JP3552809B2 - Water sealing device - Google Patents

Water sealing device Download PDF

Info

Publication number
JP3552809B2
JP3552809B2 JP24125995A JP24125995A JP3552809B2 JP 3552809 B2 JP3552809 B2 JP 3552809B2 JP 24125995 A JP24125995 A JP 24125995A JP 24125995 A JP24125995 A JP 24125995A JP 3552809 B2 JP3552809 B2 JP 3552809B2
Authority
JP
Japan
Prior art keywords
water
pressure
water storage
storage chamber
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24125995A
Other languages
Japanese (ja)
Other versions
JPH0979383A (en
Inventor
正樹 与野
渡辺  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24125995A priority Critical patent/JP3552809B2/en
Publication of JPH0979383A publication Critical patent/JPH0979383A/en
Application granted granted Critical
Publication of JP3552809B2 publication Critical patent/JP3552809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sealing Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明は気密室内で生じた水分を気密室の気密性を保ちつつ外部に排出あるいは気密室内に要する水分を気密性を保ちつつ外部より供給するようにした水封装置に関するもので、頻繁に内外気圧変動を受け、かつ装置の高さ方向や重量に制約のある高速鉄道車両等に好適なものである。
【0002】
【従来の技術】
高速で走行する車両においてはトンネルの通過や車両のすれ違いにより外部圧力が数百mmAq変動するが、これが室内に伝わると乗客に不快感を与えるので室内を気密化している。気密室内において水分を生じる場合、これを外部に排出する装置として気密の度合いが比較的低い場合は貯水室内の水頭を利用した水封装置が使用されている。たとえば、室内からは冷房装置のドレンや洗面所の排水などを生じるので、これを気密室外に排出する部分に前述の水封装置を使用している。
【0003】
車両用の水封装置としては、流入貯水室と流出貯水室をサイフォン管で連結した構成のサイフォン式水封装置がある(特公昭54−11453号公報)。
【0004】
【発明が解決しようとする課題】
従来のサイフォン式水封装置の耐気圧変動量はサイフォン管の高さ寸法とサイフォン管の下端から排水管の上端までの高さ寸法とによって定まる。このため、耐気圧性を向上させるには高さ寸法を大きくする必要がある。
【0005】
一方、鉄道車両の場合は、水封装置とりつけられる高さに限界があり、さらなる車両の高速化によってより高い耐気圧変動量が要求される場合には、従来の水封装置では対応できない。
【0006】
本発明の目的は高さ寸法の小さい高耐圧の水封装置を提供することにある。
【0007】
【課題を解決するため手段】
本発明は、上端側がそれぞれ開口したU字管を少なくとも2つ備え、一方のU字管の一端は気密室に通ずる流入口に、他端は他方のU字管の一端に接続しており、他方のU字管の他端は外気に通ずる排出口に接続しており、それぞれのU字管において上端側同士を小さな穴で連通しており、該小さな穴の径は、外気圧の変動に対して、前記気密室内の気圧をほぼ一定に保持しつつ排水するように設定されている。このことにより気密室の内圧をP1、外気圧をP3とすると各U字管が分担する差圧は等しく、例えば3連U字管の場合、(P3−P1)/3となり、直列U字管の総耐圧は各U字管の耐圧の3倍になる。以上により、高さ寸法の小さな装置でより大きい耐圧力変動量を有する水封装置が実現できる。

