JPS59117285A - Optical amplifier circuit - Google Patents

Optical amplifier circuit

Info

Publication number
JPS59117285A
JPS59117285A JP57231621A JP23162182A JPS59117285A JP S59117285 A JPS59117285 A JP S59117285A JP 57231621 A JP57231621 A JP 57231621A JP 23162182 A JP23162182 A JP 23162182A JP S59117285 A JPS59117285 A JP S59117285A
Authority
JP
Japan
Prior art keywords
optical
current
semiconductor laser
light signal
trigger pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57231621A
Other languages
Japanese (ja)
Inventor
Yuichi Odagiri
小田切 雄一
Isao Kobayashi
功郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57231621A priority Critical patent/JPS59117285A/en
Publication of JPS59117285A publication Critical patent/JPS59117285A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0608Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by light, e.g. optical switch

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To make it possible to ease dependency on wavelengths, by utilizing semiconductor laser, which indicates optical bistability. CONSTITUTION:An injecting DC Ib is applied to a P side electrode 101 of a semiconductor laser 100 by an electric circuit 200, so that the Ib is set in the vicinity of a laser oscillation starting current threshold value I1 between I1 and a stopping current threshold value I2. A light signal 103 is branched by a branching circuit 104. An injecting light signal 105 is injected into a cleavage surface 108 in an active layer 107 by a coupling circuit 201. When the transduced value of a current by light excitation exceeds the difference between I1 and Ib, laser oscillation occurs and an ON state is obtained. Meanwhile, a trigger pulse current generating light signal 106 generates a trigger pulse current Ip, whose sign is reverse to that of Ib, through an electric circuit 202. The current Ip is delayed by a 1/4 period of the first light signal from the maximum value of the light signal 106. The current Ip is applied to the P-side electrode 101. By the trigger pulse current Ip, the semiconductor laser 100 is changed into the OFF state from the ON state. By the repetition of this procedure, the light signal is amplified by about several hundred times - thousand times.

Description

【発明の詳細な説明】 本発明は光信号を面接増幅する光増幅回路に関する。長
距離、大容量伝送の可能な光フアイバ通信システムでは
、元ファイバの低損失化や光源の長波長化に伴って、5
0km以上の距離を無中継で伝送できる。これによシ離
島と本島間の通信に海底光伝送を利用することが実用化
されつつある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical amplification circuit for surface amplifying optical signals. In optical fiber communication systems capable of long-distance, high-capacity transmission, 5.5
Can transmit over distances of 0 km or more without relaying. As a result, the use of submarine optical transmission for communication between remote islands and the main island is being put into practical use.

これを大陸間の通信に利用するためには、光フアイバ間
に中継器を導入して弱まった光信号を増幅しなければな
らない。この場合には光信号を一度電気信号にして増幅
し、これを再び光信号に戻すという面倒な方法をとって
いる。このため長距離の光通信に不可欠な中継器が複雑
で大きく消費電力も高いうえ、光・電気変換をするので
、信頼性を高めるうえで問題があった。そこで、この対
策として光信号をあえて電気信号に変換することなく、
そのまま光増幅するという方法が考えられている。例え
ば、向井氏等は1982年電子通信学会総合全国大会の
講演論文集分冊箱4、第820号で報告しているように
、入射端6%、出射端32チの端面反射率を持った通常
の半導体レーザに光ファイバからの光信号を光注入同期
させて、光増幅を実現している。これによシ中継器を小
形で低消費電力に実現できたが、半導体レーザと光注入
する光信号の波長の軸モードを一致させなげならず、そ
のためには温度制御に±001℃程度の精度が必要とな
る。従って、このような温度に極めて敏感な光の中継器
では、信頼性に問題がある。
In order to use this for intercontinental communications, repeaters must be installed between the optical fibers to amplify the weakened optical signals. In this case, the complicated method of converting the optical signal into an electrical signal, amplifying it, and then converting it back into an optical signal is used. For this reason, repeaters, which are essential for long-distance optical communications, are complex, large, and consume high power, and they also perform optical-to-electrical conversion, creating problems in improving reliability. Therefore, as a countermeasure to this problem, without converting the optical signal into an electrical signal,
A method of directly amplifying the light is being considered. For example, as reported by Mr. Mukai et al. in the 1982 National Conference of the Institute of Electronics and Communication Engineers, Volume 4, No. 820, a normal Optical amplification is achieved by optically injecting and synchronizing an optical signal from an optical fiber into a semiconductor laser. This made it possible to realize a small repeater with low power consumption, but it was necessary to match the axial mode of the wavelength of the semiconductor laser and the optical signal to be injected, and to do so, temperature control was required with an accuracy of about ±001°C. Is required. Therefore, such optical repeaters that are extremely sensitive to temperature have reliability problems.

