JPH0345240B2 - - Google Patents

Info

Publication number
JPH0345240B2
JPH0345240B2 JP9212986A JP9212986A JPH0345240B2 JP H0345240 B2 JPH0345240 B2 JP H0345240B2 JP 9212986 A JP9212986 A JP 9212986A JP 9212986 A JP9212986 A JP 9212986A JP H0345240 B2 JPH0345240 B2 JP H0345240B2
Authority
JP
Japan
Prior art keywords
pipe
water storage
storage chamber
water
siphon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9212986A
Other languages
Japanese (ja)
Other versions
JPS62248900A (en
Inventor
Kenichiro Ikeda
Katsushi Hashimoto
Morishige Hatsutori
Hirokazu Shirai
Kenji Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Hitachi Ltd
Original Assignee
Railway Technical Research Institute
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Hitachi Ltd filed Critical Railway Technical Research Institute
Priority to JP9212986A priority Critical patent/JPS62248900A/en
Publication of JPS62248900A publication Critical patent/JPS62248900A/en
Publication of JPH0345240B2 publication Critical patent/JPH0345240B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Jet Pumps And Other Pumps (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、気密室内で生じた水分を気密性を保
ちつつ外部へ排出或いは気密室内に要する水分を
気密性を保ちつつ内部に供給するようにした水封
装置に改良に関するもので、高速鉄道車両の気密
保持に好適なものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is designed to discharge moisture generated in an airtight chamber to the outside while maintaining airtightness, or to supply moisture required within the airtight chamber to the inside while maintaining airtightness. This invention relates to improvements to water sealing devices that have been developed, and is suitable for maintaining airtightness in high-speed railway vehicles.

〔発明の背景〕[Background of the invention]

従来の水封装置を本出願人が先に特許第976658
号として出願した水封装置によつて説明する。第
1図は、隔壁で仕切られた貯水室5,6内に貯留
水4を流入管2より供給した状態を示している。
貯水室5には気密室1に通ずる流入管2を貯水室
6には流出管3を設け、貯水室5と6の間は、先
端近くに通気孔7,8を有するサイフオン管9で
連通した構造とし、貯水室5と6の容積をほぼ等
しくする。また、流入管2と流出管3の先端とサ
イフオン管9の頂部との間隔における貯水室5と
6の各容積がサイフオン管9の内容積以上となる
ようにそれらの間隔を設定しておく。このような
装置において、第1図に示す如く流入管2より貯
留水4が供給されると、まず貯水室5内に蓄積さ
れ、サイフオン管9の頂部曲り部断面の下端位置
に達すると貯流水4は越流して貯水室6側へ供給
される。さらに貯留水4の供給を続け、貯留水4
が通気孔8の上部位置に達するとサイフオン管9
内に中間空気層11が形成される。さらに流入管
2より貯留水4の供給を続けると、貯水室5,6
の水位は共に上昇し第2図の状態となり、これ以
上貯留水4を供給しても流出管3より排出される
だけで水位の変化は起らない。
The present applicant previously obtained patent No. 976658 for the conventional water sealing device.
This will be explained using a water sealing device filed as a patent application. FIG. 1 shows a state in which stored water 4 is supplied from an inflow pipe 2 into water storage chambers 5 and 6 partitioned by partition walls.
The water storage chamber 5 was provided with an inflow pipe 2 leading to the airtight chamber 1, and the water storage chamber 6 was provided with an outflow pipe 3, and the water storage chambers 5 and 6 were connected by a siphon pipe 9 having ventilation holes 7, 8 near the tips. structure, and the volumes of the water storage chambers 5 and 6 are made almost equal. Further, the intervals between the tips of the inflow pipe 2 and the outflow pipe 3 and the top of the siphon pipe 9 are set so that the volumes of the water storage chambers 5 and 6 are equal to or larger than the internal volume of the siphon pipe 9. In such a device, when the stored water 4 is supplied from the inflow pipe 2 as shown in FIG. 4 overflows and is supplied to the water storage chamber 6 side. Furthermore, the supply of stored water 4 continues, and the stored water 4
When it reaches the upper position of the vent hole 8, the siphon tube 9
An intermediate air layer 11 is formed within. Furthermore, when the supply of stored water 4 is continued from the inflow pipe 2, water storage chambers 5 and 6
The water levels both rise to the state shown in FIG. 2, and even if the stored water 4 is supplied any more, it will only be discharged from the outflow pipe 3 and the water level will not change.

