JPH034517A - Vapor growth method - Google Patents

Vapor growth method

Info

Publication number
JPH034517A
JPH034517A JP13746189A JP13746189A JPH034517A JP H034517 A JPH034517 A JP H034517A JP 13746189 A JP13746189 A JP 13746189A JP 13746189 A JP13746189 A JP 13746189A JP H034517 A JPH034517 A JP H034517A
Authority
JP
Japan
Prior art keywords
group
iii
growth
ratio
iii ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13746189A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kushibe
光弘 櫛部
Masahisa Funamizu
船水 将久
Kazuhiro Eguchi
和弘 江口
Yasuo Oba
康夫 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13746189A priority Critical patent/JPH034517A/en
Priority to EP90303352A priority patent/EP0390552B1/en
Priority to DE69024246T priority patent/DE69024246T2/en
Priority to US07/501,781 priority patent/US5168077A/en
Publication of JPH034517A publication Critical patent/JPH034517A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce both quantity of consumption of a virulently positions V hydrogen compound and the quantity of deposition of a harmful V oxide and group V element, and to make it possible to grow a crystal of very high quality by a method wherein a V/III ratio is made very small, and the utilization efficiency of the group V element is enhanced. CONSTITUTION:A P-type AlGaAs layer 102 and an N-type AlGaAs layer 103 are laminated and epitaxially growth on a P-type GaAs substrate 101. Concretely, in an AlGaAs organic metal vapor growth method. A V/III ratio region, wherein a mirror surface is grown between a first V/III ratio region, where non-mirror surface growth is generated at the ratio of V-group element supply quantity and III-group element supply quantity, namely, V/III ratio which is smaller than ratio I and also containing an alkyl compound having a methyl radical as raw material of III group organic metal, and a second V/III ratio region generating a non-mirror surface growth at the V/III ratio larger than ratio 1, is provided, and an epitaxial growth is conducted. As a result, crystal can be grown under a condition wherein the surface morphology is formed into a perfect mirror surface, and high density carbon can also be added.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は■−v族化合物半導体の有機金属気相成長方法
に係わり、特に高濃度のp型不純物を含む■−v族化合
物半導体の有機金属気相成長方法に係わる。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to an organic metal vapor phase growth method for ■-v group compound semiconductors, and particularly relates to a ■-v group compound semiconductor containing a high concentration of p-type impurities. This invention relates to metal-organic vapor phase growth methods for group compound semiconductors.

(従来の技術) 従来の有機金属気相成長法においてはV族元素原料と■
族元素原料の供給比(以後V/III比と呼ぶ)を小さ
くすると表面モフォロジーの劣化と成長速度の低下が同
時に生じるのでV/III比を表面モフォロジーの劣化
が生じるよりも十分大きくとるのが通常であった。この
ため■族宵機金属供給量に比べてV放水素化物の供給量
が多く、その利用効率が極めて悪かった。V放水素化物
の利用効率を上げるためにV放水素化物の熱分解を行な
う方法があった。この方法では良質の■−v族化合物半
導体をエピタキシャル成長できず実用的ではなかった。
(Conventional technology) In the conventional organometallic vapor phase epitaxy method, group V element raw materials and ■
If the supply ratio of group element raw materials (hereinafter referred to as the V/III ratio) is reduced, the surface morphology deteriorates and the growth rate decreases at the same time, so it is normal to set the V/III ratio to be sufficiently larger than the surface morphology deterioration. Met. For this reason, the amount of V hydrogen hydride supplied was larger than the amount of metal supplied, and its utilization efficiency was extremely poor. In order to increase the utilization efficiency of the V-hydrogenide, there has been a method of thermally decomposing the V-hydrogenide. This method was not practical as it was not possible to epitaxially grow a high quality ■-v group compound semiconductor.