本発明の目的は上記の欠点を除去して波長依存性の緩い
光増幅回路を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and provide an optical amplification circuit that is less dependent on wavelength.

本発明による光増幅回路の構成は、レーザ発振開始電流
閾値■、とその1.より小さなレーザ発振停止電流閾値
工、を有する光双安定性の半導体レーザと、その半導体
レーザの工、とI2の間で且つ11近傍の直流電流Ib
’(r前記半導体レーザに印加する第1の電気回路と、
光信号の一部を検出しその極太値から光信号の半周期以
内の時間遅れの後にIbとは逆符号でIbとI2の差よ
υも大きいトリガ・パルス電流を、その半導体レーザに
印加する第2の電気回路とを少なくとも含むことを特徴
としている。
The configuration of the optical amplification circuit according to the present invention is as follows: Laser oscillation starting current threshold (1); An optical bistable semiconductor laser having a smaller laser oscillation stop current threshold value, and a DC current Ib in the vicinity of 11 between the semiconductor laser's current value and I2.
'(r a first electrical circuit that applies voltage to the semiconductor laser;
A part of the optical signal is detected, and after a time delay of less than half a period of the optical signal from its thickest value, a trigger pulse current with a sign opposite to Ib and larger than the difference between Ib and I2 is applied to the semiconductor laser. It is characterized in that it includes at least a second electric circuit.

この発明においては、注入電流と光出力の関係および光
入力と光出力の関係に光双安定性を示す半導体レーザを
利用して光増幅回路を構成している。
In this invention, an optical amplification circuit is constructed using a semiconductor laser that exhibits optical bistability in the relationship between injection current and optical output and the relationship between optical input and optical output.

光双安定性とは、注入電流あるいは光入力に対して2値
の光出力を有するもので、外部からの注入電流あるいは
光入力の変化に対して2値のうちのいづれかの光出力を
示すものである。光双安定性を示す半導体レーザでは、
2値の光出力を示す注入電流の幅が通常19mA前後で
ある。例えばこの幅が10mAの場合、幅の中間の値に
注入電流を設定して外部より5mA以上の正負トリガ・
パルス電流を印加すると、その変化に応じてオン・オフ
動作を繰り返す。他方、ある光入力に対して2値の光出
力を有する場合にも、正負トリガ・パルス電流の印加と
同様、2値の光出力を示す光入力の幅の中間の値に光入
力を設定して外部より2値光トリガ・パルスを重畳させ
ても、その変化に応じたオン・オフ動作を繰り返す。し
かしながら2値の光出力を示す光入力の幅が広い場合に
、半導体レーザをオン・オフ動作させるには、光入力の
強度を余程大きくしないとオン・オフ応答が得られない
Optical bistability is something that has a binary optical output in response to an injected current or optical input, and exhibits one of the two optical output values in response to a change in externally injected current or optical input. It is. In semiconductor lasers that exhibit optical bistability,
The width of the injected current indicating a binary optical output is usually around 19 mA. For example, if this width is 10 mA, set the injection current to a value in the middle of the width and use an external positive/negative trigger of 5 mA or more.
When a pulse current is applied, the device repeats on/off operations in response to changes in the pulse current. On the other hand, when a certain optical input has a binary optical output, the optical input can be set to a value midway between the width of the optical input that indicates the binary optical output, similar to the application of positive and negative trigger pulse currents. Even if a binary optical trigger pulse is superimposed externally, the on/off operation will be repeated in response to the change. However, when the width of the optical input indicating a binary optical output is wide, in order to turn the semiconductor laser on and off, an on-off response cannot be obtained unless the intensity of the optical input is extremely increased.

