JPH0343951A - Short wavelength light and ultraviolet ray generating apparatus - Google Patents

Short wavelength light and ultraviolet ray generating apparatus

Info

Publication number
JPH0343951A
JPH0343951A JP17844489A JP17844489A JPH0343951A JP H0343951 A JPH0343951 A JP H0343951A JP 17844489 A JP17844489 A JP 17844489A JP 17844489 A JP17844489 A JP 17844489A JP H0343951 A JPH0343951 A JP H0343951A
Authority
JP
Japan
Prior art keywords
gas
discharge
light
section
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17844489A
Other languages
Japanese (ja)
Other versions
JPH0568062B2 (en
Inventor
Nobuo Adachi
安達 伸雄
Shoichi Kinoshita
木下 昭一
Yusuke Yoshida
雄介 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Original Assignee
Orc Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd filed Critical Orc Manufacturing Co Ltd
Priority to JP17844489A priority Critical patent/JPH0343951A/en
Publication of JPH0343951A publication Critical patent/JPH0343951A/en
Publication of JPH0568062B2 publication Critical patent/JPH0568062B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

PURPOSE:To prevent temperature increase owing to discharge of a discharge gas and make it possible to take out a specific and desired line spectrum by installing a gas discharging nozzle in the position where a microwave transmitted through a glass diaphragm and the discharge gas emit light by electric discharge in the periphery of the glass diaphragm of a gas discharge space. CONSTITUTION:A gas discharge nozzle 4 is installed in the position where a microwave 8 transmitted through a glass diaphragm 6 and a discharge gas emit light in the periphery of the glass diaphragm 6 in a gas discharge space 5. In this way, imbalance of discharge luminance 9 owing to the distribution of the microwave is prevented, and light radiation distribution to the plane to be irradiated becomes uniform in a larger surface area. Since the gas discharge nozzle 4 is placed in the proper position, the electric discharge is carried out not in a highly vacuum part 2 but in the space where the gas is discharged and light emission occurs in the periphery of the side of the glass diaphragm 6 having enough resistance to gas electric discharge energy and thus deterioration of a window 7 which transmits short wavelength light emitted by electric discharge is prevented. By this method, temperature increase owing to the electric discharge of a diacharge gas is prevented and a line spectrum with constant radiation intensity and wavelength can be taken out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は短波長紫外光発生装置に係り、特に波長が12
0nmから190nmまでの光エネルギーによるSiH
4ガスを用いた高品質なα−3i:HF2膜の生成や、
光デバイスへの応用、超高真空容器内のH20分子の分
解・離脱による超高真空技術、更に物質とその相互作用
による材料や、ライフサイエンス等の基盤技術の開発分
野に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a short wavelength ultraviolet light generating device, and in particular,
SiH by light energy from 0nm to 190nm
Generation of high quality α-3i:HF2 film using 4 gases,
This field relates to applications to optical devices, ultra-high vacuum technology based on the decomposition and separation of H20 molecules in ultra-high vacuum containers, materials based on substances and their interactions, and the development of fundamental technologies such as life science.

〔従来の技術〕[Conventional technology]

マイクロ波放電は放電の一形態として種々研究されてい
る。この放電は無電極放電で、エネルギーが放電管の周
囲から注入されるといった有電極放電には無い特性を持
ち、次の点が特徴づけられる。
Microwave discharge has been variously studied as a form of electric discharge. This discharge is an electrodeless discharge, and has characteristics not found in electroded discharges, such as energy being injected from the periphery of the discharge tube, and is characterized by the following points.

(1)媒体自由度:電極との反応を考慮せずにプラズマ
生成媒体を自由に選択でき、プラズマの汚染もない。
(1) Medium freedom: The plasma generation medium can be freely selected without considering the reaction with the electrode, and there is no plasma contamination.

(2)長寿命  :電極物質の飛散によるJj文電電管
劣化がない。
(2) Long life: There is no deterioration of JJ Bunden electric tubes due to scattering of electrode materials.

(3)放電の拡り:放電が一部に集中せず拡り易く、放
電管壁付近での発光が強い。
(3) Spreading of discharge: The discharge is not concentrated in one part and spreads easily, and the light emission is strong near the wall of the discharge tube.