また■−v族化合物半導体のp型不純物としては、亜鉛
(以後Znと表記する)やマグネシウム(以後Mgと表
記する)やベリリウム(以後Beと表記する)が一般的
である。−このうちZnやMgは蒸気圧や拡散係数が大
きく高濃度に制御性良く急峻な濃度プロファイルをつけ
て添加することは難しかった。また、Beは猛毒であり
、有機金属気相成長法では取扱が難しい。従来の有機金
属気相成長法ではV/III比を小さくするにつれてカ
ーボンの取り込まれ量が増大しp型のキャリア濃度が増
大することは知られていた。しかしV/■比を小さくす
ると表面モフオロジーが劣化して、良質なエピタキシャ
ル層に高濃度にカーボンを添加することはできなかった
。近年、高真空下で■族元素のアルキル化物と、V族分
子元素ないしV族元素の水素化物を熱分解したV族原子
あるいは分子のビームを用いてエピタキシャル結晶成長
を行なう化学ビームエピタキシャル法により、カーボン
の添加が可能になった。しかしこの方法では結晶成長の
装置がきわめて複雑・高価であり、装置内真空度の維持
に多大の労力・費用が必要であり実用的ではなかった。
Further, as the p-type impurity of the ■-v group compound semiconductor, zinc (hereinafter referred to as Zn), magnesium (hereinafter referred to as Mg), and beryllium (hereinafter referred to as Be) are generally used. - Among these, Zn and Mg have large vapor pressures and diffusion coefficients, and it has been difficult to add them at high concentrations with good controllability and a steep concentration profile. In addition, Be is highly toxic and difficult to handle using organometallic vapor phase epitaxy. It has been known that in conventional organometallic vapor phase epitaxy, as the V/III ratio is decreased, the amount of carbon incorporated increases and the p-type carrier concentration increases. However, when the V/■ ratio is reduced, the surface morphology deteriorates, making it impossible to add carbon at a high concentration to a good quality epitaxial layer. In recent years, a chemical beam epitaxial method has been developed in which epitaxial crystal growth is performed using a beam of group V atoms or molecules obtained by thermally decomposing an alkylated compound of a group Ⅰ element, a group V molecular element, or a hydride of a group V element under high vacuum. Addition of carbon is now possible. However, in this method, the crystal growth equipment is extremely complicated and expensive, and maintaining the vacuum level inside the equipment requires a great deal of labor and expense, making it impractical.

近年を機金属気相成長法においてV族元素のアルキル化
物を用いてカーボンをp型不純物として添加する試みが
なされている。しかしこの場合には、表面モフオロジー
の良好な結晶が得られず、実用的でなかった。
In recent years, attempts have been made to add carbon as a p-type impurity using alkylated compounds of group V elements in metallurgical vapor phase epitaxy. However, in this case, a crystal with good surface morphology could not be obtained, making it impractical.

(発明が解決しようとする課題) 前述のように有機金属気相成長法においてはV族原料ガ
スの利用効率が悪いという問題があった。このため人体
に対して有害な、大量の、■族水素化物を含む気相成長
後の洗気ガスの無害化に多大の費用が必要であった。
(Problems to be Solved by the Invention) As mentioned above, the organometallic vapor phase epitaxy method has a problem in that the utilization efficiency of group V source gas is poor. For this reason, a great deal of expense is required to render harmless the cleaning gas after vapor phase growth, which contains a large amount of group (I) hydrides that are harmful to the human body.

また高濃度のp型不純物を拡散なく添加しようとすると
猛毒のBeを使用せねばならず実用的でない、あるいは
化学ビームエピタキシャル法によらねばならず装置が高
価で維持が難しく実用的でない、あるいはV族元素のア
ルキル化物を用いると良好な結晶成長ができないという
問題があった。
Furthermore, if you try to add a high concentration of p-type impurity without diffusion, you will have to use extremely toxic Be, which is impractical, or you will have to use chemical beam epitaxial method, which requires equipment that is expensive and difficult to maintain, or impractical. There is a problem in that when alkylated compounds of group elements are used, good crystal growth cannot be achieved.

本発明は上記課題を考慮してなされたもので、その目的
とするところは、V族原料ガスの使用量を抑制し、また
p型不純物として高濃度にカーボンを添加可能である実
用的気相成長方法を提出することにある。
The present invention has been made in consideration of the above-mentioned problems, and its purpose is to suppress the amount of Group V raw material gas used and to create a practical gas phase in which it is possible to add carbon at a high concentration as a p-type impurity. The purpose is to present a method of growth.