気密室1内外の圧力が等しい初期状態において
は、中間空気層11は貯水室6内では流出管3の
水面よりH1だけ水頭差をもつており、また貯水
室5内においても流入管2と中間空気層11の間
にH1だけサイフオン管9側が低い水頭差がある
ため、中間空気層11は圧縮されて水頭H1に相
当する正の圧力を発生する。この圧力はサイフオ
ン管9内の流れに対して抵抗として働き、水封装
置の排水能力を低下させる不具合があつた。
In the initial state where the pressure inside and outside the airtight chamber 1 is equal, the intermediate air layer 11 has a head difference of H 1 from the water surface of the outflow pipe 3 in the water storage chamber 6, and also has a head difference of H 1 from the water surface of the outflow pipe 3 in the water storage chamber 5. Since there is a water head difference between the intermediate air layer 11 which is lower on the siphon tube 9 side by H 1 , the intermediate air layer 11 is compressed and generates a positive pressure corresponding to the water head H 1 . This pressure acts as a resistance to the flow inside the siphon tube 9, resulting in a problem of lowering the drainage capacity of the water sealing device.

そこで、前記不具合を解決するため、第2図の
構造において流出管3の上部先端と流出側貯水室
6の上面との間隔H2を短くする。すなわち、前
記流出管3の上部先端と流出側貯水室6の上面と
の間に円筒状に形成される貯留水4の流出管3へ
の流入部分の面積、具体的には流出管3の上部先
端の周囲長さに前記間隔H2を掛け合わせた面積
がサイフオン管9の断面積と等しいか、もしくは
それよりも狭くなるように前記間隔H2を短くす
る。
Therefore, in order to solve the above problem, in the structure shown in FIG. 2, the distance H2 between the upper tip of the outflow pipe 3 and the upper surface of the outflow side water storage chamber 6 is shortened. That is, the area of the inflow portion of the stored water 4 into the outflow pipe 3 formed in a cylindrical shape between the upper tip of the outflow pipe 3 and the upper surface of the outflow side water storage chamber 6, specifically, the upper part of the outflow pipe 3. The distance H2 is shortened so that the area obtained by multiplying the circumferential length of the tip by the distance H2 is equal to or smaller than the cross-sectional area of the siphon tube 9.

このような構成とすることにより、サイフオン
管9内の貯留水4の流速よりも流出管3への流入
部分の流速が常に早くなるため、流出側貯水室6
内に溜つた空気を流出管3から外部へ排出するこ
とが可能となる。すなわち、流出管3への流入部
分の流速が早くなることによつて、水中の気泡の
浮力より流水による気泡へ作用する力すなわち気
泡に作用する抗力が上回る頻度が高くなり、前記
流出側貯水室6内に溜つた空気を流出管3から外
部へ排出することが比較的容易となる。このこと
により前記第2図の状態において、流入管2に流
れ込む水量が前記空気の抗力が浮力を上回る流速
が得られる水量となつた場合或いは前記流速を生
じさせる貯留水の移動が行われる気密室内外の圧
力変動が生じた場合に貯水室6内の空気は排出さ
れる。そして、前記貯水室6内の空気がほぼ完全
に排出され第3図に示す状態となつた場合の圧力
バランスは次のようになる。すなわち、流出管3
の下端と中間空気層11はH3の負の方向の水頭
差となる。これは貯水室5と中間空気層11とで
生じる水頭差H1と同方向であり、水封装置全体
に加わる水頭はH1+H3となりサイフオン管9内
の流速が増大して中間空気層11を貯水室6内お
よび流出管3から外部へ排出し、第4図に示すよ
うにサイフオン管9は連通状態となる。
With this configuration, the flow rate of the inflow portion to the outflow pipe 3 is always faster than the flow rate of the stored water 4 in the siphon pipe 9, so that the flow rate of the water stored in the outflow side water storage chamber 6
It becomes possible to discharge the air accumulated inside from the outflow pipe 3 to the outside. That is, as the flow rate at the inflow portion to the outflow pipe 3 increases, the force acting on the bubbles due to the flowing water, that is, the drag force acting on the bubbles, more frequently exceeds the buoyancy of the bubbles in the water, and the outflow side water storage chamber It becomes relatively easy to discharge the air accumulated in the exhaust pipe 6 to the outside from the outflow pipe 3. As a result, in the state shown in FIG. 2, if the amount of water flowing into the inflow pipe 2 reaches a flow rate at which the drag force of the air exceeds the buoyancy force, or if the amount of water flowing into the inflow pipe 2 becomes such that a flow rate can be obtained where the drag force of the air exceeds the buoyancy force, or if the amount of water flowing into the inflow pipe 2 becomes such that a flow rate is achieved, or the airtight chamber where the movement of the stored water that causes the above-mentioned flow rate is carried out. The air in the water storage chamber 6 is discharged when external pressure fluctuations occur. The pressure balance when the air in the water storage chamber 6 is almost completely exhausted and the state shown in FIG. 3 is reached is as follows. That is, the outflow pipe 3
The lower end of H 3 and the intermediate air layer 11 become a head difference in the negative direction of H 3 . This is in the same direction as the water head difference H 1 that occurs between the water storage chamber 5 and the intermediate air layer 11, and the water head added to the entire water sealing device becomes H 1 + H 3 , and the flow velocity in the siphon tube 9 increases and the intermediate air layer 11 increases. is discharged into the water storage chamber 6 and outside from the outflow pipe 3, and the siphon pipe 9 becomes in a communicating state as shown in FIG.

