JPH0344965A - Semiconductor memory device and manufacture - Google Patents

Semiconductor memory device and manufacture

Info

Publication number
JPH0344965A
JPH0344965A JP1181138A JP18113889A JPH0344965A JP H0344965 A JPH0344965 A JP H0344965A JP 1181138 A JP1181138 A JP 1181138A JP 18113889 A JP18113889 A JP 18113889A JP H0344965 A JPH0344965 A JP H0344965A
Authority
JP
Japan
Prior art keywords
substrate
memory cell
cell array
memory device
peripheral circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1181138A
Other languages
Japanese (ja)
Inventor
Hisashi Ogawa
久 小川
Masanori Fukumoto
正紀 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1181138A priority Critical patent/JPH0344965A/en
Publication of JPH0344965A publication Critical patent/JPH0344965A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To facilitate the processes and to improve reliability by digging up the substrate of a memory cell array forming region compared with its peripheral circuit forming region in order to neutralize the difference in level between the memory cell array and the peripheral circuit. CONSTITUTION:A resist pattern 2 is formed on a silicon substrate 1 and then the substrate 1 is subjected to isotropic etching using the resist 2 as a mask to form a recessed part substrate 3. Next; the resist 2 and a surface of the substrate 1 are removed and field oxide films 5 and 6 for isolating elements are formed on a substrate 4 except the recessed part of the substrate 1. Furthermore, transistors 7, bit lines 8, memory nodes 9, capacitor dielectrics 10, and plate electrodes 11 are formed in order, after which an aluminum wiring 12 is formed through an insulating film. At this time, the unevenness in level of the boundary part between a memory cell array part 13 and the peripheral part 14 is diminished by a digging process so that the aluminum wiring 12 can be formed easily, resulting in the improvement in reliability.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体記憶装置及びその′製造方法に関するも
のであも 従来の技術 高集積化が進むLSIの中にあってダイナミック・ラン
ダム・アクセスメモリー(DRAM)も集積度を高める
様々な工夫がなされている力交 その中でも電荷蓄積の
ための容量部分をシリコン基板上に積み上げる積層型の
メモリーセルいわゆるスタック・セルがその製造方法の
容易さと、ソフトエラー耐性の高さなどから有力視され
ている。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor memory device and its manufacturing method.The present invention relates to a semiconductor memory device and its manufacturing method. ) has also been devised in various ways to increase the degree of integration.Among them, the so-called stacked memory cell, which stacks the capacitive part for charge storage on a silicon substrate, is easy to manufacture and has soft error resistance. It is considered to be a promising candidate due to its height.