[発明の構成コ (課題を解決するための手段) 従来、有機金属気相成長法ではV/III比の小さい表
面モフォロジーの劣化する成長条件があるとV/III
比を小さくすればする程表面モフオロジーが劣化すると
考えられていた。しかし鋭意研究の結果、有機金属がメ
チル基を含む場合、V/III比の小さい表面モフオロ
ジーが劣化する成長条件の中に局所的に、完全鏡面の結
晶成長が可能な結晶成長条件が存在することを見いだし
た。本発明の気相成長法は、このV/Iff比の小さい
限られた条件下で気相成長を行なうものである。V/I
II比が極めて小さな条件の下で結晶成長を行なってい
るので、ガリウムヒソ及びアルミニウムガリウムヒV 
(AI  Ga   As : O<X<1)を成長X
      1−xすると極めて高濃度にカーボンを添
加できる。
[Structure of the Invention (Means for Solving the Problems) Conventionally, in organometallic vapor phase epitaxy, if there is a growth condition where the V/III ratio is small and the surface morphology deteriorates, the V/III
It was thought that the smaller the ratio, the worse the surface morphology. However, as a result of extensive research, we have found that when the organometallic contains a methyl group, there are local crystal growth conditions that allow perfect mirror crystal growth under growth conditions where the surface morphology with a small V/III ratio deteriorates. I found it. The vapor phase growth method of the present invention performs vapor phase growth under limited conditions where the V/Iff ratio is small. V/I
Since crystal growth is carried out under conditions where the II ratio is extremely small, gallium hysterol and aluminum gallium hysterol V
(AI Ga As: O<X<1)
1-x, carbon can be added at an extremely high concentration.

すなわち、ガリウムヒソ及びアルミニウムガリウムヒソ
の有機金属気相成長方法において、■族有機金属の原料
としてメチル基を有するアルキル化物を含み、V族元素
供給量と■族元素供給量の比(V/III比)を、1よ
りも小さなV/III比で非鏡面成長を生じる第一のV
/III比領域と、1よりも大きなV/III比で非鏡
面成長を生じる第二の■/■比領域の間の、鏡面成長が
起こるV/III比領域に股領域て、エピタキシャル成
長するものである。
That is, in the organometallic vapor phase growth method of gallium hisso and aluminum gallium hisso, an alkylated product having a methyl group is included as a raw material for the group (III) organometal, and the ratio of the supply amount of the group V element to the supply amount of the group (■) (V/III ratio) ) is the first V that produces non-specular growth with a V/III ratio smaller than 1
Epitaxial growth is performed in the crotch region in the V/III ratio region where mirror growth occurs between the /III ratio region and the second ■/■ ratio region where non-specular growth occurs at a V/III ratio greater than 1. be.

(作  用) 本発明によればV/III比のきわめて小さい条件下で
結晶成長を行なうのでV族水素化物の利用効率が極めて
高い。また表面モフォロジーが完全鏡面化する条件下で
結晶成長を行なっているので、きわめて良質の結晶がで
きる。
(Function) According to the present invention, since crystal growth is performed under conditions where the V/III ratio is extremely small, the utilization efficiency of group V hydrides is extremely high. In addition, since crystal growth is performed under conditions where the surface morphology becomes completely mirror-like, extremely high-quality crystals can be produced.

V/III比極めて小さな条件の下で結晶成長を行なっ
ているので、アルミニウムガリウムヒソ(AI  Ga
   As : 0<X<1)を成長とすx   l−
x ると極めて高濃度にカーボンを添加できる。カーボンは
拡散係数が小さく、活性化率が高いので、極めて制御性
良く高濃度にpm不純物を添加でき、しかも、極めて急
峻なキャリア濃度プロファイルを形成できる。
Since crystal growth is carried out under extremely small V/III ratio conditions, aluminum gallium
As: 0<X<1) as growth x l-
x It is possible to add carbon at an extremely high concentration. Since carbon has a small diffusion coefficient and a high activation rate, pm impurities can be added at a high concentration with excellent controllability, and an extremely steep carrier concentration profile can be formed.

(実施例) 〈実施例1〉 以下本発明の詳細をガリウムヒソ(GaAs)の成長を
例にとって説明する。
(Example) <Example 1> The details of the present invention will be explained below by taking the growth of gallium ash (GaAs) as an example.