(4)構成が単純:放電管には電極がなく、しかも電源
に放電安定化の素子が不要。
(4) Simple configuration: There are no electrodes in the discharge tube, and no discharge stabilization element is required in the power supply.

これらの特徴を生かしたマイクロ波放電による真空紫外
光源が各種提案されている。
Various vacuum ultraviolet light sources using microwave discharge that take advantage of these characteristics have been proposed.

例えば、特公昭55−35825号公報(米国特許US
P  390659号公報)等に開示されているように
、マイクロ波を一定の空間中に閉し込め、高融点ガラス
である石英バルブ中に所望のガス、金属を封し込めて発
光させる技術がある(第6図参照)。
For example, Japanese Patent Publication No. 55-35825 (U.S. Pat.
As disclosed in Japanese Patent Publication No. P 390659, etc., there is a technology that confines microwaves in a certain space and confines desired gases and metals in a quartz bulb, which is high melting point glass, to emit light. (See Figure 6).

また、IEEE、  1987  MATUNA門1.
FUYUKIの論文に発表されている真空紫外光源のよ
うに、方型導波管41(第7図参照)中のH面に石英製
のガス放電管42を置き、その放電管42の軸方向に希
ガスGASを流しながら放電させ、放電管42の一端に
フッ化マグネシウム(MgFz)等の短波長透過窓材4
5を設けて、波長が140nm前後の光エネルギーを取
り出す技術もある。
Also, IEEE, 1987 MATUNA Gate 1.
Like the vacuum ultraviolet light source published in the paper by FUYUKI, a quartz gas discharge tube 42 is placed on the H plane in a rectangular waveguide 41 (see Figure 7), and the axial direction of the discharge tube 42 is A rare gas GAS is discharged while flowing, and a short wavelength transmitting window material 4 such as magnesium fluoride (MgFz) is attached to one end of the discharge tube 42.
There is also a technique for extracting light energy with a wavelength of around 140 nm by providing a wavelength of approximately 140 nm.

更に、照明学会研究会L S −87−1のpH〜P1
7に発表された「マイクロ波放電による真空紫外線光源
」のように、円筒空洞共振器52(第8図参照)中に、
円筒の無電極放電管54(例えば、外径10mmのサフ
ァイヤを用いる)を配置し、放射光全体を取り出す技術
もある。
Furthermore, the pH of Illumination Society of Japan Study Group L S-87-1 ~ P1
In the cylindrical cavity resonator 52 (see Fig. 8), as in the "vacuum ultraviolet light source using microwave discharge" announced in 1997,
There is also a technique of arranging a cylindrical electrodeless discharge tube 54 (for example, using sapphire with an outer diameter of 10 mm) and extracting the entire emitted light.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、特公昭55−35825号公報に開示された
プラズマ発光光源装置は、発光管32として石英材料を
用いる為に、石英材料の短波長側透過限界(合成石英で
160nm程度)以下の波長の光は取り出セ′ないとい
う課狸があった。
By the way, since the plasma light emitting light source device disclosed in Japanese Patent Publication No. 55-35825 uses a quartz material as the arc tube 32, it does not allow light with a wavelength below the short wavelength transmission limit of the quartz material (about 160 nm for synthetic quartz). There was a lesson that there was no way to take it out.

また、IEEE、1987  MへT[INAMI、F
UYUKIの論文に発表された真空紫外光源ではマイク
ロ波電力に応してプラズマの領域が変化する。この為に
、プラズマ電力密度を上げることが難しく、かつ、大面
積化することが難しく、実用的には直径30mm程度と
なってしまう。また、プラズマ放電を用いるために窓材
の劣化が早くなってしまうという課題があった。
Also, IEEE, 1987 M to T [INAMI, F
In the vacuum ultraviolet light source published in UYUKI's paper, the plasma region changes depending on the microwave power. For this reason, it is difficult to increase the plasma power density, and it is also difficult to increase the area, and the practical diameter is about 30 mm. In addition, since plasma discharge is used, there is a problem that the window material deteriorates quickly.

