装すると
共にこのオンオフダンパ5を各ドラフトチヤンバ
ー2の使用の有無を検出するセンサー6からの信
号に基づいて開閉動作させ、他方、室1への給気
ダクト7に差圧調整ダンパ8を介装すると共にこ
の差圧調整ダンパ8を室内外の差圧を検出する差
圧検出センサー9からの信号に基づいて開度制御
し、排風機3並びに給風機10としてそれぞれ可
変風量送風機を使用すると共に、この排風機3並
びに給風機10の風量の制御を、各ドラフトチヤ
ンバー2の使用状況と給排気系の圧損経時変化並
びに室内外差圧に基づいて行うためのマイクロコ
ンピユータ11を付設したことを特徴とする。
The present invention was made with the aim of solving such problems, and is intended for facilities that require high airtight performance, such as hot experimental facilities and radioactive waste processing facilities, and that has facilities for experiments or processing operations in the room. The purpose of the present invention is to provide a small differential pressure ventilation power saving control equipment that can simultaneously perform small differential pressure control between rooms and power saving control for ventilation in a facility where a draft chamber is installed. That is, as shown in the drawing, the power-saving control equipment for ventilation with slight differential pressure between rooms of the present invention includes one or more draft chambers 2 in one room 1, and whether or not the draft chambers 2 are used can be controlled. In the air supply/exhaust equipment that maintains the differential pressure between the room 1 and the outdoors constant regardless of the situation, and at the same time controls the air volume of the exhaust fan 3 and the fan 10 according to the usage status of the draft chamber 2, each draft chamber 2
An on-off damper 5 is interposed in the exhaust duct 4 of the chamber, and the on-off damper 5 is opened and closed based on a signal from a sensor 6 that detects whether each draft chamber 2 is used. A differential pressure adjusting damper 8 is installed in the duct 7, and the opening degree of the differential pressure adjusting damper 8 is controlled based on a signal from a differential pressure detection sensor 9 that detects the differential pressure between indoor and outdoor. A variable air volume blower is used as each fan 10, and the air volume of the exhaust fan 3 and the fan 10 is controlled based on the usage status of each draft chamber 2, the change in pressure loss over time of the air supply and exhaust system, and the differential pressure between indoor and outdoor. It is characterized by being equipped with a microcomputer 11 for this purpose.

第1図は、ドラフトチヤンバー2が複数台設置
された室1の他に、1a,1b,1cなどの他用
途の室が並設され、これらの全室に給風機10か
ら給気が分配され、全室からの排気も集合して排
風機3から一括排気されるようにした例を示して
おり、他の室1a〜1cは定風量弁13によつて
定風量定圧力が維持されるようになつている。本
発明設備において、室1には差圧調整ダンパ8を
介して給気が導入され、室1内排気はドラフトチ
ヤンバー2が使用中であればそのドラフトチヤン
バーを経て、またドラフトチヤンバー2の全部が
不使用中であれば予備の排気ダクト4aを経てフ
イルターユニツト14に導かれたあと排風機3に
よつて系外に排出される。差圧調整ダンパ8は室
1の内外の差圧例えば室内と廊下との差圧を検出
する差圧検出センサー9からの信号に基づいて開
度制御される。後述するがこの差圧調整ダンパ8
が全開状態になつた場合にはその全開信号をマイ
クロコンピユータ11に入力する。
FIG. 1 shows that in addition to a chamber 1 in which a plurality of draft chambers 2 are installed, chambers for other purposes such as 1a, 1b, and 1c are arranged side by side, and supply air is distributed from an air blower 10 to all of these chambers. This shows an example in which the exhaust air from all rooms is collected and exhausted from the exhaust fan 3 at once, and the other rooms 1a to 1c are maintained at a constant air volume and constant pressure by the constant air volume valves 13. It's becoming like that. In the equipment of the present invention, supply air is introduced into the chamber 1 via the differential pressure regulating damper 8, and the exhaust air inside the chamber 1 is passed through the draft chamber 2 if it is in use, and then through the draft chamber 2. If all of the air is not in use, it is guided to the filter unit 14 through the spare exhaust duct 4a and then exhausted to the outside of the system by the exhaust fan 3. The opening degree of the differential pressure adjustment damper 8 is controlled based on a signal from a differential pressure detection sensor 9 that detects the differential pressure between the inside and outside of the room 1, for example, the differential pressure between the room and the hallway. As will be described later, this differential pressure adjustment damper 8
When the fully open state is reached, the fully open signal is input to the microcomputer 11.

