JPH0345229B2 - - Google Patents

Info

Publication number
JPH0345229B2
JPH0345229B2 JP58211816A JP21181683A JPH0345229B2 JP H0345229 B2 JPH0345229 B2 JP H0345229B2 JP 58211816 A JP58211816 A JP 58211816A JP 21181683 A JP21181683 A JP 21181683A JP H0345229 B2 JPH0345229 B2 JP H0345229B2
Authority
JP
Japan
Prior art keywords
amount
recirculation
target
exhaust gas
egr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58211816A
Other languages
Japanese (ja)
Other versions
JPS60104755A (en
Inventor
Hideki Shimomura
Takayoshi Nishimori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Matsuda KK
Original Assignee
Matsuda KK
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda KK, Nippon Electric Co Ltd filed Critical Matsuda KK
Priority to JP58211816A priority Critical patent/JPS60104755A/en
Publication of JPS60104755A publication Critical patent/JPS60104755A/en
Publication of JPH0345229B2 publication Critical patent/JPH0345229B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0077Control of the EGR valve or actuator, e.g. duty cycle, closed loop control of position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はエンジンのEGR制御装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an EGR control device for an engine.

〔従来技術〕[Prior art]

一般にエンジンのEGR制御装置は、排気ガス
の一部を吸気側に還流させることによつてエンジ
ンの燃焼温度を下げ、排気ガス中のNOxを低減
させるものである。このように、エンジンの
EGR制御は燃料の供給系と密接に係つているた
め、排気ガスの上記還流量はエンジンの動作状態
に応じ精度よく、而も迅速に制御されねばならな
い。
Generally, an engine EGR control device lowers the combustion temperature of the engine by recirculating a portion of the exhaust gas to the intake side, thereby reducing NOx in the exhaust gas. In this way, the engine
Since EGR control is closely related to the fuel supply system, the amount of recirculation of exhaust gas must be controlled accurately and quickly according to the operating state of the engine.

しかしながら、排気ガスの上記還流量を変化さ
せることは必然的にエンジンの発生するトルクを
変動させることになり、殊に排気ガスの上記目標
還流量が零である状態(以下、EGR−OFFとい
う)と上記目標還流量が零と異なる状態(以下、
EGR−ONという)のいずれか一方の状態から他
方の状態に移行させるとき、排気ガスの上記還流
量を大きく而も短時間に変動させると大きなトル
ク変動を発生させることになり、とりわけ、
EGR−OFFからEGR−ONへの移行を上述のよ
うに行なうと、短時間の内に大量の排気ガスが還
流して混合気の吸入が阻害され、大量の排気ガス
がシリンダーに吸入されて極めて大きなトルク変
動が生じるが、従来のエンジンのEGR制御装置
においては、上述の過渡状態について十分な配慮
がされておらず、従つてEGR−ONからEGR−
OFF又はEGR−OFFからEGR−ONへの過渡時、
目標還流量の変化が大きいような場合には大きな
シヨツクが発生するという問題点があつた。
However, changing the above-mentioned recirculation amount of exhaust gas inevitably changes the torque generated by the engine, especially when the above-mentioned target recirculation amount of exhaust gas is zero (hereinafter referred to as EGR-OFF). and the above target reflux amount is different from zero (hereinafter referred to as
When transitioning from one state (referred to as EGR-ON) to the other state, if the above-mentioned recirculation amount of exhaust gas is varied greatly and in a short period of time, large torque fluctuations will occur.
If the transition from EGR-OFF to EGR-ON is performed as described above, a large amount of exhaust gas will recirculate within a short period of time, inhibiting the intake of the air-fuel mixture, and a large amount of exhaust gas will be sucked into the cylinder, resulting in an extremely large amount of exhaust gas. Large torque fluctuations occur, but in conventional engine EGR control systems, sufficient consideration has not been given to the above-mentioned transient state, and therefore the EGR-ON to EGR-ON
During transition from OFF or EGR-OFF to EGR-ON,
There was a problem in that a large shock occurred when the change in the target recirculation amount was large.

〔発明の目的〕[Purpose of the invention]

この発明は、かかる従来の問題点に鑑み、
EGR−ONからEGR−OFF又はEGR−OFFから
EGR−ONへの過渡時においてもシヨツクの少な
いエンジンのEGR制御装置を提供せんとするも
のである。
In view of such conventional problems, this invention
From EGR-ON to EGR-OFF or from EGR-OFF
It is an object of the present invention to provide an engine EGR control device that causes less shock even during transition to EGR-ON.