その構造も様々のものが提案されている力文 十分な容
量を得るためには容量部分を高く積み上げる必要があも
 即ち大きな容量を得るために高く積み上げた記憶ノー
ドの側壁も容量部分として利用しようとするものであも
 その−例の断面図を第6図に示す。5は第1のフィー
ルド酸化wL 8はビット線を示す。スイッチングトラ
ンジスタ7上に大きな容量を得るために記憶ノード9を
高く形成して誘電体膜IOを介してセルプレート11を
形成している。このような構造となるとメモリーセルア
レイ部分13と周辺回路部分14との境界部分15での
段差がかなり大きくなる。このような大きな段差はアル
ミ配線12の形成時にフォトリソ工程及びドライエツチ
ング工程でパターン切れなどの問題を起こしゃすくすも
 第7図に第6図を上面から見た時のアルミ配線12の
形成状態を模式的に示す。第7図に示す如くメモリーセ
ルアレイ部分13と周辺回路部分14の境界部分15で
(よ 段差の為にアルミ配線12が局所的に細くなって
おりひどい場合は完全な断線となん これ(よ アルミ
のエツチングマスクとなるフォトレジストのバターニン
グの際に 大きな段差の為の光の反射等の効果によりパ
ターンが細くなってしまうためであム 発明が解決しようとする課題 このようにスタック・セルを用いたDRAMで(よ メ
モリーセルアレイと周辺回路部分との境界部分に大きな
段差が形成され 大きな容量を得る為には更に大きな段
差を形成することが必要となん ところ力文 段差が大
きくなるほど配線形成の為のバターニングが困難となり
、配線の歩留まりおよび信頼性を低下させることになっ
てしまう。
Various structures have been proposed.In order to obtain sufficient capacity, it is necessary to stack the capacitive parts high.In other words, to obtain large capacity, the side walls of storage nodes stacked high should also be used as capacitive parts. A cross-sectional view of an example is shown in FIG. 5 indicates the first field oxidation wL; 8 indicates the bit line. In order to obtain a large capacitance on switching transistor 7, storage node 9 is formed high, and cell plate 11 is formed via dielectric film IO. With such a structure, the difference in level at the boundary portion 15 between the memory cell array portion 13 and the peripheral circuit portion 14 becomes considerably large. Such a large step may cause problems such as pattern breakage during the photolithography process and dry etching process during the formation of the aluminum wiring 12. Figure 7 shows the formation state of the aluminum wiring 12 when viewed from above in Figure 6. Shown schematically. As shown in FIG. 7, at the boundary 15 between the memory cell array section 13 and the peripheral circuit section 14, the aluminum wiring 12 is locally thinned due to the step, and in severe cases, the aluminum wiring 12 may become completely disconnected. When patterning the photoresist that serves as an etching mask, the pattern becomes thinner due to effects such as light reflection due to the large step difference.The problem that the invention aims to solve is the use of stacked cells in this way. In DRAM, a large step is formed at the boundary between the memory cell array and the peripheral circuitry, and in order to obtain a large capacity, it is necessary to form an even larger step. Patterning becomes difficult, resulting in lower wiring yield and reliability.

本発明は上述の課題に鑑みてなされたもので、容量部分
が高くなっても配線形成工程を容易にヒかつ配線の信頼
性を向上させる半導体記憶装置及びその製造方法を提供
することを目的とする。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a semiconductor memory device and a method for manufacturing the same, which facilitates the wiring formation process and improves the reliability of the wiring even when the capacitance portion becomes high. do.

課題を解決するための手段 本発明(よ シリコン基板の凹部領域に形成されたメモ
リーセルアレイと、凹部以外の基板上に形成された周辺
回路とを備えた半導体記憶装置及びその製造方法であも 作用 本発明(よ 上述の構成により、シリコン基板に形成し
た凹部基板上にメモリーセルアレイを形成することによ
って、大きな容量を得るために記憶ノードを高く形成し
てし メモリーセルアレイ部分と周辺回路部分との段差
を軽減することが可能となり、その後の配線形成工程を
容易にし 配線の歩留まり及び信頼性を大幅に向上させ
ることができも 実施例 (実施例1) 第1図は本発明の第1の実施例における半導体記憶装置
の製造方法の工程断面図であも 第1図(a)に示すご
とくシリコン基板l上にフォトリソ工程によりレジスト
パターン2を形成すも 次に第1図(b)に示すごとく
上記レジスト2をマスクにシリコン基板lを例えばCF
4と02の混合ガスプラズマによって等方性エツチング
を行って凹部基板3を形成すも レジスト2を除去して
アンモニアと過酸化水素水の混合水溶液で基板表面をエ
ツチング除去した後、第1図(d)に示す如く凹部基板
3上及び凹部以外の基板4上にそれぞれ素子分離の為の
フィールド酸化膜5、6を形成し 更に通常の方法によ
りスイッチングトランジスタ7を形成すも しかる後に
第1図(e)に示す如くビット線8、記憶ノード9、を
順次形威すも 更に 第1図(f)に示す如く容量誘電
体膜10、プレート電極11を形成した抵 絶縁膜を介
してアルミ配線12を形成する。この隊 メモリーセル
アレイ部分13と周辺回路部分14との境界部分15の
段差は小さく抑えられて、容易にアルミ配線を形成する
事ができも この時の上面図を模式的に第2図に示す。
Means for Solving the Problems The present invention provides a semiconductor memory device including a memory cell array formed in a recessed region of a silicon substrate and a peripheral circuit formed on a substrate other than the recessed portion, and a method for manufacturing the same. According to the present invention, by forming a memory cell array on a concave substrate formed in a silicon substrate, the storage nodes are formed high in order to obtain a large capacity. Embodiment (Example 1) FIG. 1 shows the first embodiment of the present invention. As shown in FIG. 1(a), a resist pattern 2 is formed on a silicon substrate l by a photolithography process. Next, as shown in FIG. 1(b), Using the resist 2 as a mask, place the silicon substrate 1 on a CF
After removing the resist 2 and etching the substrate surface with a mixed aqueous solution of ammonia and hydrogen peroxide, the recessed substrate 3 was formed by isotropic etching using a mixed gas plasma of 4 and 02. As shown in FIG. 1d), field oxide films 5 and 6 for element isolation are formed on the concave substrate 3 and on the substrate 4 other than the concave portion, respectively, and a switching transistor 7 is formed by a conventional method. As shown in FIG. 1(e), the bit line 8 and the storage node 9 are formed one after another, and then the aluminum wiring 12 is formed through the resistive insulating film on which the capacitive dielectric film 10 and plate electrode 11 are formed, as shown in FIG. 1(f). form. In this case, the level difference in the boundary part 15 between the memory cell array part 13 and the peripheral circuit part 14 can be kept small, and aluminum wiring can be easily formed.A top view at this time is schematically shown in FIG. 2.