【0008】
【作用】
2つのU字管を直列に接続しているので、各U字管の耐気密高さの2倍まで圧力差に対応できる。このため、装置の高さを小さくできる。また、それぞれのU字管を小さな穴で連通させているので、気密室内の空気の一部を気密室内の気圧に変動を及ぼさない微量の範囲で外部に逃す(負圧の場合は取り入れる)ことができる。このため、圧力が加わった状態で排水を継続できる。
【0009】
【実施例】
以下本発明の一実施例を図1〜図4によって説明する。図1はU字管を2連に配置した例を示しており、貯水室内には水が充満している状態を示している。貯水室6には気密室に通ずる流入管4を設け、貯水室6と貯水室7とはU字管を形成している。また、貯水室6と貯水室7とは水路に対して充分に高い位置においてオリフィス1によっても結合している。つまり、貯水室6と貯水室7とはU字管の水路の上端を空気路のオリフィス1で結合されていることになる。貯水室と貯水室は堰12によって区切られており水は堰12を乗り越えて貯水室8に入る。貯水室8と貯水室9とは貯水室6と貯水室7と同様にU字管とオリフィス2で結合されている。これによって2連のU字管を構成している。オリフィス2の形状及び断面積はオリフィス1と等しくする。オリフィス1,2の穴径は6mm程度である。最終的に水は貯水室9より排水管14により外部に排出される。貯水室6,7,8,9のそれぞれの容積はほぼ同一である。
【0010】
図2は気密室内に対し外部の圧力が低くなり気密が破れる直前の状態を示している。すなわち貯水室6上部の圧力をP1(内圧)、貯水室7、貯水室8上部の圧力をP2、貯水室9上部の圧力をP3(外圧)、とする。オリフィス1、オリフィス2の作用により、
P2=(P1+P3)/2−−−−式1
の関係が成り立つ。つまり、図1の如く2連U字管式の場合
P1−P2= (P1−P3)/2−−−−式2
の関係が成り立つ。
【0011】
この場合の水頭H=h1+h2となる。例えばU字管1本当たりの水頭を500mmAqとすると装置全体では500×2=1000mmAqとなる。このため、装置の高さ寸法を小さくしておおきな水頭が得られるものである。
【0012】
図3にその後、圧力差が無くなりP1=P2となった状態を示す。その際にオリフィス1、2の作用によりP1=P2=P3となる。そして水位はU字管の作用で貯水室6と貯水室7が等しくなり、貯水室8と貯水室9が等しくなる。
【0013】
この状態で注水口より注水されれば、貯水室6の水位上昇に伴って貯水室7の水位も上昇する。貯水室7の水位が上昇すると、貯水室7貯水室8の上部空気層が圧縮されオリフィスがない場合、圧力上昇を招く。この圧力上昇が水路抵抗となり貯水室6に水頭が立ち、排水ができないことになる。ところが本実施例によれば、貯水室7、8の上部にオリフィス1、2が設けてあり、オリフィス1、2により貯水室6、7、8、9の水位と無関係にP1=P2=P3となる。つまり、圧力上昇による水路抵抗は発生しない。注水が続行され、貯水室7が満水となると堰12を乗り越えて貯水室8と貯水室9も満水状態になる。そして排水口14から排水される。
【0014】
図4には逆に気密室内に対し外部の圧力が高くなり、気密が破れる直前の状態を示している。オリフィス1、オリフィス2の作用により、前記式1が成立し、式3が成立する。
【0015】
P2−P1=(P3−P1)/2−−−−式3
の関係が成り立つ。
【0016】
鉄道車両において、高速でトンネルに突入したり、トンネル内で対向車両にすれちがった場合においては、車外の圧力が正圧の方向に大きくなったり、負圧の方向に大きくなったりする。これによって車内圧も大きく変化する。この圧力変化に対して水封装置は水封することが必要である。前記の鉄道車両において、車内と車外の圧力差が最大の時から通常の圧力状態に戻るまでの時間は約20秒程度である。
【0017】
前記実施例ではオリフィス1,2によって水封作用を破壊するようにしている。このため、オリフィス1,2の径は前記約20秒間において良好な排水が行なわれるような径に定める。また、通常の圧力状態から最大圧力に変化する場合に通常の水封装置として作用するようにオリフィス1,2の径を定める。つまり、車内の乗客に耳ツン等の障害外を発生しないように定める。
【0018】
図5は高耐圧を求めるために、U字管を3連に配置した例を示しており貯水室内に水が充満している状態を示している。貯水室6には気密室に通ずる流入管2を設け、貯水室6と貯水室7はU字管を形成している。貯水室6と貯水室7とは水路に対して充分に高い位置にオリフィス1により結合されている。貯水室7と貯水室8は堰12によって区切られており水は堰12を乗り越えて貯水室8に入る。同様の構造のU字管とオリフィス併用の貯水室が3個直列につながっている。最終的に水は貯水室11より排水管14を通って外部に排出される。
【0019】
図6は気密室内に対し外部の圧力が低くなり気密が破れる直前の状態を示している。すなわち貯水室1の圧力をP1(内圧)、貯水室2、貯水室3の圧力をP2、貯水室4、貯水室5の圧力をP3とする。外部の圧力をP4とするとオリフィスの作用により、3個つながったU字管の上部にある各空気部の圧力は、
P2=(2×P1+P4)/3−−−−式4
P3=(P1+2×P4)/3−−−−式4
の関係が成り立つ。つまり、図5に如く3連U字管の場合差圧を考えると、
P1−P2= (P1−P4)/3−−−−式5
P2−P3= (P1−P4)/3−−−−式6
の関係が成り立つ。
【0020】
この場合の水頭H=h1+h2+h3となる。例えばU字管1本当たりの水頭を500mmAqとすると装置全体では500×3=1500mmAqとなる。本図の様にU字管の本数を直列に増して行けば理論上はいかなる高さの要求水頭にでも対応可能な水封装置の提供が可能である。
【0021】
【発明の効果】
本発明によれば、従来のサイフォン式水封装置と同様に、可動部分がないため保守に手間がかからず、目つまりが少ないという利点をそのまま有し、しかも短い寸法の装置でより大きい耐圧力変動量を有する水封装置を得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施例である2連U字管式水封装置の満水時の断面図である。
【図2】図1の水封装置の流入側の圧力が高く気密が破れる直前の図である。
【図3】図1の水封装置の流入側と流出側の圧力がつりあった時の図である。
【図4】図1の水封装置の流出側の圧力が高く気密が破れる直前の図である。
【図5】本発明の一実施例である3連U字管式水封装置の満水時の断面図である。
【図6】図5の水封装置の流入側の圧力が高く気密が破れる直前の図である。
【符号の説明】
1,2,3…オリフィス、4…流入管、6,7,8,9,10,11…貯水室、12,13…堰、14…排出管。
[0001]
[Industrial applications]
The present invention relates to a water sealing device that discharges moisture generated in an airtight chamber to the outside while maintaining the airtightness of the airtight chamber, or supplies the water required in the airtight chamber from the outside while maintaining the airtightness, and frequently relates to a water sealing apparatus. The present invention is suitable for a high-speed railway vehicle or the like that is subject to pressure fluctuations and has restrictions on the height direction and weight of the device.