各ドラフトチヤンバー2は放射性物質のごとき
汚染を回避しなければならない物質の処理や実験
を行えるに充分な内部空間を持ち、その使用のさ
いには開閉部で所定の風速が確保できる程度に扉
16を開き、使用が終わつたら開閉扉16を閉じ
る動作を手動で行うようになつている。この開閉
扉16の各々の開閉動作に追従してまたは別途設
けられたオンオフスイツチに連動作して作動する
センサー6が取付けられ、このセンサー6が各ド
ラフトチヤンバー2の使用・不使用の状態を検出
する。その検出信号はリレー盤17に送られ、各
ドラフトチヤンバーの排気ダクト4に介装された
オンオフダンパ5を緩慢に開閉動作させる。この
オンオフダンパ5は開閉時間を20秒〜20分まで調
節可能な交流モータ駆動のダンパであり、その開
閉によつて生じる室圧変動を抑制するために、そ
の開閉動作はなるべく緩慢に行わせる。そして、
このオンオフダンパ5には、全開リミツトスイツ
チと全閉リミツトスイツチが装備され、オンオフ
ダンパ5が全開にあるか全閉にあるかが監視され
る。
Each draft chamber 2 has a sufficient internal space for processing and experimenting with materials that must avoid contamination, such as radioactive materials, and when in use, the door is opened to the extent that a specified air velocity can be secured at the opening and closing section. 16 and then manually close the opening/closing door 16 when use is finished. A sensor 6 is attached that operates in accordance with each opening/closing operation of the opening/closing door 16 or in conjunction with a separately provided on/off switch, and this sensor 6 detects whether each draft chamber 2 is in use or not. To detect. The detection signal is sent to the relay board 17, which slowly opens and closes the on-off damper 5 installed in the exhaust duct 4 of each draft chamber. The on-off damper 5 is an AC motor-driven damper whose opening/closing time can be adjusted from 20 seconds to 20 minutes, and its opening/closing operation is performed as slowly as possible in order to suppress fluctuations in room pressure caused by its opening/closing. and,
This on-off damper 5 is equipped with a fully open limit switch and a fully closed limit switch, and it is monitored whether the on-off damper 5 is fully open or fully closed.

他方、排風機3および給風機10はその送風量
を無段階式に変えられる可変風量送風機、より具
体的には、各送風機のモータの回転数を制御信号
によつて変化させる送風機あるいは翼ピツチ角を
制御信号によつて変化させる送風機などを使用す
る。図の場合は電源周波数を変化させるインバー
ターユニツト18を付設することによつて送風機
モータの回転数を制御信号によつて変化させる例
を示している。各送風機のインバータユニツト1
8への制御信号は後述の制御シーケンスに基づき
マイクロコンピユータ11から出力される。マイ
クロコンピユータ11への入力は、リレー盤17
からのドラフトチヤンバーの使用状況信号、差圧
調整ダンパ8の全開信号、排気メインダクトに取
付けられた風速検出器20からのダクト・フイル
タ系の圧損経時変化を計測する信号などからなつ
ている。
On the other hand, the exhaust fan 3 and the fan 10 are variable air volume fans whose air flow can be changed steplessly, more specifically, fans or blade pitch angles that change the rotational speed of the motor of each fan in accordance with a control signal. A blower or the like is used that changes the temperature using a control signal. The figure shows an example in which the rotational speed of the blower motor is changed in accordance with a control signal by adding an inverter unit 18 that changes the power supply frequency. Inverter unit 1 for each blower
A control signal to the microcomputer 8 is output from the microcomputer 11 based on a control sequence described later. The input to the microcomputer 11 is provided by the relay board 17.
The signals include a usage status signal of the draft chamber, a signal for fully opening the differential pressure adjustment damper 8, and a signal for measuring pressure loss over time in the duct filter system from the wind speed detector 20 attached to the main exhaust duct.

以下に本発明の制御システムのシーケンス内容
並びに演算内容の具体例を示す。
Specific examples of sequence contents and calculation contents of the control system of the present invention are shown below.