メモリーセルアレイ部分13と周辺回路部分14との境
界部分15においてL アルミ配線12は細ることなく
きれいに形成されも 尚本実施例においてはシリコン基
板1のエツチングは等方性のエツチングを用いている力
交 異方性エツチングあるい(友 等方性エツチングと
異方性エツチングの組合せで行ってもよしも (実施例2) 第3図(よ 本発明の第2の実施例における半導体記憶
装置の製造方法の工程断面図である。まず第3図(a)
に示す如くシリコン基板l上に酸化珪素膜16、窒化珪
素膜17を形成してその上にフォトリソ工程によりレジ
ストパターン2を形成する。次に第3図(b)に示す如
く上記レジストパターン2をマスクとして窒化珪素膜1
7をエツチングする。レジストパターン2を除去後、第
3図(c)に示す如く窒化珪素膜17をマスクとしてシ
リコン基板1を酸化して第2の酸化珪素膜18を形成す
る。その後第3図(d)に示す如く窒化珪素膜17、酸
化珪素膜16及び第2の酸化珪素膜18を除去して凹部
基板3及び凹部以外の基板4を形成する。以後前述の第
1の実施例に従ってメモリーセルアレイ及び周辺回路を
形成して、半導体記憶装置を形成する。本実施例による
と凹部基板3と凹部以外の基板4の段差部分21はなめ
らかに形成され スイッチングトランジスタ7の形成時
のフォトリソ工程でのパターニングが容易なばかりでな
く、その後のゲート電極形成のためのポリシリコンエツ
チングの際もポリシリコンの残りなく容易にエツチング
される。また この段差部分2■の深さ及び角度は酸化
珪素膜16と窒化珪素膜17の膜厚の組合せと、酸化時
間で任意に選択する事が可能であa さらに この段差
21によってメモリーセルアレイの記憶ノードを充分高
く形成する事が可能となり大きな容量を得る事ができる
にもかかわらずメモリーセルアレイ部分と周辺回路部分
との段差を小さくでき、高歩留まりでかつ高信頼性のア
ルミ配線を形成する事ができる。
In the boundary portion 15 between the memory cell array portion 13 and the peripheral circuit portion 14, the L aluminum wiring 12 is formed neatly without thinning.In this embodiment, the etching of the silicon substrate 1 is performed using isotropic etching. It is also possible to use anisotropic etching or a combination of isotropic etching and anisotropic etching (Example 2). Fig. 3(a) is a cross-sectional view of the process.
As shown in FIG. 1, a silicon oxide film 16 and a silicon nitride film 17 are formed on a silicon substrate 1, and a resist pattern 2 is formed thereon by a photolithography process. Next, as shown in FIG. 3(b), the silicon nitride film 1 is coated using the resist pattern 2 as a mask.
Etch 7. After removing the resist pattern 2, the silicon substrate 1 is oxidized using the silicon nitride film 17 as a mask to form a second silicon oxide film 18, as shown in FIG. 3(c). Thereafter, as shown in FIG. 3(d), the silicon nitride film 17, the silicon oxide film 16, and the second silicon oxide film 18 are removed to form the concave substrate 3 and the substrate 4 other than the concave portions. Thereafter, a memory cell array and peripheral circuits are formed according to the first embodiment described above to form a semiconductor memory device. According to this embodiment, the stepped portion 21 between the concave substrate 3 and the substrate 4 other than the concave portion is formed smoothly, which not only facilitates patterning in the photolithography process when forming the switching transistor 7, but also facilitates patterning for subsequent gate electrode formation. Even when polysilicon is etched, it is easily etched without any remaining polysilicon. Further, the depth and angle of this stepped portion 2 can be arbitrarily selected by the combination of the film thicknesses of the silicon oxide film 16 and the silicon nitride film 17, and the oxidation time. Although it is possible to form the node sufficiently high and obtain a large capacity, it is possible to reduce the height difference between the memory cell array part and the peripheral circuit part, making it possible to form high-yield and highly reliable aluminum wiring. can.