更に、照明学会研究会LS−87−1のpH〜P17に
発表されたrマイクロ波放電による真空紫外線光源」は
、真空中に配置することによって、発光による熱の冷却
方法が無く、よって自然冷却では一定以上の入射パワー
を投入する事には限界があり、マイクロ波電力で100
Wが限界であった。
In addition, the vacuum ultraviolet light source using microwave discharge, which was announced in the Illuminating Engineers of Japan Study Group LS-87-1, pH ~ P17, is placed in a vacuum, so there is no way to cool the heat by emitting light, and there is no natural cooling. However, there is a limit to inputting an incident power above a certain level, and microwave power of 100
W was the limit.

以上から本発明の目的は、直径80mm以上の大面積の
光照射を可能とする窓材を有し、また、窓材の劣化を防
止し、放電ガスを常に一定の圧力と流量で流すことによ
って放電ガスの放電による温度上昇を防止し、一定の放
射強度および波長のスペクトル線を取り出し、かつ、大
電力のマイクロ波パワーの投入を可能とさせる短波長紫
外光発生装置を提供することである。
From the above, it is an object of the present invention to have a window material that enables light irradiation over a large area with a diameter of 80 mm or more, to prevent deterioration of the window material, and to allow discharge gas to always flow at a constant pressure and flow rate. An object of the present invention is to provide a short-wavelength ultraviolet light generating device that prevents a temperature rise due to discharge of a discharge gas, extracts a spectral line with a constant radiation intensity and wavelength, and makes it possible to input high-power microwave power.

〔課題を解決するための手段および作用〕前記課題を解
決するために本発明の短波長紫外光発生装置は、第1図
を参照すると、導波管部1と、この導波管部1例の大気
とは分離密封され、かつ高抵抗な真空層を有する高真空
部2と、この高真空部2内にあって、前記導波管部1側
よりマイクロ波8を放射するアンテナ部3と、前記高真
空部2と隣接し、マイクロ波8に対して発光する放電ガ
スをガス放出ノズル4より封入してなるガス放電空間部
5と、このガス放電空間部5と前記高真空部2との境界
にあって、マイクロ波8に対しては透明で、かつ放電ガ
スに対しては不透過なガラス材によるガラス隔壁6と、
このガラス隔壁6と前記ガス放電空間部5を挾む反対側
にあって、短波長光9を放出する短波長光透過窓材7を
イfしてなり、前記ガラス隔壁6を透過したマイクロ波
8が放電ガスとガス放電空間部5内のガラス隔壁6側近
傍において放電発光する位置に前記ガス放出ノズル4を
配設した。
[Means and effects for solving the problems] In order to solve the above problems, the short wavelength ultraviolet light generating device of the present invention includes a waveguide section 1 and an example of this waveguide section, as shown in FIG. a high vacuum section 2 that is sealed and separated from the atmosphere and has a high-resistance vacuum layer; and an antenna section 3 that is located within the high vacuum section 2 and radiates microwaves 8 from the waveguide section 1 side. , a gas discharge space 5 which is adjacent to the high vacuum part 2 and is formed by sealing a discharge gas that emits light in response to microwaves 8 through a gas discharge nozzle 4; and this gas discharge space 5 and the high vacuum part 2. a glass partition wall 6 made of a glass material that is transparent to the microwave 8 and impermeable to the discharge gas;
A short-wavelength light transmitting window material 7 that emits short-wavelength light 9 is provided on the opposite side of the glass partition wall 6 and the gas discharge space 5, and microwaves transmitted through the glass partition wall 6 are formed. The gas discharge nozzle 4 was disposed at a position where the gas discharge nozzle 8 discharged light in the vicinity of the glass partition wall 6 in the gas discharge space 5 with the discharge gas.

このことにより、マイクロ波の分布による放電発光9の
不均一性が防止でき、被照側面に対する照射光分布がよ
り大きな面積において均一になる。
As a result, non-uniformity of the discharge light emission 9 due to the distribution of microwaves can be prevented, and the distribution of light irradiated onto the illuminated side surface becomes uniform over a larger area.