供給原料はトリメチルガリウム(TMG)とアルシン(
A s Ha )である。成長温度は620℃であり、
ガス流速60 cm / win以上とした。V族原料
のアルシンと■族原料のトリメチルガリウムの供給量は
それぞれ4 X 10−6a+ol /sin 〜85 XIOmol/III1n、3 X 10−6*ol/
IIIln〜1.8 x 10−5io1 /III1
nであり、更に、V/III比は0.5〜4の間であっ
た。0.5以下では成長したガリウムヒソの表面にガリ
ウムメタルの析出が生じた。4以上では成長したガリウ
ムヒソの表面モフォロジーが劣化した。このときの成長
速度は1ua+/ hr 〜5 um/ sinであっ
た。
The feedstocks are trimethyl gallium (TMG) and arsine (
As Ha). The growth temperature is 620℃,
The gas flow rate was set to 60 cm/win or more. The supply amounts of arsine, a group V raw material, and trimethylgallium, a group II raw material, are 4 X 10-6a+ol/sin ~ 85 XIOmol/III1n, and 3 X 10-6*ol/, respectively.
IIIln~1.8 x 10-5io1/III1
n, and the V/III ratio was between 0.5 and 4. When the value was less than 0.5, gallium metal was precipitated on the surface of the grown gallium histo. 4 or more, the surface morphology of the grown gallium histo deteriorated. The growth rate at this time was 1 ua+/hr to 5 um/sin.

成長したガリウムヒソの伝導型は全てp型であり、V/
III比が小さいほどキャリア濃度が高かった。p型の
キャリア濃度はファン・デア・バラ法により1×101
9cm  〜1×1020cIn−3となった。このと
き不純物3 濃度を5econdary ion Mass 5pe
ctroietry法により測定したところガーボン(
C)濃度とキャリア濃度がほぼ一致していた。このとき
格子常数の変化は0.02%以下であり、Beを添加し
て同程度のキャリアを生成した場合に比べ115以下で
あった。
The conductivity type of the grown gallium histo is all p-type, and V/
The smaller the III ratio, the higher the carrier concentration. The p-type carrier concentration was determined to be 1×101 by van der Barra method.
It became 9 cm ~ 1 x 1020 cIn-3. At this time, the impurity 3 concentration is 5econdary ion Mass 5pe
As measured by ctroietry method, Garbon (
C) The concentration and carrier concentration were almost the same. At this time, the change in lattice constant was 0.02% or less, which was 115 or less compared to the case where the same amount of carriers were generated by adding Be.

カーボンのプロファイル分析をおこなったところ9−3 5X10  cm  から分析感度(1017cm−3
)以下まで分解能(300オングストローム)以下で急
峻に変化した。供給原料VlTri比が10以上で表面
モフォロジーは再び良好になった。しかしこのとき多数
のヒロックが認められた(数万cI11−2〜数十万(
2)−2)。本発明によるV/III比が小さく鏡面成
長する条件の下で成長した場合にはヒロックはほとんど
認められなかった。(1万cI11−2以下)。
When carbon profile analysis was performed, the analytical sensitivity (1017cm-3
) and below the resolution (300 angstroms). When the feedstock VlTri ratio was above 10, the surface morphology became good again. However, at this time, many hillocks were recognized (from tens of thousands of cI11-2 to several hundred thousand (
2)-2). When the film was grown under the conditions of the present invention where the V/III ratio was small and mirror growth was achieved, almost no hillocks were observed. (10,000 cI11-2 or less).

■族原料としてトリメチルガリウムのかわりにトリエチ
ルガリウム(T E G)を使用すると、V/■比を4
以下にすると成長したガリウムヒソ上に急激にガリウム
メタルが析出した。
When triethyl gallium (T E G) is used instead of trimethyl gallium as the group material, the V/■ ratio becomes 4.
When the temperature was lower than that, gallium metal suddenly precipitated on the grown gallium histo.

〈実施例2〉 以下本発明の第二の実施例をアルミニウムガリウムヒソ
(AIIGaAs)の成長を例にとって説明する。
<Example 2> A second example of the present invention will be described below by taking the growth of aluminum gallium histo (AIIGaAs) as an example.