このようにサイフオン管9が連通した状態で圧
力がバランスすればよいが、該連通状態では流出
管3の水頭が勝つてしまうため、貯水室5内の水
位が下がつてしまう。そして、貯水室5内の貯留
水4の水位がサイフオン管9の通気穴7に達する
と該通気穴7より気密室1内の空気が気泡10と
して吸込まれ、サイフオン管9内に中間空気層1
1を再形成する。さらに、前記状態においてサイ
フオン管9と流出管3とを比較した場合、流出管
3の方がその下端部において水頭差H3を有して
いるため、貯水室6内の貯留水4は流出を継続し
中間空気層11を拡大させる。そして、中間空気
層11が拡大して通気穴8の位置まで達し、該通
気穴8より気泡10を排出することになる。この
状態が第5図に示す状態である。
In this way, the pressure may be balanced in a state where the siphon pipes 9 are in communication, but in such a state in which the siphon pipes 9 are in communication, the water head in the outflow pipe 3 will prevail, and the water level in the water storage chamber 5 will fall. When the water level of the stored water 4 in the water storage chamber 5 reaches the ventilation hole 7 of the siphon tube 9, the air in the airtight chamber 1 is sucked in as bubbles 10 through the ventilation hole 7, and an intermediate air layer 1 is formed in the siphon tube 9.
Reshape 1. Furthermore, when comparing the siphon pipe 9 and the outflow pipe 3 in the above state, the outflow pipe 3 has a water head difference H 3 at its lower end, so the stored water 4 in the water storage chamber 6 does not flow out. Continue to expand the intermediate air layer 11. Then, the intermediate air layer 11 expands and reaches the position of the ventilation hole 8, and the air bubbles 10 are discharged from the ventilation hole 8. This state is the state shown in FIG.

前記第5図の状態で通気穴8からの気泡10に
よつて貯水室6の上面と流出管3の上端との間に
空気層が形成されることによつて流出管3内の水
のみが排出されるだけで、貯留水4の流出は停止
する。この状態を第6図に示す。該第6図の状態
では流出管3の上部は大気圧となるため、貯水室
6側のサイフオン管9部分でH1、貯水室5側で
H4の水頭圧が同方向に加わり、前記中間空気層
11の一部分を貯水室5側へ押出し第7図の状態
となる。さらに貯水室5および6内の水頭に差が
あるため貯留水4の流動が続き、第8図に示すよ
うに貯水室5および6とサイフオン管9内の水頭
差が共にH5となり中間空気層11を残して流動
が停止し、中間空気層11を完全に排除すること
ができない。
In the state shown in FIG. 5, an air layer is formed between the upper surface of the water storage chamber 6 and the upper end of the outflow pipe 3 by the air bubbles 10 from the ventilation hole 8, so that only the water in the outflow pipe 3 is Only by being discharged, the outflow of the stored water 4 is stopped. This state is shown in FIG. In the state shown in FIG. 6, the upper part of the outflow pipe 3 is at atmospheric pressure, so H 1 is at the siphon pipe 9 section on the water storage chamber 6 side, and H 1 is on the water storage chamber 5 side.
The head pressure of H 4 is applied in the same direction, pushing a part of the intermediate air layer 11 toward the water storage chamber 5 side, resulting in the state shown in FIG. Furthermore, since there is a difference in the water heads in the water storage chambers 5 and 6, the flow of the stored water 4 continues, and as shown in FIG. The flow stops leaving the intermediate air layer 11, and the intermediate air layer 11 cannot be completely eliminated.