(実施例3) 第4図(よ 本発明の第3の実施例における半導体記憶
装置の製造方法の工程断面図である。第4図(a)に示
すごとくシリコン基板1上にフォトリソ工程によりレジ
ストパターン2を形成すも次に第4図(b)に示すごと
く上記レジスト2をマスクにシリコン基板1を例えばC
F4と02の混合ガスプラズマによって等方性エツチン
グを行って浅い凹部基板19を形成する。しかる後に第
4図(C)に示すごとく再び第2のレジストパターン2
0を形成し上記第2のレジストパターン20をマスクと
してシリコン基板lをさらに等方性エツチングを行って
凹部基板3を形成する(第4図(d))。しかる後に第
4図(e)に示すごとく第2のレジストパターン20を
除去してアンモニアと過酸化水素水の混合水溶液で基板
表面をエツチング除去して、凹部基板3及び凹部以外の
基板4を形威すも 以後前述の第1の実施例に従ってメ
モリーセルアレイ及び周辺回路を形成して、半導体記憶
装置を形成すも 本実施例によれば凹部基板3と凹部以
外の基板4の段差部分21は小さな2段の段差より形成
されているた取 凹部基板3と凹部以外の基板4との段
差が大きくなった場合でも後のスイッチングトランジス
タ7の形成時のフォトリソ工程でのバターニングが容易
なばかりでなく、その後のポリシリコンエツチングの際
もポリシリコンの残りなく容易にエツチングされる。さ
らに この段差21によってメモリーセルアレイの記憶
ノードを充分高く形成する事が可能となり大きな容量を
得る事ができるにもかかわらずメモリーセルアレイ部分
と周辺回路部分との段差を小さくでき、高歩留まりでか
つ高信頼性のアルミ配線を形成する事ができる。
(Embodiment 3) FIG. 4 is a process cross-sectional view of a method for manufacturing a semiconductor memory device according to a third embodiment of the present invention. As shown in FIG. After forming the pattern 2, as shown in FIG. 4(b), the silicon substrate 1 is coated with, for example, C.
A shallow concave substrate 19 is formed by isotropic etching using a mixed gas plasma of F4 and 02. After that, the second resist pattern 2 is applied again as shown in FIG. 4(C).
0 is formed, and the silicon substrate 1 is further subjected to isotropic etching using the second resist pattern 20 as a mask to form a recessed substrate 3 (FIG. 4(d)). Thereafter, as shown in FIG. 4(e), the second resist pattern 20 is removed and the surface of the substrate is etched with a mixed aqueous solution of ammonia and hydrogen peroxide to form the concave substrate 3 and the substrate 4 other than the concave portions. Thereafter, a memory cell array and a peripheral circuit are formed according to the first embodiment described above to form a semiconductor memory device.According to this embodiment, the stepped portion 21 between the concave substrate 3 and the substrate 4 other than the concave portion is small. Even if the height difference between the recessed substrate 3 and the substrate 4 other than the recessed portion becomes large, patterning is not only easy in the photolithography process when forming the switching transistor 7, but also facilitates patterning. , the polysilicon can be easily etched without any remaining polysilicon during subsequent polysilicon etching. Furthermore, this step 21 makes it possible to form the memory node of the memory cell array sufficiently high, and although a large capacity can be obtained, the step difference between the memory cell array part and the peripheral circuit part can be reduced, resulting in high yield and high reliability. It is possible to form flexible aluminum wiring.