その点正負パルス電流の場合には幅の広さは、殆んど問
題なく動作できる。そこで本発明では弱い光信号が半導
体レーザに注入されたときもオン状態となるように注入
電流をレーザ発振開始電流閾値近傍の光双安定状愚の値
に設定する。また外部からの個々の光信号を検出し、そ
の各々の極大値から光信号の半周期以内の時間遅れを設
けて注入電流とは逆符号のトリガ・パルス電流を半導体
レーザに〃1乞すことにより、オン状態をオフ状悪にす
る、すなわちリセットする。光双安定性を示す半導体レ
ーザでは光入力や注入電流の変化に対して光出力が急峻
な対応を示す。そこで上記のような注入電流のもとて外
部より弱い光信号を注入すると光注入によって光励起が
生じ、半導体レーザはオン状態となって数mW以上の光
出力が得られる。
In this respect, in the case of positive and negative pulse currents, the wide width allows operation with almost no problem. Therefore, in the present invention, the injection current is set to an optical bistable value near the laser oscillation starting current threshold so that the semiconductor laser is turned on even when a weak optical signal is injected into the semiconductor laser. In addition, by detecting individual optical signals from the outside and providing a time delay within a half period of the optical signal from each maximum value, a trigger pulse current of opposite sign to the injected current is applied to the semiconductor laser. This changes the on state to the off state, that is, resets it. Semiconductor lasers exhibiting optical bistability exhibit a sharp response in optical output to changes in optical input or injected current. Therefore, when a weak optical signal is injected from the outside using the injection current as described above, optical excitation occurs due to the optical injection, and the semiconductor laser is turned on and an optical output of several mW or more is obtained.

これにより光強度の増幅率は数百倍〜千倍程度が期待で
きる。まだ、この半導体レーザの増幅ではそのメカニズ
ムが光励起によるため、光注入同期の様に波長の軸モー
ドを合わせることは勿論、波長を合わせる必要もない。
As a result, the amplification factor of the light intensity can be expected to be several hundred times to a thousand times. However, since the amplification mechanism of this semiconductor laser is based on optical excitation, it is not necessary to match the axial mode of the wavelength as in optical injection locking, and it is not necessary to match the wavelength.

このため半導体レーザの温度制御は従来例の様な±0.
01℃の精度が不要となる。以上により波長依存性の緩
い光増幅回路を実現できる。
For this reason, temperature control of semiconductor lasers is limited to ±0.
Accuracy of 0.1°C is no longer required. With the above, an optical amplification circuit with mild wavelength dependence can be realized.

次に実施例を用いてこの発明の詳細な説明する。Next, the present invention will be explained in detail using examples.

第1図は本発明の実施例の構成図を示す。第2図は本発
明に用いる半導体レーザの光双安定性を示す注入電流と
光出力の関係をあられす図である。
FIG. 1 shows a block diagram of an embodiment of the present invention. FIG. 2 is a diagram showing the relationship between the injection current and the optical output, showing the optical bistability of the semiconductor laser used in the present invention.

半導体レーザ100には直流電源である第1の電気回路
200により直流の注入電流Ibが、レーザ発振開始電
流閾値工1とレーザ発振停止電流閾値I2の間にあって
■、近傍に設定されてP側電極101に印加される。第
1の光ファイバ102を伝送してきた第1の光信号10
3はハーフミラで構成した分岐回路104により半導体
レーザ100への注入用光信号105とトリガ・パルス
電流発生用光信号106に分岐される。注入用光信号1
05では、第1の結合回路201であるレンズ系により
半導体レーザ100の活性層107内に第1の臂開面1
08から注入される。注入用光信号105の光励起によ
る電流への変換値が11とIbの差以上であれば、レー
ザ発振してオン状態となる。他方・トリガ・パルス電流
発生用光信号106は、受光素子とその受光素子で検出
した光電流パルスを遅延するための抵抗とコンデンサで
構成される第2の電気回路202によりその光信号の極
大値力λら第1の光信号1030%周期の時間遅れで、
Ibとは逆符号のトリガ・パルス電流IPを発生させ、
P側電極101に印加させる。
The semiconductor laser 100 receives a DC injection current Ib from the first electric circuit 200, which is a DC power supply, between the laser oscillation start current threshold 1 and the laser oscillation stop current threshold I2, and is set near the P-side electrode. 101. The first optical signal 10 transmitted through the first optical fiber 102
3 is branched into an optical signal 105 for injection into the semiconductor laser 100 and an optical signal 106 for generating a trigger pulse current by a branch circuit 104 configured with a half mirror. Optical signal for injection 1
05, the first arm opening 1 is formed in the active layer 107 of the semiconductor laser 100 by the lens system which is the first coupling circuit 201.
Injected from 08. If the conversion value of the injection optical signal 105 into a current due to optical excitation is greater than or equal to the difference between 11 and Ib, the laser oscillates and enters the on state. On the other hand, the optical signal 106 for generating a trigger pulse current is converted to the maximum value of the optical signal by a second electric circuit 202 composed of a photodetector and a resistor and a capacitor for delaying the photocurrent pulse detected by the photodetector. With a time delay of 1030% period of the first optical signal,
Generate a trigger pulse current IP of opposite sign to Ib,
The voltage is applied to the P-side electrode 101.