『本発明の制御システムのシーケンス内容』 (1) 室1内のドラフトチヤンバーの使用状態を代
表する特性を監視する。使用状態を代表する特
性は、ドラフトチヤンバーの開閉扉の開閉セン
サー6(具体的には開閉扉と扉のガイドレール
に設備したリミツトスイツチまたは近接マグネ
ツトスイツチ、あるいは実験者がオンオフする
手動スイツチ)で検出する。
"Sequence content of the control system of the present invention" (1) Monitor characteristics representative of the usage status of the draft chamber in the room 1. The characteristics representative of the operating conditions are the opening/closing sensor 6 of the opening/closing door of the draft chamber (specifically, a limit switch or proximity magnetic switch installed on the opening/closing door and the guide rail of the door, or a manual switch turned on/off by the experimenter). To detect.

(2) センサー6からの情報はリレー盤17で受け
てマイクロコンピユータ11への入力信号とす
る。この入力信号は無電圧接点とする。リレー
盤17で受けた入力信号は対応するオンオフダ
ンパ5をモータドライブでなるべく緩慢に作動
させる。
(2) Information from the sensor 6 is received by the relay board 17 and used as an input signal to the microcomputer 11. This input signal is a voltage-free contact. The input signal received by the relay board 17 causes the corresponding on-off damper 5 to operate as slowly as possible by a motor drive.

(3) 室1と廊下との設定差圧は室1への給排気ダ
クトの静圧バランスで実施する。この時、給
気・排気系の静圧は風量の2乗に比例して変化
するので、給気量と排気量の微小な調節が必要
となる。この微差圧制御は給気系の差圧調整ダ
ンパ8の開度調節で実施する。この開度調整時
においてダンパ8が全開になる場合にはダンパ
8に設置された全開リミツトスイツチの信号を
マイクロコンピユータ11の入力信号とする。
(3) The differential pressure setting between Room 1 and the hallway will be determined by the static pressure balance of the air supply and exhaust ducts to Room 1. At this time, the static pressure in the air supply/exhaust system changes in proportion to the square of the air volume, so minute adjustments to the air supply volume and exhaust volume are required. This fine differential pressure control is performed by adjusting the opening degree of the differential pressure adjusting damper 8 in the air supply system. When the damper 8 is fully opened during this opening adjustment, a signal from a fully open limit switch installed on the damper 8 is used as an input signal to the microcomputer 11.

(4) ダクト系(とりわけフイルタ)の圧損経時変
化による風量低下を測定するため、排気系の集
合部またはフイルタユニツト14の風下側の風
速検出器または風量検出器20を設置し、その
アナログ信号をマイクロコンピユータ11の入
力信号とする。この風速または風量検出器20
の信号は0〜5V(DC)または4〜20mA(DC)
信号として入力され、マイクロコンピユータの
演算により、サンプリング時間中に10回のサン
プリングをして最小値・最大値を除外した後、
8個のサンプリング値で平均風量を見出す。
(4) In order to measure the decrease in air volume due to changes in pressure loss in the duct system (particularly filters) over time, a wind speed detector or air volume detector 20 is installed at the collecting part of the exhaust system or on the downwind side of the filter unit 14, and its analog signal is This is an input signal to the microcomputer 11. This wind speed or air volume detector 20
The signal is 0~5V (DC) or 4~20mA (DC)
It is input as a signal, and after sampling 10 times during the sampling time and excluding the minimum and maximum values by calculation by a microcomputer,
Find the average air volume using the 8 sampling values.

(5) 室1の給排気風量はドラフトチヤンバーの使
用状態によつて変化するが、最低風量(例え
ば、1150m3/Hr)を維持するために、ドラフ
トチヤンバーの台数+少なくとも1個の排気口
を設置してドラフトチヤンバーが全閉時にも室
内空気を吸引できるようにする。
(5) The air supply/exhaust volume of room 1 changes depending on the usage status of the draft chamber, but in order to maintain the minimum air volume (for example, 1150m 3 /Hr), the number of draft chambers + at least one exhaust A vent is installed to allow indoor air to be sucked in even when the draft chamber is fully closed.