このようにサイフオン管9内に中間空気層11
が残つた場合、該中間空気層11には貯水室5お
よび6のH5の水頭圧が作用しており圧縮された
状態となつている。したがつて、この状態で流入
管2から排水が供給された場合、前記中間空気層
11が抵抗となつて貯留水4が円滑に流れなくな
るという不具合がある。すなわち、サイフオン管
9内に水が充満し連通状態にある場合には、該サ
イフオン管9内の貯留水4は貯水室5および6側
で相互にその水頭が釣り合つているため、特に抵
抗となるようなことはない。しかし、前記中間空
気層11が存在する場合にはサイフオン管9内で
貯水室5側、貯水室6側へ前記中間空気層11が
移動すること或いは中間空気層11が圧縮されて
いることによつて両方の水頭が微妙に変化し、貯
留水4が円滑に流れないという不具合が発生す
る。
In this way, an intermediate air layer 11 is formed in the siphon tube 9.
remains, the intermediate air layer 11 is in a compressed state because the head pressure of H 5 in the water storage chambers 5 and 6 is acting on it. Therefore, when waste water is supplied from the inflow pipe 2 in this state, there is a problem that the intermediate air layer 11 acts as a resistance and the stored water 4 does not flow smoothly. That is, when the siphon tube 9 is filled with water and is in a communicating state, the water heads of the stored water 4 in the siphon tube 9 are balanced with each other on the water storage chambers 5 and 6 side, so there is no particular resistance. That's not going to happen. However, when the intermediate air layer 11 exists, the intermediate air layer 11 moves toward the water storage chamber 5 side and the water storage chamber 6 side within the siphon tube 9, or because the intermediate air layer 11 is compressed. As a result, both water heads change slightly, causing a problem that the stored water 4 does not flow smoothly.

〔発明の目的〕[Purpose of the invention]

本発明の目的とするところは、サイフオン管内
に中間空気層が形成されないようにすることによ
つて、排水能力が低下することのない水封装置を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a water sealing device in which the drainage capacity is not reduced by preventing the formation of an intermediate air layer within the siphon tube.

〔発明の概要〕[Summary of the invention]

本発明は、貯水室を容積をほぼ等しくした二室
に分け、流入側貯水室の上部に流入管を接続し、
流出側貯水室に流出管をその上端が後述するサイ
フオン管上端よりも上方に位置し、かつ、その下
端が該流出側貯水室の下方へ伸びるように設け、
二室間をサイフオン管で連通し、流入管の下端お
よび流出管の上端とサイフオン管の上端との間隔
における貯水室の各容積がサイフオン管の内容積
以上となるようにそれらの間隔を設定した気密室
の水封装置において、前記流出管の上部先端と流
出側貯水室上面との間隔を該間隔と流出管上端部
周囲長さとによつて決まる貯留水の流出管への流
入部面積がサイフオン管の断面積と同等以下とな
るように設定し、かつ、前記サイフオン管をその
頂部において断面積を大径とし、該大径部からそ
れぞれ下方に伸びる管路部分を気泡の浮力を上回
る抗力を生じる流速となる断面積に前記大径部近
傍から漸次断面を縮小し該小径部を下方へ伸ばし
たことを特徴とするものである。
The present invention divides the water storage chamber into two chambers with approximately equal volumes, connects an inflow pipe to the upper part of the inflow side water storage chamber,
An outflow pipe is provided in the outflow side water storage chamber so that its upper end is located above the upper end of the siphon pipe described later, and its lower end extends below the outflow side water storage chamber,
The two chambers were communicated by a siphon pipe, and the intervals were set so that each volume of the water storage chamber at the interval between the lower end of the inflow pipe, the upper end of the outflow pipe, and the upper end of the siphon pipe was greater than the internal volume of the siphon pipe. In a water sealing device for an airtight room, the inflow area of the stored water into the outflow pipe is determined by the distance between the top end of the outflow pipe and the top surface of the outflow side water storage chamber and the circumference of the top end of the outflow pipe. The cross-sectional area of the siphon tube is set to be equal to or smaller than the cross-sectional area of the pipe, and the cross-sectional area of the siphon pipe is made large in diameter at the top, and the pipe sections extending downward from the large diameter part are subjected to a drag force that exceeds the buoyancy of the air bubbles. It is characterized in that the cross section is gradually reduced from the vicinity of the large diameter portion to the cross sectional area that corresponds to the flow velocity that occurs, and the small diameter portion is extended downward.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第9図ないし第13
図によつて説明する。同図において、貯水室5,
6、流入管2および流出管3等の基本的な構成は
前記従来例とほぼ同一である。本実施例において
は、サイフオン管9の構造が前記従来例と異なつ
ている。すなわち、該サイフオン管9の頂部はそ
の断面積を気密室1から排出される水の最大流量
を考慮して大径に形成されている。但し、サイフ
オン管9の内容積は各貯水室5,6のサイフオン
管上端と流入管2の下端或いは流出管3の上端と
の間の容積以下でなくてはならないことからあま
り大きくはできない。また、前記サイフオン管9
の頂部から下方に伸びた部分は該頂部近傍部分か
ら漸次断面が縮小しており最小断面部分が下方先
端まで伸びた構造となつている。なお、前記頂部
の大径と最小断面部の小径部とは、その断面積の
比がほぼ1:1.32程度に設定するのが良好である
という実験結果を得ている。
An embodiment of the present invention will be described below with reference to FIGS. 9 to 13.
This will be explained using figures. In the figure, water storage chamber 5,
6. The basic structure of the inflow pipe 2, outflow pipe 3, etc. is almost the same as that of the conventional example. In this embodiment, the structure of the siphon tube 9 is different from that of the conventional example. That is, the cross-sectional area of the top of the siphon tube 9 is formed to have a large diameter in consideration of the maximum flow rate of water discharged from the airtight chamber 1. However, the internal volume of the siphon tube 9 cannot be made too large because it must be less than or equal to the volume between the upper end of the siphon tube of each water storage chamber 5, 6 and the lower end of the inflow pipe 2 or the upper end of the outflow pipe 3. In addition, the siphon tube 9
The portion extending downward from the top has a structure in which the cross section gradually decreases from the portion near the top, and the smallest cross section extends to the lower tip. An experimental result has been obtained that it is best to set the cross-sectional area ratio of the large diameter portion of the top portion to the small diameter portion of the minimum cross section portion to be approximately 1:1.32.