このトリガ・パルス磁流IPは、いわゆる光信号のリセ
ット用電気信号として機能する。このためその′1流値
はIbと■、の差よりも大きな値をとる必要がある。こ
のトリガ・パルス電流IPにより半導体レーザ100は
オン状態からオン状態へと変わる。この繰返しにより半
導体レーザ100は第1の光信号103を数百倍から千
倍程度に増幅する。
This trigger pulse magnetic current IP functions as a so-called electrical signal for resetting the optical signal. Therefore, the '1 current value needs to be larger than the difference between Ib and ■. This trigger pulse current IP changes the semiconductor laser 100 from an on state to an on state. By repeating this process, the semiconductor laser 100 amplifies the first optical signal 103 by several hundred to one thousand times.

増幅された第2の元信号109は第2の臂開面110よ
りレンズ系で構成される第2の結合回路203を通じて
第2の光ファイバ111に結合され伝送される。ここで
使用した半導体レーザ100はI、が35mA、 I2
が25mAのInP−InGaAsP系の4元半導体レ
ーザで発振波長が1.31μmである。このときIbは
34.5 m A 、まだIpは一12mAとしだ。従
って第1の光信号103としては、光電流に変換される
大きさが0.5 mA以上あればよく、第1のファイバ
102から半導体レーザ100への結合効率を信号10
5があればよい。まだ、第1および第2の光ファイバ1
02.111.にはコア径8μm、カットオフ波長1.
1μmの単一モードファイバを使用した。
The amplified second original signal 109 is coupled from the second arm opening 110 to the second optical fiber 111 through a second coupling circuit 203 constituted by a lens system and transmitted. The semiconductor laser 100 used here has an I of 35 mA and an I2
It is an InP-InGaAsP quaternary semiconductor laser with a current of 25 mA and an oscillation wavelength of 1.31 μm. At this time, Ib was 34.5 mA, and Ip was still -12 mA. Therefore, the first optical signal 103 only needs to have a magnitude that is converted into a photocurrent of 0.5 mA or more, and the coupling efficiency from the first fiber 102 to the semiconductor laser 100 is determined by the signal 103.
5 is enough. Still, the first and second optical fibers 1
02.111. The core diameter is 8 μm and the cutoff wavelength is 1.
A 1 μm single mode fiber was used.

第1の光信号1030波長は1.21μmである。The first optical signal 1030 wavelength is 1.21 μm.

半導体レーザの光双安定性は、温度変化に対してその光
双安定性を示す幅が多少変化する。そのため半導体レー
ザ100の温度を±0.1℃に抑える必要があった。以
上により従来より蟲度制御が1桁程緩く、また波長依存
性の暖い光増幅回路を実現した。
The optical bistability of a semiconductor laser changes somewhat with respect to temperature changes. Therefore, it was necessary to suppress the temperature of the semiconductor laser 100 to ±0.1°C. As a result of the above, we have realized an optical amplification circuit that is one order of magnitude looser in accuracy control than the conventional one and has warm wavelength dependence.