『本発明の制御システムの演算内容』 この演算をマイクロコンピユータで行う場合の
フローを第3〜6図に示した。図中に手順として
示した番号No.は以下の説明項の番号No.に対応して
おり、第3図は起動運転制御(起動タイマーT1
の時間内でシステムを立ち上げる制御)を示し、
第4〜6図は、第3図に引続き、スキヤンニング
タイマーΔt時間周期で繰り返される本制御運転
を示している。
``Contents of calculations performed by the control system of the present invention'' The flowcharts when this calculation is performed by a microcomputer are shown in FIGS. 3 to 6. The numbers shown as procedures in the figure correspond to the numbers in the explanation section below .
control to start up the system within the time of
4 to 6 show the main control operation repeated at the scanning timer Δt time period following FIG. 3.

(1) 予め室1のドラフトチヤンバー1台当りの給
排気風量に使用状態を掛けてシステムの所要給
排気量を演算する。但し、室1以外の所要給気
量、所要排気量を固定分として確保する。
(1) Calculate the required air supply/exhaust volume of the system in advance by multiplying the air supply/exhaust volume per draft chamber in room 1 by the operating condition. However, the required air supply amount and required exhaust amount for rooms other than room 1 are secured as fixed amounts.

所要給気量 Q=QBii=1 qi×ai+Qc QB;他室の給気風量 qi;ドラフトチヤンバー1台当りの給気風量 ai使用状態を示すパラメータ 使用中;1 不使用中;0 Qc;補正風量 この場合、給気側に設置した差圧調節弁8の全
開リミツトスイツチがオンの時は、補正風量Qc
を所要給気風量に加算する。全開リミツトスイツ
チがOFFの時はQc=0とする。補正風量を加算
した場合は給気風量が給風機10の設計風量を越
えないことをその都度チエツクし、越えている場
合は設計風量とする。
Required supply air volume Q = Q B + ii=1 q i ×a i +Q c Q B ; Supply air volume in other rooms q i ; Supply air volume per draft chamber ai Parameter indicating usage status In use: 1 Not in use; 0 Q c ; Corrected air volume In this case, when the full open limit switch of the differential pressure control valve 8 installed on the air supply side is on, the corrected air volume Q c
is added to the required supply air volume. When the full open limit switch is OFF, Q c =0. When adding the corrected air volume, it is checked each time that the supplied air volume does not exceed the design air volume of the blower 10, and if it does, it is set as the design air volume.

所要排気風量 R=RBii=1 qi×ai ただし、RB;他室の排気風量 (2) ドラフトチヤンバーの使用状態を代表するセ
ンサー6が開信号を出して、さらにモータドラ
イブの緩慢な開閉を行うオンオフダンパ5の全
開リミツトスイツチも開である場合は、オンオ
フダンパは全開であるが、全開リミツトスイツ
チが閉であれば、第2図に図解したようにオン
オフダンパは開の途中にある。同様に、ドラフ
トチヤンバーの使用状態を代表する6が閉信号
を出してさらにモータドライブの緩慢な開閉を
行うオンオフダンパ5の全閉リミツトスイツチ
も閉であれば、オンオフダンパは全閉である
が、全閉リミツトスイツチが開であれば、同じ
く第2図に示したようにオンオフダンパは閉の
途中にある。緩慢な開閉を行うオンオフダンパ
の全開から全閉までの時間を少なくとも10等分
して、各等分における風量を予めマイクロコン
ピユータに記憶させてあるので、開の途中、閉
の途中にあるドラフトチヤンバー1台当りの排
気風量は次式で演算できる。
Required exhaust air volume R = R B + ii = 1 q i × a i However, R B ; Exhaust air volume in other rooms (2) When the sensor 6, which represents the usage status of the draft chamber, issues an open signal, If the full-open limit switch of the on-off damper 5, which slowly opens and closes the motor drive, is also open, the on-off damper is fully open, but if the full-open limit switch is closed, the on-off damper is not open, as illustrated in Figure 2. It's on the way. Similarly, if 6, which represents the use state of the draft chamber, issues a close signal and the fully closed limit switch of the on-off damper 5, which slowly opens and closes the motor drive, is also closed, the on-off damper is fully closed. If the full-close limit switch is open, the on-off damper is in the middle of closing, as also shown in FIG. The time from full open to fully closed of the on-off damper, which opens and closes slowly, is divided into at least 10 equal parts, and the air volume in each equal part is stored in advance in the microcomputer. The exhaust air volume per bar can be calculated using the following formula.

qi=q0×Er(N) 但し、q0はオンオフダンパ全開時のドラフト
チヤンバー1台当りの排気風量、Er(N)は10
等分した時のN番目の全開時の風量に対する風
量比を示す。
q i = q 0 × E r (N) However, q 0 is the exhaust air volume per draft chamber when the on-off damper is fully opened, and E r (N) is 10
The air volume ratio to the air volume at the Nth fully open position when divided into equal parts is shown.