前記構成およびその作用を第10図によつて詳
細に説明する。第10図は第9図の貯水室5側の
サイフオン管9部分の拡大図を示している。第1
0図において、12,13はサイフオン管9の上
部と下部の流れの状態を表わすために仮想的に表
現した細管である。14は流れの状態を表わす基
準面、15は圧力水頭と位置水頭の合計水頭であ
るピエゾ水頭を連ねた動水こう配線である。ま
た、前記細管12と細管13の取付点のサイフオ
ン管9内の流れにベルヌイの式を適用した場合に
速度水頭をHv1,Hv2、圧力水頭をHp1,Hp2
位置水頭をHz1,Hz2、2点間の損失水頭をHL
して表わしている。
The above structure and its operation will be explained in detail with reference to FIG. 10. FIG. 10 shows an enlarged view of the siphon tube 9 portion on the water storage chamber 5 side in FIG. 1st
In FIG. 0, reference numerals 12 and 13 are thin tubes that are virtually expressed to represent the state of flow in the upper and lower portions of the siphon tube 9. Reference numeral 14 denotes a reference plane representing the state of the flow, and 15 denotes a dynamic hydraulic line in which a piezo head, which is a total head of a pressure head and a position head, is connected. Further, when Bernoulli's equation is applied to the flow in the siphon tube 9 at the attachment point of the thin tube 12 and the thin tube 13, the velocity head Hv 1 , Hv 2 , the pressure head Hp 1 , Hp 2 ,
The position head is expressed as Hz 1 , Hz 2 , and the loss head between the two points is expressed as H L .

細管12の取付点の流れの流速を増加させるべ
くサイフオン管9のこの部分の断面を小径とし、
かつ、該小径部分への流れに対する抵抗を抑制し
て円滑に導くために断面を漸次縮小させた構成と
している。このような構成により、速度水頭Hv2
の増大に伴い圧力水頭Hp2と位置水頭Hz2が減少
する。一方、貯水室5,6の容積関係は圧力水頭
Hp1すなわちH6と圧力水頭Hp2の差が中間空気層
11に働く浮力と表面張力の合計値に対して十分
に大となるように構成し、かつ、中間空気層11
が排出消滅されるに十分な時間流れを持続するよ
うにその容積関係を設定する。また、サイフオン
管9の小径部分は内部に存在する気泡の浮力より
もその抗力が大となるような流速が得られる径に
構成されている。
In order to increase the flow rate of the flow at the attachment point of the thin tube 12, the cross section of this part of the siphon tube 9 is made small in diameter,
In addition, the cross section is gradually reduced in order to suppress the resistance to the flow to the small diameter portion and guide it smoothly. With such a configuration, the velocity head Hv 2
Pressure head Hp 2 and position head Hz 2 decrease as . On the other hand, the volume relationship of water storage chambers 5 and 6 is the pressure head
The configuration is such that the difference between Hp 1 , that is, H 6 and the pressure head Hp 2 is sufficiently large with respect to the total value of the buoyancy and surface tension acting on the intermediate air layer 11, and
The volume relationship is set so that the flow continues long enough for the liquid to be expelled and dissipated. Further, the small diameter portion of the siphon tube 9 is configured to have a diameter that allows a flow velocity such that the drag force is greater than the buoyancy of the bubbles existing inside.