〔発明の構成〕[Structure of the invention]

そこでこの発明は、第1図の機能ブロツク図に
示すように、エンジンのEGR制御装置において、
目標還流量算定手段31によつて算定されたエン
ジンの動作状態に応じた排気ガスの目標還流量
と、還流量検出手段9によつて検出された排気ガ
スの還流量とに基づいて、制御手段32は操作量
を算定し上記還流量が上記目標還流量となるよう
上記操作量でもつて排気ガス還流調整手段33を
駆動するとともに、上記目標還流量と上記還流量
の偏差に応じて該偏差が大きければ大きい程より
緩慢に上記還流量が上記目標還流量に近づくよう
駆動するようにしたものである。
Therefore, as shown in the functional block diagram of FIG. 1, the present invention provides an engine EGR control system that
Based on the target recirculation amount of exhaust gas according to the operating state of the engine calculated by the target recirculation amount calculation means 31 and the recirculation amount of exhaust gas detected by the recirculation amount detection means 9, the control means 32 calculates a manipulated variable and drives the exhaust gas recirculation adjusting means 33 with the manipulated variable so that the recirculation amount becomes the target recirculation amount, and also adjusts the deviation according to the deviation between the target recirculation amount and the recirculation amount. The larger the amount, the more slowly the recirculation amount is driven to approach the target recirculation amount.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

第2図は本発明の一実施例によるエンジンの
EGR制御装置を示す。図において1はエンジン
で、該エンジン1の排気通路3には排気ガスを還
流させるための還流通路4が介設されており、該
還流通路4には通路面積を調整するための調整弁
5が配設されている。この調整弁5にはそれを駆
動するダイヤフラム装置6を設けられ、該ダイヤ
フラム装置6にはその負圧室と吸気通路2とを連
通する負圧導入通路7が設けられ、該負圧導入通
路7の途中には負圧の導入と大気圧との導入とを
切換える三方弁8が介設されている。また上記ダ
イヤフラム装置6には調整弁5の位置を検出する
ためのポジシヨンセンサー9が配設されている。
FIG. 2 shows an engine according to an embodiment of the present invention.
Shows EGR control device. In the figure, 1 is an engine, and an exhaust passage 3 of the engine 1 is provided with a recirculation passage 4 for recirculating exhaust gas, and the recirculation passage 4 is provided with an adjustment valve 5 for adjusting the area of the passage. It is arranged. The regulating valve 5 is provided with a diaphragm device 6 for driving it, and the diaphragm device 6 is provided with a negative pressure introduction passage 7 that communicates the negative pressure chamber with the intake passage 2. A three-way valve 8 that switches between introducing negative pressure and introducing atmospheric pressure is interposed in the middle. Further, the diaphragm device 6 is provided with a position sensor 9 for detecting the position of the regulating valve 5.

図中、10は吸気通路2の負圧を検出する負圧
センサーで、11は冷却水の温度を検出する水温
センサーで、12はクランクシヤフトの回転角を
検出するクランク角センサーで、13はギヤが
TOP位置に操作されたとき“1”となるトツプ
位置信号である。
In the figure, 10 is a negative pressure sensor that detects the negative pressure in the intake passage 2, 11 is a water temperature sensor that detects the temperature of cooling water, 12 is a crank angle sensor that detects the rotation angle of the crankshaft, and 13 is a gear but
This is a top position signal that becomes "1" when operated to the TOP position.