(3) 給気系のダクト、空調機、その他の圧損合計
と回転数を所要給気風量で演算する。
(3) Calculate the total pressure loss and rotation speed of the air supply system ducts, air conditioners, and other parts using the required air supply air volume.

給気系統圧損 ΔPQ0=ΔPQ1+ΔPQ2+ΔPF1 ……(設計時の送風機静圧) ΔPQ=ΔPQ1+ΔPQ2(Q/Q02 +ΔPF1(Q/Q0) ……(動作時) ただし、 ΔPQ1は、給風機10からCAVユニツト13
を含む室1,1a,1b,1cに至るまでのダ
クトの圧損の固定分。
Air supply system pressure drop ΔP Q0 = ΔP Q1 +ΔP Q2 +ΔP F1 ...(Blower static pressure at design) ΔP Q = ΔP Q1 +ΔP Q2 (Q/Q 0 ) 2 +ΔP F1 (Q/Q 0 ) ...(During operation) ) However, ΔP Q1 is from the air blower 10 to the CAV unit 13.
A fixed amount of pressure drop in the duct up to chambers 1, 1a, 1b, and 1c containing.

Q0は、設計時の送風機の給気量。 Q 0 is the air supply volume of the blower at the time of design.

ΔPQ2は、給気系統の最大(設計時)の圧損
ΔPQ0からΔPF1とΔPQ1を除いた給風機10から
CAVユニツト13を含む室1,1a,1b,
1cに至るまでのダクトの圧損。
ΔP Q2 is calculated from the air supply fan 10 by subtracting ΔP F1 and ΔP Q1 from the maximum (designed) pressure drop ΔP Q0 in the air supply system.
Room 1, 1a, 1b containing CAV unit 13,
Pressure loss in the duct up to 1c.

ΔPF1は、給気側につけられたフイルタユニ
ツトの設計最終圧損を示す。
ΔP F1 indicates the design final pressure drop of the filter unit installed on the air supply side.

給気風量に対する給風機10の回転数を演算
する。
The number of rotations of the blower 10 is calculated relative to the amount of air supplied.

給風機の回転数(フイードフオワード制御) NQ=KQNQ0×(ΔPQ/ΔPQ01/2 →4〜20mA信号出力 ここで、NQ0は給風機10の電動モータの設
計回転数を、またKQは給気風量係数を示す。
Air blower rotation speed (feedforward control) N Q = K Q N Q0 × (ΔP Q / ΔP Q0 ) 1/2 → 4 to 20 mA signal output Here, N Q0 is the design of the electric motor of the air blower 10 K and Q indicate the rotation speed and the air supply air volume coefficient.

(4) 排気系のダクト、フイルタユニツト、その他
の圧損合計と回転数を所要排気風量で演算す
る。
(4) Calculate the total pressure loss and rotation speed of the exhaust system duct, filter unit, and other parts using the required exhaust air volume.

排気系統圧損 ΔPR0=ΔPR1+ΔPR2+ΔPF2 ……(設計時の排風機の静圧) ΔPR=ΔPR1+ΔPR2(R/R02 +ΔPF2(R/R0) ……(動作時) ただし、 ΔPR0は、室1a,1b,1c、室1とフイ
ルタユニツト14を含む排風機3までの圧損、 R0は、設計時の排風機の排気量。
Exhaust system pressure drop ΔP R0 = ΔP R1 + ΔP R2 + ΔP F2 ... (static pressure of exhaust fan at design) ΔP R = ΔP R1 + ΔP R2 (R/R 0 ) 2 + ΔP F2 (R/R 0 ) ... (operation) However, ΔP R0 is the pressure drop between chambers 1a, 1b, 1c, chamber 1 and the exhaust fan 3 including the filter unit 14, and R0 is the displacement of the exhaust fan at the time of design.