なお、上記実施例においては光双安定性を示す半導体レ
ーザ100として特に指定しな力・つだが、タンデム構
造の半導体レーザや活性層の一部に非励起領域を設けた
半導体レーザを用いることができる。また、第1の光信
号103を半導体レーザ100の活性層107内に注入
する手段として実強列では第1の臂開面108力為ら注
入しだが、P側゛成極101の一部を取りのぞいて、そ
の部分に注入用光信号105を注入してもよい。また、
以上の実証例では、トリガ・パルス電流発生用光信号1
06を検出したときに第1の光信号103の%周期の時
間遅れの後で、トリガ・パルス電流IPをリセット用電
気信号として発生させたが、3A周期以内であれば任意
でよい。
Note that in the above embodiments, a tandem structure semiconductor laser or a semiconductor laser in which a non-excited region is provided in a part of the active layer may be used, although no particular specifications are given as the semiconductor laser 100 exhibiting optical bistability. can. In addition, as a means for injecting the first optical signal 103 into the active layer 107 of the semiconductor laser 100, in the actual optical system, the first optical signal 103 is injected from the first arm opening 108; Alternatively, the injection optical signal 105 may be injected into the removed portion. Also,
In the above demonstration example, the trigger pulse current generation optical signal 1
Although the trigger pulse current IP is generated as a reset electric signal after a time delay of % period of the first optical signal 103 when 06 is detected, any period may be used as long as it is within 3 A period.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の構成図、第2図は実施例に用
いた半導体レーザの光双安定性を示す注入電流と光出力
の関係を示す図で」)る。 なお、図において、100・・・・・・・・・半導体レ
ーザ、101・・・・・・・・・P側電極、102・・
・・・・・・・第1の光ファイバ、103・・・・・・
・・・第1の光信号、104・・・・・・・・・分岐回
路、105・・・・・・・・・注入用光信号、106・
・・・・・・・・トリガ・パルス電流発生用光信号、1
07・・・・−・・・・活性層、108・・・・・・・
・・第1の臂開面、109・・・・・・・・・第2の元
信号、110・・・・・・・・・第2の臂開面、111
・・・・・・・・・第2の光ファイバ、200・・・・
・・・・・第10′直気回路、201・・・・−・・・
・第1の結合回路、202・・・・・・・−・第2の電
気回路、203・・・・・・・・・第2の結合回路、を
それぞれあられす。 手続補正書(方式) 6 持許庁長宮 殿 ■、事件の表示   昭和57年特 許 願第2316
21号 7゜2、発明の名称  光増幅回路 換 3、補正をする者 事件との関係       出 願 人東京都港区芝五
丁目33番1号 (423)   日本電気株式会社 代表者 関本忠弘 4、代理人 5、補正命令の日付 昭和58年3月29日 (発送日
)補正の対象 明細書の発明の名称の欄。 明細書の特許請求の範囲の欄。 明細書の発明の詳細な説明の櫃。 補正の内容 明細書第1頁〜第3頁を別紙添付のものと差しえる。(
内容に変更なし。)
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between injection current and optical output showing the optical bistability of the semiconductor laser used in the embodiment. In the figure, 100... Semiconductor laser, 101... P-side electrode, 102...
......First optical fiber, 103...
. . . first optical signal, 104 . . . branch circuit, 105 . . . optical signal for injection, 106.
......Trigger pulse current generation optical signal, 1
07...--Active layer, 108...
...First arm opening plane, 109...Second original signal, 110...Second arm opening plane, 111
......Second optical fiber, 200...
...10th direct air circuit, 201...-
・The first coupling circuit, 202...second electrical circuit, and 203...second coupling circuit are respectively arranged. Procedural amendment (method) 6 The Palace of the Commissioner of Licensing Agency ■, Indication of the case 1982 Patent Application No. 2316
No. 21 7゜2, Title of the invention: Optical amplifier circuit conversion 3, Relationship to the amended case: Applicant: 5-33-1 Shiba, Minato-ku, Tokyo (423) NEC Corporation Representative: Tadahiro Sekimoto 4; Agent 5, date of amendment order: March 29, 1980 (shipment date) column for the title of the invention in the specification to be amended. Claims section of the specification. A detailed description of the invention in the specification. Pages 1 to 3 of the statement of contents of the amendment may be attached to the attached document. (
No changes to content. )

Claims (1)