供給原料はトリメチルアルミニウム(GMA)、トリメ
チルガリウムとアルシンである。成長温度は560〜6
20℃であり、ガス流速は60011/1n以上とした
。V族原料のアルシンと■族原料のトリメチルアルミニ
ウム、トリ、メチルガリウムの供給量はそれぞれI X
 10−6mol /園りn〜4×5 10  mol /IIIin %  IXI 0−6
a+ol /l1in 〜4X5 10  mol /IIIin 、3 X 10−6m
ol /sin −1,8×1O−511ol/1nで
あり、更に、V/III比は0.8〜2の間であった。
The feedstocks are trimethylaluminum (GMA), trimethylgallium and arsine. Growth temperature is 560-6
The temperature was 20° C., and the gas flow rate was 60011/1n or more. The supply amounts of arsine, which is a group V raw material, and trimethylaluminum, tri, and methylgallium, which are group II raw materials, are respectively I
10-6mol/Sonoori n~4×5 10mol/IIIin% IXI 0-6
a+ol/l1in ~4X5 10 mol/IIIin, 3 X 10-6m
ol/sin −1,8×1 O−511 ol/1n, and the V/III ratio was between 0.8 and 2.

0.8以下では成長したアルミニウムガリウムヒソの表
面モフォロジーが劣化し、■族金属が析出した。V/I
II比2以上では成長したガリウムヒソの表面モフォロ
ジーが劣化した。エピタキシャル層の成長速度は1uI
l/hr〜5um/IIIinであった。成長したガリ
ウムヒソの伝導型は全てp型であり、V/III比が小
さいほどキャリア濃度が高かった。p型キャリア濃度は
ファン・デア・パラ法によりI X 1019cm−3
〜5×1020cm−3となった。このとき不純物濃度
を5econdary Jon Mass Spect
rometry法により測定したところカーボンの濃度
とキャリア濃度がほぼ一致していた。同一のV/III
比の下では、アルミ組成が高いほどカーボン濃度もキャ
リア濃度も高かった。カーボンのプロファイル分析を行
なった9−3 ところ5X10  csa  から分析感度(10’c
m−3)以下まで分解能(300オングストローム)以
下で急峻に変化した。供給原料V/III比が10以上
で表面モフォロジーは再び良好になった。しかしこのと
き多数のヒロックが認められた(±数万2 1〜数十刃〇al−2)。本発明によるV/III比が
小さく鏡面成長する条件の下で成長した場合にはヒロッ
クはほとんど認められなかった(1万印−2以下)。
If it is less than 0.8, the surface morphology of the grown aluminum gallium gallium oxide deteriorates, and group Ⅰ metals precipitate. V/I
When the II ratio was 2 or higher, the surface morphology of the grown gallium histopathology deteriorated. Growth rate of epitaxial layer is 1uI
l/hr~5um/IIIin. The conductivity type of the grown gallium hisso was all p-type, and the smaller the V/III ratio, the higher the carrier concentration. The p-type carrier concentration was determined as I x 1019 cm-3 by the van der Para method.
It became ~5 x 1020 cm-3. At this time, the impurity concentration is set to 5econdary Jon Mass Spect.
When measured by the rometry method, the carbon concentration and carrier concentration were almost the same. Same V/III
Under the ratio, the higher the aluminum composition, the higher the carbon concentration and carrier concentration. Carbon profile analysis was conducted in 9-3, and analysis sensitivity (10'c
There was a sharp change below the resolution (300 angstroms) down to below m-3). When the feedstock V/III ratio was above 10, the surface morphology became good again. However, at this time, a large number of hillocks were observed (± tens of thousands of blades to several tens of blades al-2). When the film was grown under the conditions of mirror growth with a small V/III ratio according to the present invention, almost no hillocks were observed (10,000 marks -2 or less).