さらに14は、入出力インターフエイス15、
CPU16、メモリ17によつて構成されたコン
トロールユニツトであり、上記メモリ17には
CPU16の演算処理プログラムの他にエンジン
の動作状態に応じた排気ガスの上記目標還流量の
マツプ、EGR−ONからEGR−OFF又はEGR−
OFFからEGR−ONへの過渡時に上記還流量を上
記目標還流量に緩慢に近づける場合の緩慢さを定
めるデータ等が格納されている。また上記CPU
16は上記各センサー及びスイツチ信号9,1
0,11,12,13の出力を入出力インターフ
エイス15を介して読み込み、これらの情報を受
けエンジンの動作状態に応じた上記目標還流量を
求めるとともに、EGR−ONかEGR−OFFかの
EGRモードを設定し、該EGRモードの移行時で
なければ上記目標還流量と上記還流量とに基づい
て上記還流量が上記目標還流量となるよう操作量
を算定するが、上記EGRモードの移行時には上
記目標還流量と上記還流量と偏差に応じて該偏差
が大きければ大きい程より緩慢に上記還流量が上
記目標還流量のなるよう操作量を算定し、いずれ
の場合も上記操作量に応じた制御信号をインター
フエイス15を介して上記三方弁8に加え、フイ
ードバツク制御を行なうものである。
Furthermore, 14 is an input/output interface 15,
It is a control unit composed of a CPU 16 and a memory 17, and the memory 17 includes
In addition to the arithmetic processing program of the CPU 16, a map of the above target recirculation amount of exhaust gas according to the operating state of the engine, from EGR-ON to EGR-OFF or EGR-
Data and the like are stored that determine how slowly the recirculation amount is brought closer to the target recirculation amount during the transition from OFF to EGR-ON. Also the above CPU
16 is each sensor and switch signal 9,1 mentioned above.
The outputs of 0, 11, 12, and 13 are read through the input/output interface 15, and based on this information, the target recirculation amount is determined according to the operating state of the engine, and whether EGR-ON or EGR-OFF is selected.
The EGR mode is set, and if the EGR mode is not in transition, the operation amount is calculated based on the target recirculation amount and the recirculation amount so that the recirculation amount becomes the target recirculation amount. Sometimes, depending on the deviation between the target reflux amount and the reflux amount, the larger the deviation, the more slowly the operation amount is calculated so that the reflux amount becomes the target reflux amount. A control signal is applied to the three-way valve 8 via the interface 15 to perform feedback control.

なお以上のような構成において、CPU16が
第1図の目標還流量算定手段31及び制御手段3
2の機能を実現するものであり、また還流通路
4、調整弁5、ダイヤフラム装置6、負圧導入通
路7及び三方弁8が第1図の排気ガス還流調整手
段33を構成しており、さらに、ポジシヨンセン
サー9が第1図の還流量検出手段となつている。
In addition, in the above configuration, the CPU 16 functions as the target recirculation amount calculation means 31 and the control means 3 shown in FIG.
The recirculation passage 4, the regulating valve 5, the diaphragm device 6, the negative pressure introduction passage 7, and the three-way valve 8 constitute the exhaust gas recirculation adjustment means 33 shown in FIG. , the position sensor 9 serves as the reflux amount detection means shown in FIG.

なお、本実施例では、第2図より明かなように
三方弁8を制御することによつてダイヤフラム装
置6の負圧室の圧力を制御し、調整弁5を動かす
ことによつて還流通路4の断面積を変化させて排
気ガスの還流量を調整するようになつており、調
整弁5と連動して動くポジシヨンセンサー9によ
つて上記調整弁5の位置(以下リフト位置とい
う)を検出し間接的に排気ガス上記還流量を検出
するような構成となつている。したがつて本実施
例においては、上記還流量は調整弁5のリフト位
置として与えられ、また上記目標還流量は調整弁
5が目標とすべき位置(以下目標リフト位置とい
う)として与えられ、メモリ17の上記目標還流
量のマツプには上記の目標リフト位置のデータが
設定されている。
In this embodiment, as is clear from FIG. 2, the pressure in the negative pressure chamber of the diaphragm device 6 is controlled by controlling the three-way valve 8, and the pressure in the reflux passage 4 is The recirculation amount of exhaust gas is adjusted by changing the cross-sectional area of the regulator valve 5, and the position of the regulator valve 5 (hereinafter referred to as lift position) is detected by a position sensor 9 that moves in conjunction with the regulator valve 5. The exhaust gas recirculation amount is indirectly detected. Therefore, in this embodiment, the recirculation amount is given as the lift position of the regulating valve 5, and the target recirculation amount is given as the position to which the regulating valve 5 should aim (hereinafter referred to as the target lift position), and is stored in the memory. The data of the target lift position is set in the target recirculation amount map No. 17.

次に第3図及び第4図を用いて動作を詳細に説
明する。ここで第3図は上記CPU16のEGR制
御のフローチヤーである。
Next, the operation will be explained in detail using FIGS. 3 and 4. Here, FIG. 3 is a flowchart of EGR control by the CPU 16.