また、適切な位置にガス放出ノズル4を設置したから、
放電は高真空部2側でなく、ガスを放出させた空間部5
側で、しかもガス放電エネルギーに十分耐性のあるガラ
ス隔壁6側に近い空間で放電発光させることができ、放
電による短波長光透過窓材7の劣化を防止することがで
きる。
In addition, since the gas discharge nozzle 4 was installed at an appropriate position,
The discharge is not on the high vacuum section 2 side, but on the space section 5 where the gas is released.
In addition, discharge light can be emitted in a space close to the glass partition wall 6 side, which is sufficiently resistant to gas discharge energy, and deterioration of the short wavelength light transmitting window material 7 due to discharge can be prevented.

〔実施例〕〔Example〕

以下、図面に基づいて本発明の短波長紫外光発生装置を
説明する。
Hereinafter, the short wavelength ultraviolet light generating device of the present invention will be explained based on the drawings.

第2図は本発明の一実施例である短波長紫外光発生装置
の概略説明図である。
FIG. 2 is a schematic explanatory diagram of a short wavelength ultraviolet light generating device which is an embodiment of the present invention.

11はマイクロ波発生器(マグネトロン)、12はサー
キュレータ、13はパワーモニタ、14は入り−スタブ
チューナ、15は大型導波管から円型導波管に変換する
導波管交換器、16はXe。
11 is a microwave generator (magnetron), 12 is a circulator, 13 is a power monitor, 14 is an input-stub tuner, 15 is a waveguide exchanger that converts a large waveguide into a circular waveguide, 16 is a Xe .

An、D2 、He等の放電管部(ガス放電空間部)用
のガスを供給するガスボンへ、17a  17bは排気
ポート、18はガス流量コントローラ(MFC)である
17a and 17b are exhaust ports, and 18 is a gas flow controller (MFC) to a gas cylinder that supplies gases such as An, D2, He, etc. for the discharge tube section (gas discharge space section).

マグネトロン11において、例えば、2450MHzの
マイクロ波が発生され、大型導波管を通して導波管交換
器15に給電される。マグネトロン11は全波整流電源
により動作されるため、発生されるマイクロ波は100
 Hzまたは120 H2の脈流状である。
For example, microwaves of 2450 MHz are generated in the magnetron 11 and supplied to the waveguide exchanger 15 through a large waveguide. Since the magnetron 11 is operated by a full-wave rectified power supply, the microwaves generated are 100
It is a pulsating flow of Hz or 120 H2.

第3図はこの短波長紫外光発生装置の要部説明図である
。なお、第3図において高真空部2、マイクロ波放射ア
ンテナ3、ガス放出ノズル4、ガス放電空間部5、石英
ガラス隔壁6、短波長光透過窓材7、放射電磁界(マイ
クロ波)8、真空紫外光9、セラミックウィンド10は
第1図と同符号を用いている。また、排気ポート17a
  17bは第2図と同符号を・用いている。
FIG. 3 is an explanatory diagram of the main parts of this short wavelength ultraviolet light generator. In addition, in FIG. 3, a high vacuum section 2, a microwave radiation antenna 3, a gas discharge nozzle 4, a gas discharge space section 5, a quartz glass partition wall 6, a short wavelength light transmission window material 7, a radiation electromagnetic field (microwave) 8, The same symbols as in FIG. 1 are used for the vacuum ultraviolet light 9 and the ceramic window 10. In addition, the exhaust port 17a
The same reference numerals as in FIG. 2 are used for 17b.

21a、21bは冷却水ポートであり、発光による熱を
冷却する。23は放電ガス供給口、24はステンレス発
光管ホルダである。
Cooling water ports 21a and 21b cool the heat generated by light emission. 23 is a discharge gas supply port, and 24 is a stainless steel arc tube holder.

なお、マイクロ波放電を光源に応用する場合は、放電か
ら光を取り出す部分に短波長光透過窓材7を使う必要が
ある。本実施例では、例えば、フ・ノ化マグネシウム(
M g F 2 )窓祠7を用いて無電極放電管を形成
している。このフッ化マグネシウムを用いると、短波長
光透過窓材7の光透過特性は120nm近辺まで透過で
きる。
Note that when microwave discharge is applied to a light source, it is necessary to use a short wavelength light transmitting window material 7 in the portion where light is extracted from the discharge. In this example, for example, magnesium fluoride (
An electrodeless discharge tube is formed using the M g F 2 ) window shed 7. When this magnesium fluoride is used, the light transmission characteristic of the short wavelength light transmission window material 7 can transmit up to around 120 nm.