このように構成された水封装置において、第9
図に示す状態の中間空気層11は前記サイフオン
管9自体および各貯水室5,6の仕様によつて水
頭H6が作用することにより貯留水4が前記所定
の流速で流れるため、該流れの中に巻込まれ気泡
10となつて貯水室5内に排出される。そして、
最終的には第11図に示すように貯水室5および
6内の貯留水4の水頭は等しくなり流動が停止す
る。以上のような経過によつてサイフオン状態が
成立する。この状態になつて以降は、貯留水4を
流入管2より供給した場合、各貯水室5,6の水
頭が上昇し、貯水室6内の水面が排出管3の上端
部に達しそれ以上の貯留水4のみが排出されるこ
とになる。この時の貯水室5,6の水頭は等しく
保たれている。
In the water seal device configured in this way, the ninth
The intermediate air layer 11 in the state shown in the figure is caused by the water head H 6 acting on the siphon tube 9 itself and the specifications of the water storage chambers 5 and 6, so that the stored water 4 flows at the predetermined flow velocity. The water is drawn in, becomes bubbles 10, and is discharged into the water storage chamber 5. and,
Eventually, as shown in FIG. 11, the water heads of the stored water 4 in the water storage chambers 5 and 6 become equal, and the flow stops. Through the process described above, the siphon state is established. After this state is reached, when the stored water 4 is supplied from the inflow pipe 2, the water head in each water storage chamber 5, 6 will rise, and the water level in the water storage chamber 6 will reach the upper end of the discharge pipe 3, and the water will rise further. Only the stored water 4 will be discharged. At this time, the water heads in the water storage chambers 5 and 6 are kept equal.

第12図は、気密室1内に対し外部の圧力が低
くなり気密の破れる直前の状態を示している。す
なわち、流入管2を通じて貯留水4の表面に加わ
る圧力の方が高くなり貯水室5内の貯留水4は押
し下げられ、ついにサイフオン管9の通気穴7の
位置まで達する。さらに圧力差が大きい時には、
通気穴7を通じ気泡10がサイフオン管9内に供
給され、中間空気層11が形成されてサイフオン
状態が破れることになる。それ以上圧力差がある
時はさらに気泡10が供給され、中間空気層11
の圧力が上昇してサイフオン管9の貯水室6側内
の水頭が下がり通気穴8の位置に達する。この状
態で気密室1内外の圧力差を考えると、まず、中
間空気層11の圧力は外部圧よりH1だけ高く、
流入管2により通ずる気密室1内の圧力は中間空
気層11の圧力よりもH4だけ高いことになる。
したがつて、この時の気密保持能力はH1+H4
なる。
FIG. 12 shows a state immediately before the pressure outside the airtight chamber 1 becomes low and the airtightness is broken. That is, the pressure applied to the surface of the stored water 4 through the inflow pipe 2 becomes higher, and the stored water 4 in the water storage chamber 5 is pushed down and finally reaches the position of the ventilation hole 7 of the siphon pipe 9. Furthermore, when the pressure difference is large,
Air bubbles 10 are supplied into the siphon tube 9 through the ventilation hole 7, and an intermediate air layer 11 is formed to break the siphon state. When the pressure difference is greater than that, more air bubbles 10 are supplied, and the intermediate air layer 11
The pressure increases, and the water head in the water storage chamber 6 side of the siphon tube 9 decreases and reaches the position of the ventilation hole 8. Considering the pressure difference inside and outside the airtight chamber 1 in this state, first, the pressure in the intermediate air layer 11 is higher than the external pressure by H 1 ,
The pressure in the hermetic chamber 1 communicated by the inlet pipe 2 is higher than the pressure in the intermediate air layer 11 by H 4 .
Therefore, the airtight maintenance ability at this time is H 1 +H 4 .