【特許請求の範囲】 レーザ発振開始電流閾値工、とその11よυ小さなレー
ザ発振停止電流閾値工、を有する光双安定性の半導体レ
ーザと、前記半導体レーザのI、とI。 の間で、且つ■1近傍の直流電流よりを印加する第1の
電気回路と、光信号の一部を検出し、その極大値から前
記光信号の半周期以内の時間遅れの後にIbとは逆符号
でIbとI、の差よシも大きいトリガ・パルス電流を前
記半導体レーザに印加する第2の電気回路とを、少なく
とも含む光増幅回路。
[Scope of Claims] An optically bistable semiconductor laser having a laser oscillation start current threshold value and a laser oscillation stop current threshold value smaller than 11, and I and I of the semiconductor laser. and (1) detecting a part of the optical signal, and after a time delay within half a period of the optical signal from its maximum value, Ib. an optical amplification circuit including at least a second electric circuit that applies a trigger pulse current to the semiconductor laser with opposite signs and which is larger than the difference between Ib and I;
JP57231621A 1982-12-24 1982-12-24 Optical amplifier circuit Pending JPS59117285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57231621A JPS59117285A (en) 1982-12-24 1982-12-24 Optical amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57231621A JPS59117285A (en) 1982-12-24 1982-12-24 Optical amplifier circuit

Publications (1)

Publication Number Publication Date
JPS59117285A true JPS59117285A (en) 1984-07-06

Family

ID=16926374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57231621A Pending JPS59117285A (en) 1982-12-24 1982-12-24 Optical amplifier circuit

Country Status (1)

Country Link
JP (1) JPS59117285A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201222A (en) * 1985-03-04 1986-09-05 Hitachi Ltd Light pulse amplifying and shaping device
JPS62189830A (en) * 1986-02-17 1987-08-19 Nec Corp Optical repeater
US4947458A (en) * 1984-07-30 1990-08-07 Nec Corporation Optical transmitter utilizing a bistable distributed feedback semiconductor laser
US5680246A (en) * 1994-05-20 1997-10-21 Fujitsu Limited Optical amplifier and optical transmission apparatus
US5822112A (en) * 1995-08-23 1998-10-13 Fujitsu Limited Control apparatus for optical amplifier
JP2007048905A (en) * 2005-08-09 2007-02-22 Sharp Corp Nonlinear semiconductor optical element drive device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4947458A (en) * 1984-07-30 1990-08-07 Nec Corporation Optical transmitter utilizing a bistable distributed feedback semiconductor laser
JPS61201222A (en) * 1985-03-04 1986-09-05 Hitachi Ltd Light pulse amplifying and shaping device
JPS62189830A (en) * 1986-02-17 1987-08-19 Nec Corp Optical repeater
US5680246A (en) * 1994-05-20 1997-10-21 Fujitsu Limited Optical amplifier and optical transmission apparatus
US5822112A (en) * 1995-08-23 1998-10-13 Fujitsu Limited Control apparatus for optical amplifier
JP2007048905A (en) * 2005-08-09 2007-02-22 Sharp Corp Nonlinear semiconductor optical element drive device
JP4703312B2 (en) * 2005-08-09 2011-06-15 シャープ株式会社 Nonlinear semiconductor optical device driving apparatus

Similar Documents

Publication Publication Date Title
JP3025210B2 (en) Apparatus including optical fiber Raman amplifier
US5042039A (en) Er-doped optical fiber laser device
US7283216B1 (en) Distributed fiber sensor based on spontaneous brilluoin scattering
KR100272402B1 (en) Non-linear optical interferometer with saturated amplifier
GB2207322A (en) Optical amplification
JP2005515410A5 (en)
JPS6128243A (en) Light receiver
US6836334B2 (en) Angle random walk (ARW) noise reduction in fiber optic sensors using an optical amplifier
US5331403A (en) Pulsed diode ring laser gyroscope
JPS59117285A (en) Optical amplifier circuit
JP3510247B2 (en) Optical clock regeneration
Soto et al. All-optical NOR gates with two and three input logic signals based on cross-polarization modulation in a semiconductor optical amplifier
JPH07147565A (en) Optical fiber amplifier with device that monitors pump power and input power
JP2651086B2 (en) Optical amplification system
US6904100B1 (en) Pulse controlled phase modulator
Livas et al. High-data-rate systems for space applications
JPH0425825A (en) Optical fiber amplifier
JP3496818B2 (en) Optical clock extraction circuit and optical communication system
JP2732746B2 (en) Monitoring method of input / output optical power of optical amplifier
JPH098741A (en) Optical clock extracting circuit
JPH0240632A (en) Fiber brillouin optical amplifying repeater
JP2789830B2 (en) Optical amplifier
JPH0745889A (en) Mode-locked ring laser
JPH0541624A (en) Fiber type optical amplifier
JPS5826705B2 (en) optical transmitter