CPU16は、まず該CPU16内のレジスタ等
を初期化(ステツプ18)したのち、入力情報であ
る各センサ及びスイツチ信号9〜13をインター
フエイス15を介して読み込み(ステツプ19)、
入力情報に基づいてエンジンの動作状態に応じた
目標還流量を与える目標リフト位置Poをメモリ
17より読み込む(ステツプ20)。ステツプ21
では、上記目標リフト位置Poが0か0でないか
によつてそれぞれEGR−OFFかEGR−ONかの
EGRモードを設定し、前回設定されたEGRモー
ドと今回設定されたEGRモードを比較してEGR
モードが移行したかを判定し(ステツプ22)、
EGRモードの移行がなければ何もせずステツプ
24に進むが、移行があると係数αを0に初期化す
る(ステツプ23)。ステツプ24では上記目標リフ
ト位置Poとステツプ19で読み込まれたリフト位
置Pの差|Po−P|に基いてメモリ17から
EGRモードの移行時の緩慢さの程度を定める係
数αの増分Δαを読み込み(ステツプ24)、該増分
Δαを加算することによつて係数αを更新し(ス
テツプ25)、係数αをΔαだけ増大させたことによ
り係数αが1、0を越えたかどうかが判定され
(ステツプ26)、係数αが1、0を越えてなければ
何もせずステツプ28に進むが、1、0を越えてお
れば係数αを1、0とする(ステツプ27)。ステ
ツプ28では、 Po′(k)=αPo(k)+(1−α)Po′(k−1) −(1) で与えられる差分方程式に従つて仮の目標リフト
位置Po′を更新し(ステツプ28)、この仮の目標
リフト位置Po′とリフト位置Pの差に基づいて操
作量MAを算出し(ステツプ29)、該操作量MA
に応じた制御信号をインターフエイス15を介し
て三方弁8に出力し(ステツプ30)、ステツプ19
に戻る。
The CPU 16 first initializes the registers in the CPU 16 (step 18), and then reads each sensor and switch signal 9 to 13 as input information via the interface 15 (step 19).
Based on the input information, a target lift position Po that provides a target recirculation amount according to the operating state of the engine is read from the memory 17 (step 20). Step 21
Then, depending on whether the above target lift position Po is 0 or not, EGR-OFF or EGR-ON is selected.
Set the EGR mode, compare the EGR mode set last time and the EGR mode set this time, and check the EGR
Determine whether the mode has changed (step 22),
If there is no transition to EGR mode, do nothing and proceed to step
The process proceeds to step 24, but if there is a transition, the coefficient α is initialized to 0 (step 23). In step 24, the target lift position Po and the lift position P read in step 19 are calculated from the memory 17 based on the difference |Po−P|
Read the increment Δα of the coefficient α that determines the degree of slowness when transitioning to EGR mode (step 24), update the coefficient α by adding the increment Δα (step 25), and increase the coefficient α by Δα. As a result, it is determined whether the coefficient α exceeds 1 or 0 (step 26). If the coefficient α does not exceed 1 or 0, nothing is done and the process proceeds to step 28, but if it exceeds 1 or 0, the process proceeds to step 28. The coefficient α is set to 1 and 0 (step 27). In step 28, the temporary target lift position Po' is updated according to the difference equation given by Po'(k)=αPo(k)+(1-α)Po'(k-1)-(1). Step 28), calculates the operation amount MA based on the difference between this temporary target lift position Po' and the lift position P (Step 29), and calculates the operation amount MA.
A corresponding control signal is output to the three-way valve 8 via the interface 15 (step 30), and step 19
Return to