(実施例4) 第5図は 本発明の第4の実施例における半導体記憶装
置の製造方法の工程断面図であも まず第5図(a)に
示す如くシリコン基板1上に酸化珪素膜16、窒化珪素
膜17を形成してその上にフォトリソ工程によりレジス
トパターン2を形成する。次に第5図(b)に示す如く
上記レジストパターン2をマスクとして窒化珪素膜17
をエツチングすも レジストパターン2を除去機 第5
図(C)に示す如く窒化珪素膜17をマスクとしてシリ
コン基板1を酸化して第2の酸化珪素膜18を形威すも
 続いて、第5図(d)に示す如く第2のレジストパタ
ーン20を形成して、上記第2のレジストパターン20
をマスクとして窒化珪素膜17をエツチングすも しか
る後に第5図(e)に示す如く窒化珪素膜17をマスク
として再びシリコン基板1を酸化して第2の酸化珪素膜
18を更に厚くして第3の酸化珪素膜22を形成する。
(Embodiment 4) FIG. 5 is a process cross-sectional view of a method for manufacturing a semiconductor memory device according to a fourth embodiment of the present invention. First, as shown in FIG. 5(a), a silicon oxide film 16 is formed on a silicon substrate 1. , a silicon nitride film 17 is formed, and a resist pattern 2 is formed thereon by a photolithography process. Next, as shown in FIG. 5(b), a silicon nitride film 17 is formed using the resist pattern 2 as a mask.
Etching Sumo Resist pattern 2 removal machine 5th
As shown in FIG. 5(C), the silicon substrate 1 is oxidized using the silicon nitride film 17 as a mask to form a second silicon oxide film 18.Next, a second resist pattern is formed as shown in FIG. 5(d). 20 to form the second resist pattern 20.
Then, as shown in FIG. 5(e), the silicon nitride film 17 is used as a mask to oxidize the silicon substrate 1 again to make the second silicon oxide film 18 thicker. A silicon oxide film 22 of No. 3 is formed.

その後第5図(f)に示す如く窒化珪素膜17、酸化珪
素膜16及び第3の酸化珪素膜22を除去して凹部基板
3及び凹部以外の基板4を形成すも 以後前述の第1の
実施例に従ってメモリーセルアレイ及び周辺回路を形成
して、半導体記憶装置を形成する。本実施例によれば凹
部基板3と凹部以外の基板4の段差部分21は小さなな
めらかな2段の段差より形成されているた△ 凹部基板
3と凹部以外の基板4の段差が大きくなった場合でも後
のスイッチングトランジスタ7の形成時のフォトリソ工
程でのバターニングが容易なばかりでなく、その後のポ
リシリコンエツチングの際もポリシリコンの残りなく容
易にエツチングされる。さらに この段差21によって
メモリーセルアレイの記憶ノードを充分高く形成する事
が可能となり大きな容量を得る事ができるにもかかわら
ずメモリーセルアレイ部分と周辺回路部分との段差を小
さくでき、高歩留まりでかつ高信頼性のアルミ配線を形
成する事ができも な抵 本実施例1〜4において、凹部基板にメモリーア
レイ部分、凹部以外の基板に周辺回路部分を形成した力
t これに限定されるものではなく、アスペクト比の高
い領域を凹部基板に形成し アスペクト比の低い領域を
凹部以外の基板に形成すれば同様な効果が得られも 発明の効果 以上の説明から明らかなように 本発明によると大きな
容量を得るために記憶ノードを高く積み上げたスタック
・セルにおいてもメモリーセルアレイ形成領域の基板を
周辺回路形成領域よりも掘り下げることによってメモリ
ーセルアレイと周辺回路の段差を吸収し 配線形成工程
を容易にすると共に配線の信頼性を高めることが可能で
ある。
Thereafter, as shown in FIG. 5(f), the silicon nitride film 17, the silicon oxide film 16, and the third silicon oxide film 22 are removed to form the recessed substrate 3 and the substrate 4 other than the recessed portions. A memory cell array and peripheral circuits are formed according to the embodiment to form a semiconductor memory device. According to this embodiment, the stepped portion 21 between the concave substrate 3 and the non-concave substrate 4 is formed by a small, smooth two-step difference.△ When the step difference between the concave substrate 3 and the non-concave substrate 4 becomes large However, not only is buttering easy in the photolithography process for forming the switching transistor 7 later, but also the polysilicon can be easily etched without any remaining polysilicon in the subsequent polysilicon etching. Furthermore, this step 21 makes it possible to form the memory node of the memory cell array sufficiently high, and although a large capacity can be obtained, the step difference between the memory cell array part and the peripheral circuit part can be reduced, resulting in high yield and high reliability. In Examples 1 to 4, the force t used to form the memory array portion on the recessed substrate and the peripheral circuit portion on the substrate other than the recessed portion is not limited to this. A similar effect can be obtained by forming a region with a high aspect ratio on a concave substrate and a region with a low aspect ratio on a substrate other than the concave portion. However, as is clear from the above explanation of the effects of the invention, according to the present invention, a large capacitance can be achieved. Even in stacked cells in which storage nodes are piled up high to achieve the desired results, by digging the substrate in the memory cell array formation area deeper than the peripheral circuit formation area, it is possible to absorb the level difference between the memory cell array and the peripheral circuitry, making the wiring formation process easier and reducing the wiring. It is possible to increase reliability.