ΔPR1は、室1a,1b,1cと室1から排
風機3までのダクト系の圧損固定分、 ΔPR2は、給気系統の最大(設計時)の圧損
ΔPR0からΔPF2とΔPR1を除く排風機3から室1
a,1b,1cと室1までのダクト圧損、 ΔPF2は、排気側に設置されたフイルタユニ
ツトの設計最終圧損を示す。
ΔP R1 is the fixed pressure drop of the duct system from rooms 1a, 1b, 1c and room 1 to the exhaust fan 3, and ΔP R2 is the maximum (designed) pressure drop of the air supply system ΔP R0 to ΔP F2 and ΔP R1 . Excluding exhaust fan 3 to room 1
The duct pressure loss between a, 1b, 1c and chamber 1, ∆P F2 , represents the design final pressure loss of the filter unit installed on the exhaust side.

排気風量Rに対する排風機3の回転数を演算
する。排風機の回転数(フイードフオワード制
御) NR=KRNR0×(ΔPR/ΔPR01/2 →4〜20mA信号出力 ここで、NR0は排風機3の電動モータの設計
回転数、KRは排気風量係数を示す。
The rotation speed of the exhaust fan 3 with respect to the exhaust air volume R is calculated. Exhaust fan rotation speed (feedforward control) N R = K R N R0 × (ΔP R / ΔP R0 ) 1/2 → 4 to 20 mA signal output Here, N R0 is the design of the electric motor of exhaust fan 3 The rotation speed and K R indicate the exhaust air volume coefficient.

(5) 立上りのフイードフオワード制御に対して、
風速検出器20で測定された排気風量Rmが所
要の排気風量Rと一致するかを見て排風機3の
回転数をフイードバツク制御する。
(5) For rising feedforward control,
The rotational speed of the exhaust fan 3 is controlled in feedback manner by checking whether the exhaust air volume Rm measured by the wind speed detector 20 matches the required exhaust air volume R.

そのさい、所要風量の廻りにL1,L2の不感
帯を設定する。そして、偏差eを次式で演算す
る。
At that time, set dead zones L 1 and L 2 around the required air volume. Then, the deviation e is calculated using the following equation.

e=Rm−R(排気風量の測定値−排気風量
の演算値) 偏差がe<L1やe>L2の条件では(設定し
た不感帯を外れたとき)、補正後の排風機の回
転数は次式で演算される。
e = Rm - R (measured value of exhaust air volume - calculated value of exhaust air volume) Under conditions where the deviation is e < L 1 or e > L 2 (when it is outside the set dead zone), the rotation speed of the exhaust fan after correction is calculated using the following formula.

NR(t)=NR(t−Δt) +{k+Δt/Ti+TD/Δt}e(t) −{k+2TD/Δt}e(t−Δt) +{TD/Δt}e(t−2Δt) ここで、NR(t)はt時刻における排風機の
回転数の演算値を示す。NR(t−Δt)はt時刻
よりもスキヤンニング時間Δtだけ前の演算さ
れた排風機の回転数でありe(t),e(t−
Δt),e(t−2Δt)は、それぞれt時刻、(t
−Δt)時刻、(t−2Δt)時刻における偏差を
示している。Kはフイードバツク制御の比例定
数、Tiは積分時間、TDは微分時間、Δtはスキ
ヤンニング時間である。スキヤンニング時間と
は偏差を測定する時間的間隔を意味し、今回は
1秒としている。
N R (t)=N R (t-Δt) +{k+Δt/T i +T D /Δt}e(t) −{k+2T D /Δt}e(t-Δt) +{T D /Δt}e( t-2Δt) Here, N R (t) indicates the calculated value of the rotation speed of the exhaust fan at time t. N R (t-Δt) is the rotation speed of the exhaust fan calculated at scanning time Δt before time t, and e(t), e(t-
Δt) and e(t−2Δt) are time t and (t
−Δt) time and (t−2Δt) time. K is a proportional constant for feedback control, T i is an integral time, T D is a differential time, and Δt is a scanning time. The scanning time means the time interval for measuring the deviation, and in this case it is set to 1 second.

(6) 偏差値が所定の不感帯に入るまで、コントロ
ールタイム毎に修正を加える。これよつて、フ
イルターの目詰まりによる風量低下に追従する
ことができる。
(6) Make corrections at each control time until the deviation value falls within the specified dead zone. This makes it possible to follow the reduction in air volume due to filter clogging.