以上の手順によれば、EGRモードが変化して
所定の時間が経過した後では、つまり過渡状態で
なければ、上記係数αは1、0となつており(1)式
によつて算出される仮の目標リフト位置Po′はエ
ンジンの動作状態に応じて算定される真の目標リ
フト位置Poに一致しているので排気ガスの還流
量を与える上記リフト位置Pは排気ガスの目標還
流量を与える目標リフト位置Poとなるよう制御
されているが、EGRモードが変化した場合は変
化した時点で上記係数αが0に設定されるのでこ
の係数αが逐次増され1、0となるまでは(1)式に
よつて算出される仮の目標リフト位置Po′は真の
目標リフト位置Poとは一致せずこの間上記リフ
ト位置Pは真の目標リフト位置Poとは異なる仮
の目標リフト位置Po′となるよう制御されるので
排気ガスの上記還流量は上記目標還流量とはなら
ないが上記係数αが1、0に近づくにつれ上記還
流量は上記目標還流量に近づくこととなる。而
も、上記係数αの増分Δαは第4図に示されるよ
うに、偏差|Po−P|が大きくなるにしたがつ
て小さな増分となるよう設定されているので、
EGRモードが変化した過渡状態で上記偏差|Po
−P|が大きければ大きい程より緩慢に上記還流
量が上記目標流量に近づくことになる。
According to the above procedure, after the EGR mode changes and a predetermined time has elapsed, that is, if there is no transient state, the coefficient α becomes 1 and 0, and is calculated by equation (1). Since the tentative target lift position Po' matches the true target lift position Po calculated according to the operating state of the engine, the above lift position P, which gives the amount of recirculation of exhaust gas, gives the target amount of recirculation of exhaust gas. It is controlled to be the target lift position Po, but if the EGR mode changes, the coefficient α is set to 0 at the time of the change, so this coefficient α is successively increased until it reaches 1 and then 0 (1 ) The temporary target lift position Po′ calculated by the formula does not match the true target lift position Po. During this time, the above lift position P is a temporary target lift position Po′ that is different from the true target lift position Po. Therefore, the recirculation amount of exhaust gas does not become the target recirculation amount, but as the coefficient α approaches 1 or 0, the recirculation amount approaches the target recirculation amount. However, as shown in FIG. 4, the increment Δα of the coefficient α is set to become smaller as the deviation |Po−P| becomes larger.
The above deviation in the transient state where the EGR mode has changed|Po
The larger −P| is, the more slowly the recirculation amount approaches the target flow rate.

以上のような本実施例の装置では、EGRモー
ドの変化時、排気ガスの還流量と目標還流量の偏
差が大きければ大きい程より緩慢に還流量を目標
還流量に近づけるようにしたので、EGRモード
の変化時のエンジンのトルク変動によるシヨツク
を最少限にくい止めることができる。
In the device of this embodiment as described above, when changing the EGR mode, the larger the deviation between the exhaust gas recirculation amount and the target recirculation amount, the more slowly the recirculation amount approaches the target recirculation amount. Shocks caused by engine torque fluctuations when changing modes can be minimized.

なおこれまでに述べた本発明による制御は目標
還流量と実還流量との偏差が比較的大きい場合に
優れた効果を発揮するものであるので、上記偏差
が所定値以上の場合にのみ適用しても良い。
The control according to the present invention described above is effective when the deviation between the target reflux amount and the actual reflux amount is relatively large, so it should be applied only when the deviation is greater than a predetermined value. It's okay.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、EGR制御装置
において、排気ガスの還流量の目標還流量に対す
る偏差が大きければ大きい程より緩慢に還流量を
目標還流量に近づけるようにしたので、上記目標
還流量の変化が大きいときのエンジンのトルク変
動によるシヨツクを最少に抑える効果がある。
As described above, according to the present invention, in the EGR control device, the larger the deviation of the exhaust gas recirculation amount from the target recirculation amount, the more slowly the recirculation amount approaches the target recirculation amount. This has the effect of minimizing shocks caused by engine torque fluctuations when there is a large change in flow rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示す機能ブロツク図、
第2図は本発明の一実施例によるエンジンの
EGR制御装置の構成図、第3図は上記装置にお
けるCPU16の演算処理のフローチヤート、第
4図は上記装置におけるEGRモード変化時の応
答の緩慢さの特性を示す図である。 1……エンジン、9……還流量検出手段、31
……目標還流量算定手段、32……制御手段、3
3……排気ガス還流調整手段、16……CPU。
FIG. 1 is a functional block diagram showing the configuration of the present invention.
FIG. 2 shows an engine according to an embodiment of the present invention.
FIG. 3 is a block diagram of the EGR control device, FIG. 3 is a flowchart of arithmetic processing by the CPU 16 in the device, and FIG. 4 is a diagram showing the slowness of response when changing the EGR mode in the device. 1... Engine, 9... Reflux amount detection means, 31
...Target reflux amount calculation means, 32...Control means, 3
3...Exhaust gas recirculation adjustment means, 16...CPU.