[0002]
[Prior art]
In a vehicle traveling at a high speed, the external pressure fluctuates by several hundred mmAq due to passage through a tunnel or passing of a vehicle. However, when this is transmitted to the interior of the vehicle, passengers may feel uncomfortable, so that the interior of the vehicle is airtight. When moisture is generated in an airtight chamber, a water sealing device using a head in a water storage chamber is used as a device for discharging the water to the outside when the degree of airtightness is relatively low. For example, since the drain of the cooling device and the drainage of the washroom are generated from the room, the above-described water sealing device is used in a portion for discharging the drain to the outside of the airtight room.
[0003]
As a water seal device for vehicles, there is a siphon type water seal device in which an inflow water storage chamber and an outflow water storage chamber are connected by a siphon pipe (Japanese Patent Publication No. 54-11453).
[0004]
[Problems to be solved by the invention]
The amount of variation in pressure resistance of the conventional siphon type water sealing device is determined by the height of the siphon pipe and the height from the lower end of the siphon pipe to the upper end of the drain pipe. Therefore, it is necessary to increase the height dimension in order to improve the pressure resistance.
[0005]
On the other hand, in the case of railway vehicles, there is a limit to the height at which the water sealing device can be mounted, and when a higher speed of the vehicle requires a higher withstand pressure fluctuation amount, the conventional water sealing device cannot cope.
[0006]
An object of the present invention is to provide a water sealing device having a small height and a high pressure resistance.
[0007]
[Means for solving the problem]
The present invention includes at least two U-shaped tubes each having an open upper end, one end of one U-shaped tube is connected to an inflow port communicating with the airtight chamber, and the other end is connected to one end of the other U-shaped tube, the other end of the other U-shaped tube is connected to a discharge port leading to the outside air, communicates with the upper end side to each other with a small hole in each of the U-shaped tube, the diameter of the small holes, the fluctuation of the external atmospheric pressure On the other hand, it is set so as to drain the water while keeping the pressure in the airtight chamber almost constant. As a result, when the internal pressure of the airtight chamber is P1 and the external pressure is P3, the differential pressure shared by each U-shaped pipe is equal. For example, in the case of a triple U-shaped pipe, it becomes (P3-P1) / 3, and the series U-shaped pipe Is three times the withstand pressure of each U-tube. As described above, it is possible to realize a water seal device having a larger withstand pressure fluctuation amount with a device having a small height dimension.