(7) 上記(5)の操作を終了した後、ドラフトチヤン
バーの使用状態を監視して変更があれば、 Q=QBii=1 qi×ai+Qc R=RBii=1 qi×ai を演算することによつて、風量を抑制し(2)の操
作へ戻る。
(7) After completing the operation in (5) above, monitor the usage status of the draft chamber and if there is any change, Q=Q B + ii=1 q i ×a i +Q c R=R B + ii=1 By calculating q i ×a i , the air volume is suppressed and the process returns to step (2).

以上の如くして本発明の室間微差圧換気省動力
制御設備を稼動すると、使用状況の変化する強制
排気のドラフトチヤンバーが存在する室であつて
且つ高い気密性能の維持が要求される室を一定の
設定差圧に維持することができ、室間の相互汚染
を防止できると共に、フイルターが存在するダク
ト系の経時変化圧損変化による風量低下を追従し
ながら同時に排風機の動力を必要最小限の消費に
とどめることができる。また、滅菌や除染などの
ために給気を停止する場合にあつても空間の差圧
は常に一定に維持されるので相互汚染のおそれも
なくなり、このような諸効果を奏する空間微差圧
制御と換気省動力制御が自動制御で実施すること
ができる。
As described above, when the power-saving control equipment for room-to-room differential pressure ventilation of the present invention is operated, it is necessary to maintain high airtightness in a room where there is a forced exhaust draft chamber whose usage conditions change. It is possible to maintain the room at a constant set differential pressure, prevent cross-contamination between rooms, and at the same time reduce the power of the exhaust fan to the minimum necessary while keeping up with the decrease in air volume due to changes in pressure loss over time in the duct system where the filter is located. consumption can be limited to a limited amount. In addition, even when the air supply is stopped for sterilization or decontamination, the differential pressure in the space is always maintained constant, eliminating the risk of cross-contamination. Control and ventilation power saving control can be carried out with automatic control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の室間微差圧換気省動力制御設
備の一実施例を示す機器配置系統図、第2図はオ
ンオフダンパの開閉状態を説明するための図、第
3〜6図は本発明設備の制御を行う場合のマイク
ロコンピユータでの演算例を示す一連のフローチ
ヤートである。 1……高気密室、2……ドラフトチヤンバー、
3……排風機、4……排気ダクト、5……オンオ
フダンパ、6……ドラフトチヤンバーの使用状態
検出センサー、7……給気ダクト、8…差圧調整
ダンパ、9……差圧検出センサー、10……給風
機、11……マイクロコンピユータ、17……リ
レー盤、18……インバータユニツト。
Fig. 1 is an equipment layout system diagram showing an embodiment of the power-saving control equipment for room differential pressure ventilation of the present invention, Fig. 2 is a diagram for explaining the opening/closing state of the on-off damper, and Figs. 3 to 6 are 1 is a series of flowcharts showing an example of calculations performed by a microcomputer when controlling the equipment of the present invention. 1... Highly airtight room, 2... Draft chamber,
3...Exhaust fan, 4...Exhaust duct, 5...On/off damper, 6...Draft chamber usage state detection sensor, 7...Air supply duct, 8...Differential pressure adjustment damper, 9...Differential pressure detection Sensor, 10...Blower, 11...Microcomputer, 17...Relay board, 18...Inverter unit.

Claims (1)