Claims (1)

【特許請求の範囲】[Claims] 1 排気ガスの還流量を調整する排気ガス還流調
整手段と、エンジンの動作状態に応じて排気ガス
の還流量を算定する目標還流量算定手段と、排気
ガスの還流量を検出する還流量検出手段と、該還
流量検出手段によつて検出された実還流量が上記
目標還流量算定手段によつて算定された目標還流
量となるよう操作量を算定し該操作量でもつて上
記排気ガス還流調整手段を駆動する制御手段とを
有するEGR制御装置において、上記目標還流量
が変化した際には上記目標還流量と上記実還流量
の偏差に応じて該偏差が大きければ大きい程より
小さい時間当たりの変化量で上記実還流量の上記
目標還流量へ近付ける変化を開始させ、その後上
記時間当たりの変化量を徐々に大きくさせること
を特徴とするエンジンのEGR制御装置。
1 Exhaust gas recirculation adjustment means for adjusting the amount of exhaust gas recirculation, target recirculation amount calculation means for calculating the amount of recirculation of exhaust gas according to the operating state of the engine, and recirculation amount detection means for detecting the amount of recirculation of exhaust gas. Then, a manipulated variable is calculated so that the actual recirculation amount detected by the recirculation amount detection means becomes the target recirculation amount calculated by the target recirculation amount calculation means, and the exhaust gas recirculation adjustment is performed using the manipulated variable. In an EGR control device having a control means for driving a device, when the target reflux amount changes, the larger the deviation, the smaller the amount per time, depending on the deviation between the target reflux amount and the actual reflux amount. An EGR control device for an engine, characterized in that the amount of change starts changing the actual recirculation amount to approach the target recirculation amount, and then gradually increases the amount of change per time.
JP58211816A 1983-11-11 1983-11-11 Egr controller for engine Granted JPS60104755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58211816A JPS60104755A (en) 1983-11-11 1983-11-11 Egr controller for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58211816A JPS60104755A (en) 1983-11-11 1983-11-11 Egr controller for engine

Publications (2)

Publication Number Publication Date
JPS60104755A JPS60104755A (en) 1985-06-10
JPH0345229B2 true JPH0345229B2 (en) 1991-07-10

Family

ID=16612067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58211816A Granted JPS60104755A (en) 1983-11-11 1983-11-11 Egr controller for engine

Country Status (1)

Country Link
JP (1) JPS60104755A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62247165A (en) * 1986-04-18 1987-10-28 Mitsubishi Motors Corp Exhaust gas recirculation controller for engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025936A (en) * 1973-03-29 1975-03-18
JPS5593950A (en) * 1979-01-05 1980-07-16 Toyota Motor Corp Control method of recirculation of exhaust gas in internal combustion engine
JPS578344A (en) * 1980-06-20 1982-01-16 Hitachi Ltd Exhaust gas recirculating device for diesel engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025936A (en) * 1973-03-29 1975-03-18
JPS5593950A (en) * 1979-01-05 1980-07-16 Toyota Motor Corp Control method of recirculation of exhaust gas in internal combustion engine
JPS578344A (en) * 1980-06-20 1982-01-16 Hitachi Ltd Exhaust gas recirculating device for diesel engine

Also Published As

Publication number Publication date
JPS60104755A (en) 1985-06-10

Similar Documents

Publication Publication Date Title
US4530333A (en) Automobile fuel control system
JPH0452384B2 (en)
JPH0345229B2 (en)
JPH0313416B2 (en)
JPH0214535B2 (en)
JPS6231181B2 (en)
JPH0777092A (en) Method and device for controlling air-fuel ratio of internal combustion engine
JPH0230949A (en) Duty solenoid control device
JPH0689682B2 (en) Air-fuel ratio controller
JP2832296B2 (en) Duty solenoid control device
KR100305818B1 (en) Device and method for compensating air amount by air temperature
JP2832295B2 (en) Duty solenoid control device
JPS5853653A (en) Speed controller of internal-combustion engine
JPS62237025A (en) Cooling water controller for engine
JPS6179839A (en) Idle rotational speed control device in engine
JPS5949341A (en) Electric control device for diesel engine
JPH0641744B2 (en) Exhaust gas recirculation control device for internal combustion engine
JPH02275055A (en) Exhaust gas recirculation controller for engine
JP2692422B2 (en) Idle speed control device for internal combustion engine
JP2527321Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPS63124867A (en) Control device for engine
JPS6131650A (en) Engine exhaust gas recirculating device
JP2561832B2 (en) Engine idle speed controller
JPS63239352A (en) Exhaust reflux controller for internal combustion engine
JPS60219445A (en) Egr controller for diesel engine