[0008]
[Action]
Since the two U-shaped tubes are connected in series, it is possible to cope with a pressure difference up to twice the airtight height of each U-shaped tube. For this reason, the height of the device can be reduced. In addition, since each U-shaped tube communicates with a small hole, a part of the air in the hermetic chamber must escape to the outside within a small amount that does not affect the air pressure in the hermetic chamber (take in the case of negative pressure). Can be. For this reason, drainage can be continued in a state where pressure is applied.
[0009]
【Example】
An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows an example in which two U-shaped tubes are arranged, and shows a state in which water is filled in a water storage chamber. The water storage chamber 6 is provided with an inflow pipe 4 communicating with the airtight chamber, and the water storage chamber 6 and the water storage chamber 7 form a U-shaped pipe. The water storage chamber 6 and the water storage chamber 7 are also connected by the orifice 1 at a position sufficiently high with respect to the water channel. In other words, the water storage chamber 6 and the water storage chamber 7 are connected at the upper end of the water channel of the U-shaped pipe by the orifice 1 of the air channel. Water storage chamber 6 and reservoir chamber 7 is delimited by the weir 12, the water enters the water storage chamber 8 over the weir 12. The water storage chamber 8 and the water storage chamber 9 are connected with the U-shaped pipe and the orifice 2 in the same manner as the water storage chamber 6 and the water storage chamber 7. This forms a double U-tube. The shape and sectional area of the orifice 2 are made equal to those of the orifice 1. The hole diameter of the orifices 1 and 2 is about 6 mm. Finally, the water is discharged from the water storage chamber 9 to the outside by the drain pipe 14. Each volume of the water storage chambers 6, 7, 8, 9 is substantially the same.
[0010]
FIG. 2 shows a state immediately before the airtightness is broken due to a decrease in the pressure outside the airtight chamber. That is, the pressure above the water storage chamber 6 is P1 (internal pressure), the pressure above the water storage chambers 7 and 8 is P2, and the pressure above the water storage chamber 9 is P3 (external pressure). By the action of orifice 1 and orifice 2,
P2 = (P1 + P3) / 2 ----- Equation 1
Holds. That is, in the case of a double U-tube type as shown in FIG. 1, P1−P2 = (P1−P3) / 2 −−− 2
Holds.
[0011]
In this case, the head H = h1 + h2. For example, if the water head per U-tube is set to 500 mmAq, the whole apparatus will be 500 × 2 = 1000 mmAq. For this reason, a large head can be obtained while keeping the height of the device small.
[0012]
FIG. 3 shows a state where the pressure difference disappears and P1 = P2. At this time, P1 = P2 = P3 due to the action of the orifices 1 and 2. The water level is equal between the water storage chamber 6 and the water storage chamber 7 by the action of the U-shaped pipe, and the water storage chamber 8 and the water storage chamber 9 are equal.
[0013]
If water is injected from the water inlet in this state, the water level in the water storage chamber 7 rises as the water level in the water storage chamber 6 rises. When the water level in the water storage chamber 7 rises, the upper air layer of the water storage chamber 7 and the water storage chamber 8 is compressed, and if there is no orifice, the pressure rises. This increase in pressure causes channel resistance, causing a water head in the water storage chamber 6 to prevent drainage. However, according to the present embodiment, the orifices 1 and 2 are provided above the water storage chambers 7 and 8, and P1 = P2 = P3 by the orifices 1 and 2 regardless of the water levels of the water storage chambers 6, 7, 8, and 9. Become. That is, no water channel resistance is caused by the pressure increase. Water injection is continued, and when the water storage chamber 7 becomes full, the water storage chamber 8 and the water storage chamber 9 are filled with water over the weir 12. Then, the water is drained from the drain port 14.
[0014]
FIG. 4 shows a state immediately before the airtightness is broken due to an increase in the pressure outside the airtight chamber. By the action of the orifices 1 and 2, the above equation 1 is established, and the equation 3 is established.
[0015]
P2-P1 = (P3-P1) / 2-2 ---- Equation 3
Holds.
[0016]
When a railway vehicle enters a tunnel at high speed or passes an oncoming vehicle in the tunnel, the pressure outside the vehicle increases in the direction of positive pressure or increases in the direction of negative pressure. This interior pressure also changes greatly. The water seal device needs to be water sealed against this pressure change. In the above-mentioned railway vehicle, the time from when the pressure difference between the inside and the outside of the vehicle is maximum to the time when the pressure returns to the normal pressure state is about 20 seconds.
[0017]
In the above embodiment, the orifices 1 and 2 break the water sealing action. For this reason, the diameters of the orifices 1 and 2 are determined so that good drainage can be performed in the above-mentioned approximately 20 seconds. Further, the diameters of the orifices 1 and 2 are determined so that the orifices 1 and 2 function as a normal water sealing device when the pressure changes from the normal pressure state to the maximum pressure. In other words, it is determined that passengers in the vehicle will not be out of obstacles such as ears.
[0018]
FIG. 5 shows an example in which U-shaped tubes are arranged in three rows in order to obtain a high pressure resistance, and shows a state where the water is filled in the water storage chamber. The water storage chamber 6 is provided with the inflow pipe 2 communicating with the airtight chamber, and the water storage chamber 6 and the water storage chamber 7 form a U-shaped pipe. The water storage chamber 6 and the water storage chamber 7 are connected by an orifice 1 at a position sufficiently high with respect to the water channel. The water storage room 7 and the water storage room 8 are separated by a weir 12, and water passes over the weir 12 and enters the water storage room 8. Three U-tubes having the same structure and water storage chambers combined with orifices are connected in series. Finally, the water is discharged from the water storage chamber 11 to the outside through the drain pipe 14.
[0019]
FIG. 6 shows a state immediately before the airtightness is broken due to a decrease in the pressure outside the airtight chamber. That is, the pressure in the water storage chamber 1 is P1 (internal pressure), the pressure in the water storage chambers 2 and 3 is P2, and the pressure in the water storage chambers 4 and 5 is P3. Assuming that the external pressure is P4, due to the action of the orifice, the pressure of each air portion at the top of the three connected U-tubes is
P2 = (2 × P1 + P4) / 3 −−−− 4
P3 = (P1 + 2 × P4) / 3 −−−− 4
Holds. That is, considering the differential pressure in the case of a triple U-tube as shown in FIG.
P1−P2 = (P1−P4) / 3 −−−− 5
P2-P3 = (P1-P4) / 3-3 ---- Equation 6
Holds.
[0020]
In this case, the head H = h1 + h2 + h3. For example, if the water head per U-tube is set to 500 mmAq, the entire apparatus becomes 500 × 3 = 1500 mmAq. If the number of U-shaped tubes is increased in series as shown in this figure, it is theoretically possible to provide a water seal device capable of responding to a required head of any height.
[0021]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, like a conventional siphon-type water-sealing apparatus, since there is no movable part, it has the advantage that maintenance is not troublesome and there is little clogging. A water seal device having a pressure fluctuation amount can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a double U-tube type water sealing device according to an embodiment of the present invention when it is full.
FIG. 2 is a diagram immediately before airtightness is broken due to high pressure on the inflow side of the water sealing device of FIG. 1;
FIG. 3 is a diagram when the pressure on the inflow side and the pressure on the outflow side of the water sealing device in FIG. 1 are balanced.
FIG. 4 is a diagram immediately before airtightness is broken due to high pressure on the outflow side of the water sealing device in FIG. 1;
FIG. 5 is a cross-sectional view of a triple U-shaped water seal device according to an embodiment of the present invention when it is full.
FIG. 6 is a diagram immediately before airtightness is broken due to high pressure on the inflow side of the water seal device of FIG. 5;
[Explanation of symbols]
1, 2, 3 ... orifice, 4 ... inflow pipe, 6, 7, 8, 9, 10, 11 ... water storage chamber, 12, 13 ... weir, 14 ... discharge pipe.