【特許請求の範囲】[Claims] 1 一つの室1内に単数または複数のドラフトチ
ヤンバー2を設け、このドラフトチヤンバー2の
使用の有無にかかわらず室1と室外との差圧を一
定に維持すると同時にドラフトチヤンバー2の使
用状況に応じて排風機3並びに給風機10の風量
を制御する給排気設備において、各ドラフトチヤ
ンバー2の排気ダクト4にオンオフダンパ5を介
装すると共にこのオンオフダンパ5を各ドラフト
チヤンバー2の使用の有無を検出するセンサー6
からの信号に基づいて開閉動作させ、他方、室1
への給気ダクト7に差圧調整ダンパ8を介装する
と共にこの差圧調整ダンパ8を室内外の差圧を検
出する差圧検出センサー9からの信号に基づいて
開度制御し、排風機3並びに給風機10としてそ
れぞれ可変風量送風機を使用すると共に、この排
風機3並びに給風機10の風量の制御を、各ドラ
フトチヤンバー2の使用状況と給排気系の圧損経
時変化並びに室内外差圧に基づいて行うためのマ
イクロコンピユータ11を付設してなる室間微差
圧換気省動力制御設備。
1 One or more draft chambers 2 are provided in one chamber 1, and the differential pressure between the chamber 1 and the outside is maintained constant regardless of whether or not the draft chamber 2 is used, and at the same time the draft chamber 2 is used. In the supply and exhaust equipment that controls the air volume of the exhaust fan 3 and the fan 10 according to the situation, an on-off damper 5 is installed in the exhaust duct 4 of each draft chamber 2, and this on-off damper 5 is installed in the exhaust duct 4 of each draft chamber 2. Sensor 6 that detects whether it is being used
The opening and closing operations are performed based on the signals from the chamber 1.
A differential pressure adjusting damper 8 is interposed in the air supply duct 7 to the air outlet, and the opening degree of the differential pressure adjusting damper 8 is controlled based on a signal from a differential pressure detection sensor 9 that detects the differential pressure between indoor and outdoor. Variable air volume fans are used as the exhaust fan 3 and the fan 10, and the air volume of the exhaust fan 3 and the fan 10 is controlled based on the usage status of each draft chamber 2, the pressure loss over time of the air supply and exhaust system, and the indoor-outdoor pressure differential. A power-saving control device for ventilation with a slight differential pressure between rooms, which is equipped with a microcomputer 11 for controlling the ventilation based on the following.
JP5044783A 1983-03-28 1983-03-28 Control equipment for minute inter-room pressure difference and power saving for ventilation Granted JPS59176530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5044783A JPS59176530A (en) 1983-03-28 1983-03-28 Control equipment for minute inter-room pressure difference and power saving for ventilation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5044783A JPS59176530A (en) 1983-03-28 1983-03-28 Control equipment for minute inter-room pressure difference and power saving for ventilation

Publications (2)

Publication Number Publication Date
JPS59176530A JPS59176530A (en) 1984-10-05
JPH0345291B2 true JPH0345291B2 (en) 1991-07-10

Family

ID=12859113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5044783A Granted JPS59176530A (en) 1983-03-28 1983-03-28 Control equipment for minute inter-room pressure difference and power saving for ventilation

Country Status (1)

Country Link
JP (1) JPS59176530A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5090303A (en) * 1990-09-28 1992-02-25 Landis & Gyr Powers, Inc. Laboratory fume hood control apparatus having improved safety considerations
US5115728A (en) * 1990-09-28 1992-05-26 Landis & Gyr Powers, Inc. System for controlling the differential pressure of a room having laboratory fume hoods

Also Published As

Publication number Publication date
JPS59176530A (en) 1984-10-05

Similar Documents

Publication Publication Date Title
US5228306A (en) Apparatus for controlling air-exchange and pressure and detecting airtight conditions in air-conditioned room
CN109312941B (en) Clean room control system and method
US4773311A (en) Make up air controller for use with fume hood systems
US4497242A (en) Ventilation control system
CN106196505B (en) A kind of intelligent control method of Fresh air handling units and the Fresh air handling units of application this method
CN207635494U (en) The control system of dustless cleanliness factor
JPH10507820A (en) Air flow control for pressurized room equipment.
EP1509728B1 (en) Range hood device having extended functions
EP0040213B1 (en) Control of the atmosphere in an enclosure
CN206810835U (en) Air-valve control device, control system and vent cabinet
KR101021221B1 (en) Apparatus and method for controling damper of air handling unit
GB2266365A (en) Air conditioning
CN107687694B (en) Ventilator with purifying, dehumidifying and indoor pressure regulating functions
JPH0345291B2 (en)
JPS5995327A (en) Air conditioner for clean room
CN116126060A (en) Adjusting device and adjusting method for environment of synthetic biology laboratory
CN112815412A (en) Device and method for controlling air output of clean area purification system
EP3285015A1 (en) Group for analysis and control of the ventilation of an internal environment or first environment
US10473349B2 (en) Adaptive makeup air system and method for tight enclosures
CN115264751A (en) Negative pressure control method and device for indoor cleanliness and negative pressure laboratory
JP2005326093A (en) Simplified bioclean room
JPS5941732A (en) Minute indoor pressure difference control type air conditioning equipment
KR102265507B1 (en) Air circulation control system with double damper structure to reduce the use of hepa filter and energy
KR100585238B1 (en) Demand control ventilation system
CN220303780U (en) Constant temperature and humidity air conditioner with filtering capability