さらに 基板を大きく掘り下げる必要のある場合でも段
差部分を多段に形成することによりメモリーセル形成工
程の前半の工程のバターニングが困難になることを防止
できる。
Furthermore, even if it is necessary to deeply dig into the substrate, by forming the stepped portion in multiple stages, it is possible to prevent difficulty in patterning in the first half of the memory cell forming process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる半導体記憶装置の製造方法の第
1の実施例の工程断面は 第2図は本発明にかかる半導
体記憶装置の製造方法の第1の実施例の上面模式は 第
3図は本発明にかかる半導体記憶装置の製造方法の第2
の実施例の工程断面は 第4図は本発明にかかる半導体
記憶装置の製造方法の第3の実施例の工程断面猛 第5
図は本発明にかかる半導体記憶装置の製造方法の第4の
実施例の工程断面は 第6図はスタック・セルを具備す
る従来の半導体記憶装置の断面@ 第7図は従来の半導
体記憶装置の上面模式図である。 3・・・凹部基板 4・・・凹部以外′の基梶 7・・
・スイッチングトランジス久 8・・・ビット織 9・
・・記憶ノード、 10・・・誘電体!  11・・・
プレート篭城12・・・アルミ配風 13・・・メモリ
ーセルアレイ部分、 14・・・周辺回路部分、 15
・・・境界部分。
FIG. 1 is a process cross-section of a first embodiment of the method for manufacturing a semiconductor memory device according to the present invention. FIG. 2 is a schematic top view of the first embodiment of the method for manufacturing a semiconductor memory device according to the present invention. The figure shows a second method of manufacturing a semiconductor memory device according to the present invention.
FIG. 4 shows a process cross-section of the third embodiment of the method for manufacturing a semiconductor memory device according to the present invention.
The figure shows a process cross-section of the fourth embodiment of the method for manufacturing a semiconductor memory device according to the present invention. FIG. 3... Concave part substrate 4... Base plate other than the concave part 7...
・Switching transistor Hisashi 8...Bit weave 9・
...Storage node, 10...Dielectric! 11...
Plate siege 12...Aluminum air distribution 13...Memory cell array part, 14...Peripheral circuit part, 15
...Boundary part.