第13図は、気密室1内に対し外部圧力が高く
なり気密が破れる直前の状態を示している。この
場合は、第12図の時とは逆方向の経過で圧力が
バランスし、気密保持能力はH4+H8となる。第
12図、第13図のいずれの場合も、内外の圧力
差がなくなると貯水室5または6の高い方の水頭
がサイフオン管9の頂部まで下がる間に、前述し
た如き経過により中間空気層11は反対側の貯水
室に排出され、サイフオン状態が再生される。
FIG. 13 shows a state immediately before the external pressure inside the airtight chamber 1 increases and the airtightness is broken. In this case, the pressure will be balanced in the opposite direction to that shown in FIG. 12, and the airtightness will be H 4 +H 8 . In both cases of FIG. 12 and FIG. 13, when the pressure difference between the inside and outside disappears, the water head in the higher one of the water storage chambers 5 or 6 falls to the top of the siphon tube 9. is discharged into the water storage chamber on the opposite side, and the siphon state is regenerated.

以上説明したように前記構成によれば、サイフ
オン管内に中間空気層が生じても容易に排出する
ことができ常時該サイフオン管内を連通状態にす
ることができる。したがつて、サイフオン管内に
中間空気層が存在しない状態で貯留水が流れるた
め、前記空気層の存在によつて生じていた不具合
を防止することができ、円滑に貯留水すなわち気
密室から外部への排水を排出することができる。
また、前記構成においては気密室内外間において
気圧変動を生じた際の初期の気密保持能力を確保
することができる。ところで、前記実施例におい
ては気密室外へ排水を排出する場合について説明
したが、前記構成によれば気密室内へ液体を供給
する場合にも同様な効果を達成できることは言う
までもない。
As explained above, according to the above structure, even if an intermediate air layer is generated within the siphon tube, it can be easily discharged, and the inside of the siphon tube can be kept in a communicating state at all times. Therefore, since the stored water flows without an intermediate air layer inside the siphon pipe, it is possible to prevent problems that would otherwise occur due to the presence of the air layer, and the stored water, that is, the airtight chamber, can be smoothly transferred to the outside. wastewater can be discharged.
Further, with the above configuration, it is possible to ensure the initial airtightness maintenance ability when a change in air pressure occurs between the outside and the outside of the airtight room. Incidentally, in the embodiment described above, a case has been described in which the waste water is discharged to the outside of the airtight chamber, but it goes without saying that the same effect can be achieved when liquid is supplied into the airtight chamber according to the above structure.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、サイフオ
ン管内の中間空気層を貯留水の流れによつて排出
することができるため、サイフオン管内の中間空
気層の存在を大幅に削減でき、該中間空気層によ
る排水能力の低下を防止することができる。
As explained above, according to the present invention, the intermediate air layer in the siphon tube can be discharged by the flow of stored water, so the existence of the intermediate air layer in the siphon tube can be significantly reduced, and the intermediate air layer It is possible to prevent a decrease in drainage capacity due to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の水封装置の構造を示す縦断面
図、第2図ないし第8図は第1図の水封装置を改
良したものの構造および動作を説明する縦断面
図、第9図は本発明による水封装置の一実施例を
示す縦断面図、第10図は第9図のサイフオン管
内の挙動を示す拡大縦断面図、第11図ないし第
13図は第9図の水封装置の動作状況を示す縦断
面図である。 1……気密室、2……流入管、3……流出管、
4……貯留水、5,6……貯水室、7,8……通
気穴、9……サイフオン管、10……気泡、11
……中間空気層、12,13……仮想の細管、1
4……基準面、15……動水こう配線、16……
エネルギーこう配線。
Fig. 1 is a longitudinal sectional view showing the structure of a conventional water sealing device, Figs. 2 to 8 are longitudinal sectional views explaining the structure and operation of an improved water sealing device of Fig. 1, and Fig. 9 is a longitudinal sectional view showing the structure of a conventional water sealing device. A vertical cross-sectional view showing an embodiment of the water sealing device according to the present invention, FIG. 10 is an enlarged vertical cross-sectional view showing the behavior inside the siphon tube of FIG. 9, and FIGS. 11 to 13 are the water sealing device of FIG. 9. FIG. 1...airtight chamber, 2...inflow pipe, 3...outflow pipe,
4...Reserved water, 5, 6...Water storage chamber, 7, 8...Vent hole, 9...Siphon tube, 10...Bubble, 11
...Intermediate air layer, 12,13...Virtual capillary, 1
4...Reference plane, 15...Hydraulic wiring, 16...
Energy wiring.