Claims (1)

上端側がそれぞれ開口したU字管を少なくとも2つ備え、一方のU字管の一端は気密室に通ずる流入口に、他端は他方のU字管の一端に接続しており、他方のU字管の他端は外気に通ずる排出口に接続しており、それぞれのU字管において上端側同士を小さな穴で連通しており、該小さな穴の径は、外気圧の変動に対して、前記気密室内の気圧をほぼ一定に保持しつつ排水するように設定されていること、を特徴とする水封装置。At least two U-shaped pipes each having an open upper end are provided. One end of one U-shaped pipe is connected to an inflow port communicating with the airtight chamber , the other end is connected to one end of the other U-shaped pipe, and the other U-shaped pipe is connected. the other end of the tube is connected to a discharge port leading to the outside air, communicates with the upper end side to each other in each of the U-shaped tube with a small hole, the diameter of the small holes, to variations in ambient air pressure, the A water sealing device characterized in that it is set so as to drain while keeping the air pressure in the airtight chamber substantially constant .
JP24125995A 1995-09-20 1995-09-20 Water sealing device Expired - Fee Related JP3552809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24125995A JP3552809B2 (en) 1995-09-20 1995-09-20 Water sealing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24125995A JP3552809B2 (en) 1995-09-20 1995-09-20 Water sealing device