Claims (3)

【特許請求の範囲】[Claims] (1)シリコン基板の凹部領域に形成されたメモリーセ
ルアレイと、凹部以外の基板上に形成された周辺回路と
を備えた半導体記憶装置
(1) A semiconductor memory device including a memory cell array formed in a recessed region of a silicon substrate and a peripheral circuit formed on a substrate other than the recessed region
(2)シリコン基板の一部に凹部を形成する工程と、少
なくとも前記凹部上にメモリーセルアレイを形成し、前
記凹部以外の基板上に周辺回路を形成する工程とを備え
た半導体記憶装置の製造方法。
(2) A method for manufacturing a semiconductor memory device comprising the steps of forming a recess in a part of a silicon substrate, forming a memory cell array at least on the recess, and forming a peripheral circuit on the substrate other than the recess. .
(3)凹部を形成する際に段差部を複数段に形成して一
段当りの段差を小さくすることを特徴とする特許請求の
範囲第2項記載の半導体記憶装置の製造方法。
(3) The method of manufacturing a semiconductor memory device according to claim 2, characterized in that when forming the recessed portion, the step portion is formed in a plurality of steps to reduce the step difference per step.
JP1181138A 1989-07-12 1989-07-12 Semiconductor memory device and manufacture Pending JPH0344965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1181138A JPH0344965A (en) 1989-07-12 1989-07-12 Semiconductor memory device and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1181138A JPH0344965A (en) 1989-07-12 1989-07-12 Semiconductor memory device and manufacture

Publications (1)

Publication Number Publication Date
JPH0344965A true JPH0344965A (en) 1991-02-26

Family

ID=16095552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1181138A Pending JPH0344965A (en) 1989-07-12 1989-07-12 Semiconductor memory device and manufacture

Country Status (1)

Country Link
JP (1) JPH0344965A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271168A (en) * 1991-02-27 1992-09-28 Sanyo Electric Co Ltd Semiconductor memory and manufacture thereof
JPH07153849A (en) * 1993-12-01 1995-06-16 Nec Corp Semiconductor device and dynamic type random access memory
JPH0897384A (en) * 1994-09-28 1996-04-12 Nec Corp Semiconductor memory device and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271168A (en) * 1991-02-27 1992-09-28 Sanyo Electric Co Ltd Semiconductor memory and manufacture thereof
JPH07153849A (en) * 1993-12-01 1995-06-16 Nec Corp Semiconductor device and dynamic type random access memory
JPH0897384A (en) * 1994-09-28 1996-04-12 Nec Corp Semiconductor memory device and manufacture thereof

Similar Documents

Publication Publication Date Title
JP3501297B2 (en) Method for manufacturing semiconductor memory device
US6403431B1 (en) Method of forming in an insulating layer a trench that exceeds the photolithographic resolution limits
US6025246A (en) Methods for fabricating microelectronic capacitor structures
JPH0344965A (en) Semiconductor memory device and manufacture
JP2795252B2 (en) Method for manufacturing semiconductor device
JP2712926B2 (en) Method for manufacturing semiconductor memory device
JPH11340436A (en) Manufacture of semiconductor storage
US11997845B2 (en) Method for manufacturing semiconductor structure and semiconductor structure
US20220310393A1 (en) Mask structure, semiconductor structure and methods for manufacturing same
US5242852A (en) Method for manufacturing a semiconductor memory device
KR0130439B1 (en) Capacitor forming method of semiconductor memory device
KR100268938B1 (en) Method for fabricating semiconductor memory device
KR100230352B1 (en) Semiconductor device and method for manufacturing the same
JPH10209402A (en) Semiconductor element and its manufacturing method
KR960013644B1 (en) Capacitor manufacture method
KR100252541B1 (en) Method for fabricating a stacked capacitor of dram cell
JP2918645B2 (en) Method for manufacturing semiconductor memory device
KR960000370B1 (en) Contact hole structure and forming method thereof
KR0124576B1 (en) Capacitor apparatus of semiconductor memory
KR0172285B1 (en) Capacitor fabrication method of semiconductor device
KR100232205B1 (en) Semiconductor memory and its fabrication method
JP2694777B2 (en) Method for manufacturing semiconductor device
KR940009620B1 (en) Method of manufacturing capacitor of semiconductor cell
KR0164080B1 (en) Storage electrode manufacturing method
KR960016244B1 (en) Capacitor manufacture method of semiconductor device