Claims (1)

【特許請求の範囲】[Claims] 1 貯水室を容積をほぼ等しくした二室に分け、
流入側貯水室の上部に流入管を接続し、流出側貯
水室に流出管をその上端が後述するサイフオン管
上端よりも上方に位置し、かつ、その下端が該流
出側貯水室の下方へ伸びるように設け、二室間を
サイフオン管で連通し、流入の下端および流出管
の上端とサイフオン管の上端との間隔における貯
水室の各容積がサイフオン管の内容積以上となる
ようにそれらの間隔を設定した気密室の水封装置
において、前記流出管の上部先端と流出側貯水室
上面との間隔を該間隔と流出管上端部周囲長さと
によつて決まる貯留水の流出管への流入部面積が
サイフオン管の断面積と同等以下となるように設
定し、かつ、前記サイフオン管をその頂部におい
て断面積を大径とし、該大径部からそれぞれ下方
に伸びる管路部分を気泡の浮力を上回る抗力を生
じる流速となる断面積に前記大径部近傍から漸次
断面を縮少し該小径部を下方へ伸ばしたことを特
徴とする水封装置。
1 Divide the water storage chamber into two rooms with approximately equal volumes,
An inflow pipe is connected to the upper part of the inflow side water storage chamber, and an outflow pipe is connected to the outflow side water storage chamber, the upper end of which is located above the upper end of the siphon pipe described later, and the lower end thereof extends below the outflow side water storage chamber. The two chambers are connected by a siphon pipe, and the intervals are set such that each volume of the water storage chamber at the interval between the lower end of the inflow pipe, the upper end of the outflow pipe, and the upper end of the siphon pipe is equal to or larger than the internal volume of the siphon pipe. In a water sealing device for an airtight room, the distance between the upper tip of the outflow pipe and the top surface of the outflow side water storage chamber is determined by the distance and the circumference of the upper end of the outflow pipe at the inflow part of the stored water into the outflow pipe. The cross-sectional area of the siphon tube is set to be equal to or less than the cross-sectional area of the siphon tube, and the cross-sectional area of the siphon tube is made large in diameter at the top, and the pipe portions extending downward from the large diameter portion are controlled by the buoyancy of air bubbles. A water seal device characterized in that the cross section is gradually reduced from the vicinity of the large diameter portion to a cross sectional area at which the flow velocity generates an exceeding drag force, and the small diameter portion is extended downward.
JP9212986A 1986-04-23 1986-04-23 Water sealing device Granted JPS62248900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9212986A JPS62248900A (en) 1986-04-23 1986-04-23 Water sealing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9212986A JPS62248900A (en) 1986-04-23 1986-04-23 Water sealing device

Publications (2)

Publication Number Publication Date
JPS62248900A JPS62248900A (en) 1987-10-29
JPH0345240B2 true JPH0345240B2 (en) 1991-07-10

Family

ID=14045825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9212986A Granted JPS62248900A (en) 1986-04-23 1986-04-23 Water sealing device

Country Status (1)

Country Link
JP (1) JPS62248900A (en)

Also Published As

Publication number Publication date
JPS62248900A (en) 1987-10-29

Similar Documents

Publication Publication Date Title
JPH0345240B2 (en)
JPS622135B2 (en)
KR20180096868A (en) Intake and Drainage apparatus
WO2023010830A1 (en) Gas pressure protection device, ventilation and deodorization system, and deep drainage tunnel
JP3552809B2 (en) Water sealing device
CN111188390A (en) Overflow device for improving overflow capacity and accelerating discharge speed of drain valve
JPS6014337Y2 (en) Liquid urine intrusion prevention device in the vacuum pump of a urine spreader
KR970003334Y1 (en) Syphon noise and water hammering absorbing device
CN211774277U (en) Overflow device for improving overflow capacity and accelerating discharge speed of drain valve
JP3296449B2 (en) Siphon flush toilet
CN220167077U (en) Pressurized water-saving toilet
JP2594625Y2 (en) Intake device for vertical shaft pump
CN106677322B (en) Floating bell jar formula sealing structure for water
JP2562504Y2 (en) Water sealing device
JPH08303400A (en) Water sealing device
CN217708916U (en) Anti-pollution overflow device
CN219332699U (en) Thoracic cavity closed drainage bottle
JPH0437314B2 (en)
JPS6124720Y2 (en)
JP2000096539A (en) Water intake device
JPH0217929Y2 (en)
JPS5851652Y2 (en) Reservoir for tandem master cylinder
JPS629380Y2 (en)
JPS6029478Y2 (en) Flat plate multi-stage water intake gate
JPH045739Y2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term