〈実施例3〉 第1図は本発明の第1の実施例を用いて作製したp−n
接合を有する結晶の作製例である。
<Example 3> Figure 1 shows a p-n fabricated using the first example of the present invention.
This is an example of manufacturing a crystal with a junction.

p型ガリウムヒソ(100)基板101の上に本発明の
第二の実施例の気相成長法によりトリメチルガリウムと
トリメチルアルミニウムとアルシンを用いてp型アルミ
ニウムガリウムヒソ層(p−2X1019cm−3)1
02.9000オングストロームを形成した。その上に
トリエチルガリウム、トリエチルアルミニウム、アルシ
ン、シラン(S iH4)を用いて、n型アルミニウム
ガリウム層(n=IX1018am−3)103.35
00オングストロームを形成した。第2図は該p−n接
合を有する結晶のキャリア濃度プロファイルである。p
−n接合面でのキャリア濃度変化は、分解能以下(10
0オングストローム)以下で達成された。p型アルミニ
ウムガリウムヒソ層102にMgまたはZnを添加して
p型のキャリアを生成し、本実施例と同様の構造のp−
n接合を有する結晶を作製したところ、p−n接合界面
でのキャリア濃度変化は200オングストロ一ム以上を
要した。これは本発明の実施例ではカーボンの拡散係数
が小さいためにp−n接合位置がAt  Ga   A
s/At  Ga   As:x   l−x    
    y   1−y(0<x、y<1 ;x−y)
へテロ接合界面と略一致しているためである。
A p-type aluminum gallium histolayer (p-2 x 1019 cm-3) 1 is formed on a p-type gallium histo(100) substrate 101 using trimethylgallium, trimethylaluminum, and arsine by the vapor phase growth method of the second embodiment of the present invention.
02.9000 angstroms were formed. On top of that, an n-type aluminum gallium layer (n=IX1018am-3) 103.35
00 angstroms were formed. FIG. 2 is a carrier concentration profile of the crystal having the pn junction. p
The carrier concentration change at the −n junction surface is below the resolution (10
0 angstrom) or less. Mg or Zn is added to the p-type aluminum gallium histolayer 102 to generate p-type carriers, and a p-
When a crystal having an n-junction was fabricated, the carrier concentration change at the p-n junction interface required more than 200 angstroms. This is because in the embodiment of the present invention, the diffusion coefficient of carbon is small, so the p-n junction position is At Ga A
s/At Ga As: x l-x
y 1-y (0<x, y<1; x-y)
This is because it almost coincides with the heterojunction interface.

本実施例ではp型アルミニウムガリウムヒソ層102を
成長するのにトリメチルガリウムとトリメチルアルミニ
ウムを用いたが、トリメチルガリウムとトリエチルアル
ミニウムの組合せ、トリエチルガリウムとトリメチルア
ルミニウムの組合せを用いてもよい。本発明の実施例を
含め、いずれの場合も良好な表面モフオロジーのもとて
不純物の添加により制御性良くn型のキャリアを生成す
るためには表面モフオロジーが劣化するよりも大きなV
/III比のもとて結晶成長を行う必要がある。
In this embodiment, trimethyl gallium and trimethyl aluminum were used to grow the p-type aluminum gallium histolayer 102, but a combination of trimethyl gallium and triethyl aluminum, or a combination of triethyl gallium and trimethyl aluminum may also be used. In any case, including the embodiments of the present invention, in order to generate n-type carriers with good controllability by adding impurities in order to obtain good surface morphology, the V
It is necessary to perform crystal growth under the /III ratio.

本実施例ではAI  Ga   As/At。In this example, AI Ga As/At.

x      1−x G a   A s : (0<X T y <1 ;
 x−y )ヘテ−y 口接合界面でのp−n接合を例に上げたが、G a A
 s / G a A sホモ接合界面、AlGaAs
/ A I G a A sホモ接合界面でも本実施例
同様にp−n接合を形成できる。また、本発明は、■族
元素としてガリウム及びアルミニウムの少なくとも1種
を含み、V族元素としてAsを含むp型の化合物半導体
膜の成長形成に適用できることは明らかである。
x1-xGaAs: (0<XTy<1;
x-y) Het-y We took the p-n junction at the mouth junction interface as an example, but G a A
s/G a As homozygous interface, AlGaAs
/AIGaAs homojunction interface can also form a pn junction in the same manner as in this embodiment. Furthermore, it is clear that the present invention can be applied to the growth and formation of a p-type compound semiconductor film containing at least one of gallium and aluminum as a group II element and As as a group V element.