Publications (2)

Publication Number Publication Date
JPH0979383A JPH0979383A (en) 1997-03-25
JP3552809B2 true JP3552809B2 (en) 2004-08-11

Family

ID=17071591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24125995A Expired - Fee Related JP3552809B2 (en) 1995-09-20 1995-09-20 Water sealing device

Country Status (1)

Country Link
JP (1) JP3552809B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110748663A (en) * 2019-10-22 2020-02-04 山东中车华腾环保科技有限公司 Vacuum transfer type excrement collection anti-reverse-spraying control valve, excrement collection system and anti-reverse-spraying method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5084590B2 (en) * 2008-04-15 2012-11-28 日本車輌製造株式会社 Water seal device
CN106932189B (en) * 2017-04-01 2023-04-18 山西泫氏实业集团有限公司 Method and system for measuring dynamic water seal loss of water seal device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110748663A (en) * 2019-10-22 2020-02-04 山东中车华腾环保科技有限公司 Vacuum transfer type excrement collection anti-reverse-spraying control valve, excrement collection system and anti-reverse-spraying method

Also Published As

Publication number Publication date
JPH0979383A (en) 1997-03-25

Similar Documents

Publication Publication Date Title
JPH09264364A (en) Hydraulic buffer
JP2003521646A (en) Shock absorber with high dissipation power
JP3552809B2 (en) Water sealing device
WO2003008913A1 (en) Equipment for measuring gas flow rate
CN104787126A (en) Sealing structure of shunt and inflation type passenger car luggage compartment door
JPS609094Y2 (en) Reservoir with liquid level alarm device
US20180017130A1 (en) Hydraulic powertrain mount with dual low frequency inertia tracks and decoupling membrane with synchronous switching mechanization
US4528251A (en) Differential-pressure control device for a fuel cell
JP3491383B2 (en) Water sealing device
JPS62248900A (en) Water sealing device
JP2593317B2 (en) Air valve for sewage
SE417588B (en) DEVICE FOR THE EQUIPMENT AND MONITORING OF PRESSURE IN ATMINSTONE TWO PRESSURE CHAMBER, SPECIAL IN AIR CIRCUITS OF A VEHICLE
JP2562504Y2 (en) Water sealing device
JPS59136265A (en) Liquid supplier
JPH061107B2 (en) Water seal device
JPS6329970Y2 (en)
EP1236625A4 (en) Hybrid inflator
CN217462374U (en) Liquid accumulator and valve for fuel tank
CN202075391U (en) Load cylinder
CN221072849U (en) Waterproof hammer diaphragm type expansion tank
JPS62242147A (en) Fluid suspension device
JP3331422B2 (en) Drain valve for air conditioner of railway vehicle
JPH062731A (en) Buffer
JP4427427B2 (en) Flexible membrane undulation weir
JP2002303301A (en) Gas reservoir for liquid tank

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees