JPH0344988A - Integrated circuit for light amplification - Google Patents

Integrated circuit for light amplification

Info

Publication number
JPH0344988A
JPH0344988A JP17894789A JP17894789A JPH0344988A JP H0344988 A JPH0344988 A JP H0344988A JP 17894789 A JP17894789 A JP 17894789A JP 17894789 A JP17894789 A JP 17894789A JP H0344988 A JPH0344988 A JP H0344988A
Authority
JP
Japan
Prior art keywords
light
optical
amplifier
wavelength
erbium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17894789A
Other languages
Japanese (ja)
Inventor
Kunishige Oe
尾江 邦重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP17894789A priority Critical patent/JPH0344988A/en
Publication of JPH0344988A publication Critical patent/JPH0344988A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1628Solid materials characterised by a semiconducting matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a light amplification integration circuit capable of preventing the generation of unrequired emission and improving optical sensitivity by using a light amplifier which includes rare earth elements, such as erbium, and amplifying only a signal light equivalent to the level of said rare earth elements. CONSTITUTION:A light amplifier 21 which has a GaInAsP layer 11 containing rare earth elements, such as erbium and a photodetector 23 are integrated with an optical waveguide 22 so that may be under a monolithic structure. Under this structure, inverse bias is applied between a p type electrode 8 and an n type electrode 9 of the photodetector 23 while forward bias is applied between the electrode 8 and electrode 9 of the optical amplifier 21 and incident light 20 is entered under the above state. If the wavelength of the light 20 is the optically amplified wavelength of erbium, the wavelength is amplified with an amplifier 21, and then is received by the detector 23 by way of a waveguide passage 22. Moreover, no light other than the wavelength is generated in terms of the optical output of the amplifier 21. Therefore, the signal light is further amplified and intensified, thereby generating no other light which may become a noise. It is, therefore, possible to improve an S/N ratio to a great extent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光伝送方式にかける光検波の感度を向上させ
る光集積回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical integrated circuit that improves the sensitivity of optical detection applied to optical transmission systems.

〔従来の技術〕[Conventional technology]

光伝送方式は、単一の周波数で発振する分布帰還型レー
ザの実用化によう、高速長距離伝送において大きな進歩
をとげ、現在1.6Gb/sの信号光を無中継で120
Kmの距離を伝送できるレベルに達している。そして、
この性能を決めているのは光検波器の感度であう、将来
のより高速の光伝送方式にふ・いては、この光検波器の
感度がシステムの性能を左右する要因となる。
Optical transmission systems have made great progress in high-speed, long-distance transmission, such as the practical application of distributed feedback lasers that oscillate at a single frequency, and are currently capable of transmitting 1.6 Gb/s signal light at 120 Gb/s without repeating.
It has reached the level where it can transmit distances of Km. and,
What determines this performance is the sensitivity of the optical detector.For future higher-speed optical transmission systems, the sensitivity of the optical detector will be a factor that will determine the performance of the system.

しかし、現在使用されているpinホトダイオードやア
バランシェ・ホト・ダイオード(APD)などの光検波
器は、はぼ理論限界に近い性能が得られておシ、今後−
層の性能改善を望むことができない。
However, the optical detectors currently in use, such as pin photodiodes and avalanche photodiodes (APDs), have achieved performance close to their theoretical limits.
It is not possible to expect to improve the performance of the layer.

一方、従来よシ光ファイバを伝播してきた微弱な信号光
を増幅する光増幅器が研究されている。
On the other hand, optical amplifiers that amplify weak signal light that has conventionally been propagated through optical fibers are being researched.

これは、半導体レーザを発振閾値以下のデバイス条件に
して、外部からの信号光を直接増幅する線形の光増幅器
として動作させるものである。この光増幅器を光検波器
の直前で用いると、この光増幅器が無い場合に比べて最
小受信レベルを改善することができる。
This is to operate a semiconductor laser as a linear optical amplifier that directly amplifies signal light from the outside by setting the device condition to below the oscillation threshold. If this optical amplifier is used immediately before the optical detector, the minimum reception level can be improved compared to the case without this optical amplifier.

そこで、この光増幅器と光検波器を導波路でモノリシッ
クに結合させた第3図に示す光集積回路が、有用である
と考えられる。この光増幅集積回路は、第3図に示すよ
うに、n型1nP基板1を用い、その基板上に、波長1
.55μmのGaInAsP層2.波長1.3μmのG
aInAsp層3+p型InP層6.p型GaInAs
Pキャップ層7からなるレーザ構造の光増幅器21と、
波長1.55pmのGaInAsP層2.波長1.3μ
mのGaInAaP層3.ノンドープのD型InP層5
.p型InP層6゜p型GaInAsP層7からなる光
検波器23とを、波長1.3μmのGaInAsP層4
.ノンドープのn型InP層s、p型InP層6からな
る導波路22で結合させたモノリシック構造を有してい
る。ここで、光増幅器21のn型電極8とn型電極9の
間に順バイアスをかけ、光検波器23のn型電極8とn
型電極9に逆バイアスをかけた状態で、この光増幅器2
1に入射光20を入れると、その入射光20が増幅され
たのち、導波路22を通って光検波器23に受光される
ものとなっている。
Therefore, the optical integrated circuit shown in FIG. 3, in which this optical amplifier and optical detector are monolithically coupled through a waveguide, is considered to be useful. This optical amplification integrated circuit uses an n-type 1nP substrate 1 as shown in FIG.
.. 55 μm GaInAsP layer2. G with a wavelength of 1.3 μm
aInAsp layer 3 + p-type InP layer 6. p-type GaInAs
an optical amplifier 21 having a laser structure consisting of a P cap layer 7;
GaInAsP layer with a wavelength of 1.55 pm2. Wavelength 1.3μ
m GaInAaP layer 3. Non-doped D-type InP layer 5
.. A photodetector 23 consisting of a p-type InP layer 6° and a p-type GaInAsP layer 7 is connected to a GaInAsP layer 4 having a wavelength of 1.3 μm.
.. It has a monolithic structure in which a non-doped n-type InP layer s and a p-type InP layer 6 are coupled by a waveguide 22. Here, a forward bias is applied between the n-type electrode 8 and the n-type electrode 9 of the optical amplifier 21, and the n-type electrode 8 and the n-type electrode of the photodetector 23 are
With reverse bias applied to the mold electrode 9, this optical amplifier 2
When incident light 20 is introduced into the optical waveguide 1, the incident light 20 is amplified and then passed through a waveguide 22 and received by a photodetector 23.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、かかる従来の光増幅集積回路では、光増
幅器よシ発生するスボンテエイエアスな発光のために、
信号の波長以外の雑音光も光検波器に入り1信号対雑音
比が改善されないという欠点があった。
However, in such conventional optical amplification integrated circuits, due to the airy light emission generated by the optical amplifier,
There is a drawback that noise light other than the wavelength of the signal also enters the optical detector and the signal-to-noise ratio cannot be improved.

本発明は以上の点に鑑みてiされたもので、その目的は
、雑音となる光増幅器からの望ましくない発光を防ぎ、
信号光だけを増幅して、光感度を向上させる光増幅集積
回路を提供することにちる。
The present invention has been developed in view of the above points, and its purpose is to prevent undesirable light emission from an optical amplifier that causes noise,
The purpose of the present invention is to provide an optical amplification integrated circuit that amplifies only signal light and improves optical sensitivity.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために、本発明は、エルビウム(
Er)等の希土類元素を含むGa1nAsP層を持つ光
増幅器と光検波器を光導波路でモノリシックに集積した
ことを主要な特徴とする。
In order to achieve the above object, the present invention utilizes erbium (
The main feature is that an optical amplifier and an optical detector having a Ga1nAsP layer containing rare earth elements such as Er) are monolithically integrated in an optical waveguide.

〔作用〕[Effect]

本発明においては、エルビウム等の希土類元素を含む光
増幅器を用いることによう、その希土類元素の準位に対
応した信号光だけを増幅することができる。
In the present invention, by using an optical amplifier containing a rare earth element such as erbium, it is possible to amplify only the signal light corresponding to the level of the rare earth element.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明による光増幅集積回路の一実施例を示す
構造断面図である。図にkいて、1はn型InP基板、
2は波長1.55μmのGaInAsP層、3及び4は
波長1.3μmのGaInAsP層、5はノンドープの
n型InP層、6はp型InP層、γはp型GarnA
sPキャップ層、8はp型電極、9はn型電極、10は
無反射コート膜、11はエルビウム添加のGaInAs
P層である。
FIG. 1 is a structural sectional view showing an embodiment of the optical amplification integrated circuit according to the present invention. In the figure, 1 is an n-type InP substrate,
2 is a GaInAsP layer with a wavelength of 1.55 μm, 3 and 4 are GaInAsP layers with a wavelength of 1.3 μm, 5 is a non-doped n-type InP layer, 6 is a p-type InP layer, γ is a p-type GarnA layer
sP cap layer, 8 is a p-type electrode, 9 is an n-type electrode, 10 is an anti-reflection coating film, 11 is erbium-doped GaInAs
This is the P layer.

すなわち、本実施例の光増幅集積回路は、光増幅器21
と光検波器23が導波路22で結合されてモノリシック
にInP基板1上に集積されている点は、第3図に示し
た従来例のものと同様であるが、光増幅器21として、
n型InP基板1上に形成されるエルビウム添加のGa
1nAsP 層11 、 p型1rsP層6.p型(r
alnAsPキャップ層Tからなるレーザ構造の光増幅
器を用い、そのエルビウムの準位に応じた信号光だけを
増幅するように構成されている。なお図中、同一符号は
同一または相当部分を示している。
That is, the optical amplification integrated circuit of this embodiment includes the optical amplifier 21
The optical amplifier 21 is similar to the conventional example shown in FIG.
Erbium-doped Ga formed on n-type InP substrate 1
1nAsP layer 11, p-type 1rsP layer 6. p-type (r
An optical amplifier having a laser structure including an alnAsP cap layer T is used, and is configured to amplify only the signal light corresponding to the level of erbium. Note that in the drawings, the same reference numerals indicate the same or equivalent parts.

このように構成された光増幅集積回路を動作させるには
、光検波器23のn型電極8とn型電極9の間に逆バイ
アスをかけ、光増幅器21のn型電極8とn型電極9に
順パイアメをかけた状態でその光増幅部に入射光20を
入れる。この時、入射光20の波長を、エルビウムの光
増幅波長である1、54μmに合わせておくと、入射光
20がその光増幅器21によう増幅されたのち、導波路
22を通って光検波器23で受光される。この時の光増
幅器21からの光出力は、従来の第3図の構成では、第
4図のようになう、増幅された信号光以外に1.53μ
mから1,57μmの波長領域にわたシスボンテエイニ
アスな発光がでている。この受信光以外の光は雑音とな
るので、信号対雑音比はこの例では改善されない。これ
に対して、第1図に示す本発明の実施例では、第2図に
示すように、エルビウムの増幅波長以外の光は、全く生
じてこない。これは、エルビウム添加によシ、非発光中
心がGaInAsP層11に導入されるためである。こ
のため、信号光が増幅され強くなって、かつ雑音となる
それ以外の光はほとんど生じない。これによシ、信号対
雑音比が100倍改善された。
In order to operate the optical amplification integrated circuit configured in this way, a reverse bias is applied between the n-type electrode 8 and the n-type electrode 9 of the optical detector 23, and the n-type electrode 8 and the n-type electrode of the optical amplifier 21 are 9 and enters the incident light 20 into the optical amplification section. At this time, if the wavelength of the incident light 20 is adjusted to 1.54 μm, which is the optical amplification wavelength of erbium, the incident light 20 is amplified by the optical amplifier 21, and then passes through the waveguide 22 to the optical detector. The light is received at 23. In the conventional configuration shown in FIG. 3, the optical output from the optical amplifier 21 at this time is 1.53μ in addition to the amplified signal light as shown in FIG.
Emissions are uniformly emitted over a wavelength range from m to 1,57 μm. Since light other than this received light becomes noise, the signal-to-noise ratio is not improved in this example. On the other hand, in the embodiment of the present invention shown in FIG. 1, as shown in FIG. 2, no light other than the amplified wavelength of erbium is generated. This is because non-luminescent centers are introduced into the GaInAsP layer 11 due to the addition of erbium. Therefore, the signal light is amplified and becomes stronger, and almost no other light that becomes noise is generated. This improved the signal-to-noise ratio by a factor of 100.

a>、上記実施例では希土類元素としてエルビウムを用
いた場合について示したが、本発明はこれに限定される
ものではたく、遷移波長にして1゜2〜1.6μmをも
つ種々の希土類元素を用いることもできる。
a>, In the above example, a case was shown in which erbium was used as the rare earth element, but the present invention is not limited to this, and various rare earth elements having a transition wavelength of 1°2 to 1.6 μm can be used. It can also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の光増幅集積回路によれば
、エルビウム等の希土類元素を添加したGaInAsP
層を持つ光増幅器に電流注入することにより1希土類元
素の準位に対応した信号光を増幅し、他の雑音となる光
を生じないため、検波の受光感度の改善に役立ち、光伝
送方式の中継距離を延ばすことができる利点がある。
As explained above, according to the optical amplification integrated circuit of the present invention, GaInAsP doped with rare earth elements such as erbium
By injecting a current into an optical amplifier with a layer, the signal light corresponding to the level of one rare earth element is amplified, and no other noise light is generated, which helps improve the light receiving sensitivity of the detection and is useful for optical transmission systems. This has the advantage of extending the relay distance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光増幅集積回路の一実施例を示す構造
断面図、第2図は本実施例の光増幅器からの光出力特性
を示す図、第3図は従来よう研究されている光増幅器を
集積した光増幅集積回路の一例を示す構造断面図、第4
図は従来例の光増幅器からの光出力特性を示す図である
。 1・・・・n型InP基板、2・・・・波長1.55μ
mのGaInAsP層、3,46ams波長1.3μm
のG瓢InAsP層、5・・・・ノンドープのn型In
P層、5ee*ep型InP層、7 m m a * 
P型GaInAsPキャップ層、8・・・・p型電極、
9・・n型電極、10・・・・無反射コート膜、・・−
・エルビウム添加GaInAsP層、21・・光増幅器
、22・・・・導波路、23・・光検波器。
Fig. 1 is a cross-sectional view of the structure of an embodiment of the optical amplifier integrated circuit of the present invention, Fig. 2 is a diagram showing the optical output characteristics from the optical amplifier of this embodiment, and Fig. 3 is a diagram showing the optical output characteristics of the optical amplifier of this embodiment. A fourth structural cross-sectional view showing an example of an optical amplification integrated circuit that integrates optical amplifiers.
The figure is a diagram showing optical output characteristics from a conventional optical amplifier. 1...N-type InP substrate, 2...Wavelength 1.55μ
m GaInAsP layer, 3,46 ams wavelength 1.3 μm
G-type InAsP layer, 5...Non-doped n-type In
P layer, 5ee*ep type InP layer, 7 m m a *
P-type GaInAsP cap layer, 8... p-type electrode,
9...n-type electrode, 10...non-reflective coating film,...-
- Erbium-doped GaInAsP layer, 21... optical amplifier, 22... waveguide, 23... optical detector.

Claims (1)

【特許請求の範囲】[Claims] 希土類元素を含むGaInAsP層を持つ光増幅器と導
波型光検波器が導波路でモノリシックに結合されている
ことを特徴とする光増幅集積回路。
An optical amplification integrated circuit characterized in that an optical amplifier having a GaInAsP layer containing a rare earth element and a waveguide type optical detector are monolithically coupled through a waveguide.
JP17894789A 1989-07-13 1989-07-13 Integrated circuit for light amplification Pending JPH0344988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17894789A JPH0344988A (en) 1989-07-13 1989-07-13 Integrated circuit for light amplification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17894789A JPH0344988A (en) 1989-07-13 1989-07-13 Integrated circuit for light amplification

Publications (1)

Publication Number Publication Date
JPH0344988A true JPH0344988A (en) 1991-02-26

Family

ID=16057434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17894789A Pending JPH0344988A (en) 1989-07-13 1989-07-13 Integrated circuit for light amplification

Country Status (1)

Country Link
JP (1) JPH0344988A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141477A (en) * 1997-01-10 2000-10-31 Nec Corporation Semiconductor optical amplification element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141477A (en) * 1997-01-10 2000-10-31 Nec Corporation Semiconductor optical amplification element

Similar Documents

Publication Publication Date Title
US10985520B2 (en) Long-distance fiber optic distributed acoustic sensing amplification system and method thereof
US5101461A (en) Optical fiber amplifier apparatus
US4952017A (en) Polarization independent semiconductor optical amplifier
US6987306B2 (en) Monolithic photoreceiver technology for free space optical networks
US6836334B2 (en) Angle random walk (ARW) noise reduction in fiber optic sensors using an optical amplifier
WO2019047923A1 (en) Optical power detection device and apparatus
Zhang et al. Enhancement in dynamic range of amplitude-modulated continuous-wave laser scanner having a coaxial configuration
JPH03197931A (en) Combination of optical amplifier and opti- cal detector
US5299057A (en) Monolithically integrated optical amplifier and photodetector tap
JPH0344988A (en) Integrated circuit for light amplification
Mason et al. Photonic integrated receiver for 40 Gbit/s transmission
JP2684568B2 (en) Optical integrated circuit
Mason et al. 40 Gb/s photonic integrated receiver with-17 dBm sensitivity
JPS59117285A (en) Optical amplifier circuit
JPS62189830A (en) Optical repeater
JP2847820B2 (en) Optoelectronic integrated device
JP2769186B2 (en) Optical receiving circuit
JPH04340933A (en) Optical amplifier
JP2785452B2 (en) Optical receiver
JPH0541624A (en) Fiber type optical amplifier
JP2734801B2 (en) Optical receiver
JPS6397026A (en) Method and device for optical communication
JPH01142717A (en) Method and device for brillouin amplification in optical fiber
JPS59211339A (en) Method for extracting information signal on the way of optical transmission line
JP2661136B2 (en) Optical repeater