さらに、本発明の気相成長方法はへテロバイポーラトラ
ンジスタのpベース層、レーザダイオードのp型クラッ
ド層やp型コンタクト層、フォトダイオードのp型層等
、全てのp型層への適用が可能である。
Furthermore, the vapor phase growth method of the present invention can be applied to all p-type layers, such as the p-base layer of hetero-bipolar transistors, the p-type cladding layer and p-type contact layer of laser diodes, and the p-type layer of photodiodes. It is.

[発明の効果] 以上述べたように本発明の気相成長方法によればV/I
II比がきわめて小さく■族元素の利用効率が極めて高
かった。このため猛毒のV放水素化物の使用量が少なく
、有害なV族酸化物V族元素の析出量が少なかった。こ
のためV族元素及びその化合物の処理費用が大幅に削減
できた。しかもこのとき極めて高品質の結晶が成長がで
きた。
[Effect of the invention] As described above, according to the vapor phase growth method of the present invention, V/I
The II ratio was extremely small, and the utilization efficiency of group Ⅰ elements was extremely high. Therefore, the amount of highly toxic V-hydrogenide used was small, and the amount of harmful group V oxides and group V elements precipitated was small. Therefore, the processing costs for group V elements and their compounds can be significantly reduced. Furthermore, extremely high quality crystals were grown at this time.

AI  Ga   As (0<x<1)においてはx
   l−x 高濃度にカーボンが添加できた。カーボンの活性化率は
極めて1に近く結晶の品質を損なわずにp型キャリアを
高濃度に添加できた。また、格子常数の変化も小さかっ
た。さらに、カーボンの拡散係数は小さくきわめて急峻
なキャリア濃度プロファイルが得られた。
In AI Ga As (0<x<1), x
l-x Carbon could be added at a high concentration. The activation rate of carbon was extremely close to 1, and p-type carriers could be added at a high concentration without impairing the quality of the crystal. Moreover, the change in lattice constant was also small. Furthermore, carbon has a small diffusion coefficient and an extremely steep carrier concentration profile was obtained.

【図面の簡単な説明】 第1図は本発明にかかわるp−n接合を含む結晶である
。第2図は本発明に係わる実施例におけ、p−n接合の
急峻性を説明する説明図である。 101・・・p型ガリウムヒソ(100)基板、102
・・・p型アルミニウムガリウムヒソ層、103・・・
n型アルミニウムガリウムヒソ層。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a crystal including a pn junction according to the present invention. FIG. 2 is an explanatory diagram illustrating the steepness of the pn junction in the embodiment of the present invention. 101...p-type gallium histo(100) substrate, 102
...p-type aluminum gallium histolayer, 103...
N-type aluminum gallium histolayer.

Claims (2)

【特許請求の範囲】[Claims] (1)ガリウムヒソ若しくはアルミニウムガリウムヒソ
の有機金属気相成長方法において、III族有機金属の原
料としてメチル基を有するアルキル化物を含む、V族元
素供給量とIII族元素供給量の比(V/III比)を1より
も小さなV/IIIで非鏡面成長を生じる第一のV/III比
領域と、1よりも大きなV/III比で非鏡面成長を生じ
る第二のV/III比領域の間の、鏡面成長が起こるV/
III比領域に設定して、エピキタシャル成長を行うこと
を特徴とする気相成長方法。
(1) In the organometallic vapor phase growth method for gallium histo- or aluminum gallium histo, the ratio of the supply amount of group V elements to the supply amount of group III elements (V/III ratio) between a first V/III ratio region that causes non-specular growth at a V/III smaller than 1 and a second V/III ratio region that causes non-specular growth at a V/III ratio greater than 1. , where mirror growth occurs at V/
A vapor phase growth method characterized by performing epitaxial growth in a III ratio region.
(2)前記V族元素の水素化物がアルシンであり、前記
III族元素のアルキル化物がトリメチルガリウムまたは
トリメチルアルミニウムの少なくとも一つからなること
を特徴とする請求項1に記載の気相成長方法。
(2) the hydride of the Group V element is arsine;
2. The vapor phase growth method according to claim 1, wherein the alkylated group III element comprises at least one of trimethylgallium and trimethylaluminum.
JP13746189A 1989-03-31 1989-06-01 Vapor growth method Pending JPH034517A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP13746189A JPH034517A (en) 1989-06-01 1989-06-01 Vapor growth method
EP90303352A EP0390552B1 (en) 1989-03-31 1990-03-29 Method of manufacturing compound semiconductor thin film
DE69024246T DE69024246T2 (en) 1989-03-31 1990-03-29 Process for producing a thin film semiconductor alloy
US07/501,781 US5168077A (en) 1989-03-31 1990-03-29 Method of manufacturing a p-type compound semiconductor thin film containing a iii-group element and a v-group element by metal organics chemical vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13746189A JPH034517A (en) 1989-06-01 1989-06-01 Vapor growth method

Publications (1)

Publication Number Publication Date
JPH034517A true JPH034517A (en) 1991-01-10

Family

ID=15199149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13746189A Pending JPH034517A (en) 1989-03-31 1989-06-01 Vapor growth method

Country Status (1)

Country Link
JP (1) JPH034517A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315133A (en) * 1992-01-30 1994-05-24 Mitsubishi Denki Kabushiki Kaisha Compound semiconductor structure including p-type and n-type regions doped with carbon
JP2010225981A (en) 2009-03-25 2010-10-07 Fujitsu Ltd Optical semiconductor device, integrated element and method of manufacturing optical semiconductor device
JP2011014922A (en) * 2010-09-02 2011-01-20 Sumitomo Chemical Co Ltd Method of manufacturing compound semiconductor wafer, and compound semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315133A (en) * 1992-01-30 1994-05-24 Mitsubishi Denki Kabushiki Kaisha Compound semiconductor structure including p-type and n-type regions doped with carbon
US5387544A (en) * 1992-01-30 1995-02-07 Mitsubishi Denki Kabushiki Kaisha Method of making a semiconductor device including carbon as a dopant
JP2010225981A (en) 2009-03-25 2010-10-07 Fujitsu Ltd Optical semiconductor device, integrated element and method of manufacturing optical semiconductor device
JP2011014922A (en) * 2010-09-02 2011-01-20 Sumitomo Chemical Co Ltd Method of manufacturing compound semiconductor wafer, and compound semiconductor device

Similar Documents

Publication Publication Date Title
US4912532A (en) Electro-optical device with inverted transparent substrate and method for making same
EP0403293B1 (en) Method of manufacturing III-V group compound semiconductor device
JPH04242985A (en) Gallium nitride group compound semiconductor laser diode
JP3198912B2 (en) Method for producing group 3-5 compound semiconductor
JP3410863B2 (en) Compound semiconductor device and compound semiconductor light emitting device
US5663976A (en) Buried-ridge laser device
Dupuis III-V semiconductor heterojunction devices grown by metalorganic chemical vapor deposition
JP3158651B2 (en) Compound semiconductor and method of manufacturing the same
JPH034517A (en) Vapor growth method
JPH03211888A (en) Semiconductor device and manufacture thereof
Tsang et al. InGaAs/InP p‐i‐n photodiodes grown by chemical beam epitaxy
US5384151A (en) InGaAsP/GaAs diode laser
JP3274907B2 (en) Method for growing indium gallium nitride compound semiconductor
US6461884B1 (en) Diode laser
JP3697304B2 (en) Semiconductor laser and manufacturing method thereof
Sodabanlu et al. Improvement of InGaP solar cells grown with TBP in planetary MOVPE reactor
JP3109567B2 (en) Method of manufacturing III-V compound semiconductor wafer
Lundin et al. Influence of the carrier gas composition on metalorganic vapor phase epitaxy of gallium nitride
US5606180A (en) III-V compound semiconductor with high crystal quality and luminous efficiency
JPH0387019A (en) Manufacture of iii-v compound semiconductor element
JP3316828B2 (en) Semiconductor thin film regrowth method
JPH11307457A (en) Non-alloy electrode contact layer and its preparation
Kurtz et al. Hidden but important parameters in Ga/sub 0.5/In/sub 0.5/P cell growth
JPH01214083A (en) Semiconductor laser device and its manufacture
WO2002007224A1 (en) High power mid wavelength infrared laser