高真空部2の高真空側は10−’To r r以上が望
ましい。10−1〜10−2To r r台では残留大
気による放電が発生し、放射電磁界8が吸収され、有効
な放射電磁界8がガス放電空間部5側に供給されない。
The high vacuum side of the high vacuum section 2 is preferably 10-' Torr or more. At 10-1 to 10-2 Torr, discharge occurs due to residual atmosphere, the radiated electromagnetic field 8 is absorbed, and no effective radiated electromagnetic field 8 is supplied to the gas discharge space 5 side.

石英ガラス隔壁6は本実施例では短波長光透過窓材7と
略一体となって放電管部5を兼ねる。
In this embodiment, the quartz glass partition wall 6 is substantially integrated with the short wavelength light transmitting window material 7, and also serves as the discharge tube section 5.

ガス放出ノズル4は石英ガラスにて放電ガス供給口23
にさしこまれる。そして、さしこまれることによって、
ステンレス発光管ホルダ24の金属部分でのマイクロ波
放電の発生を防止する。
The gas discharge nozzle 4 is made of quartz glass and has a discharge gas supply port 23.
It is inserted into. And by being inserted,
This prevents microwave discharge from occurring in the metal parts of the stainless steel arc tube holder 24.

また、ガス放出ノズル4より放出されたガスは短波長光
透過窓材7側に一旦吹きつけられて短波長光透過窓材7
を冷却した後に、排気ポート17bより排気される。こ
のガスの循環により、放電はガスを放出させた空間部5
側で、しかもガス放電エネルギーに十分耐性のあるガラ
ス隔壁6側に近い空間で放電発光させることができ、放
電による短波長光透過窓材7の劣化を防止することがで
きる。
Further, the gas discharged from the gas discharge nozzle 4 is once blown onto the short wavelength light transmitting window material 7 side.
After being cooled, it is exhausted from the exhaust port 17b. Due to this gas circulation, the discharge occurs in the space 5 where the gas is released.
In addition, the discharge light can be caused to emit light in a space close to the glass partition wall 6 side, which is sufficiently resistant to gas discharge energy, and deterioration of the short wavelength light transmitting window material 7 due to discharge can be prevented.

次に、本実施例にて用いたキセノン(Xe)ガスによる
真空紫外発光特性について説明する。
Next, the vacuum ultraviolet emission characteristics of the xenon (Xe) gas used in this example will be explained.

キセノンガスは共鳴線が147nmであり、真空紫外の
光源によく使用される。本実施例の放電管部5を用いた
場合における147nm線のスペクトルを説明する。第
4図は放電ガスとしてキセノン(99,995%)を放
電圧力0.1Torrから10To r rまで変化さ
セ・た時の147nm共I!rS線のプロファイルを示
すものである。なお、ガス流量は20cc/min、P
i=0.5Kw、Pr=005Kwにて放電実験を行っ
た。
Xenon gas has a resonance line of 147 nm and is often used as a vacuum ultraviolet light source. The spectrum of the 147 nm line when the discharge tube section 5 of this example is used will be explained. Figure 4 shows the 147nm I! when xenon (99,995%) was used as the discharge gas and the discharge pressure was varied from 0.1 Torr to 10 Torr. This shows the rS line profile. Note that the gas flow rate is 20 cc/min, P
A discharge experiment was conducted at i=0.5Kw and Pr=005Kw.

また、測定用分光器としてはACTON VM−502
にACTON DA−780−VUVを用いた。更に、
この時のスリット幅は0.25mm、スリット長は4 
mm、測定距離は69cmである。
In addition, ACTON VM-502 is used as a measurement spectrometer.
ACTON DA-780-VUV was used. Furthermore,
At this time, the slit width was 0.25 mm, and the slit length was 4.
mm, and the measurement distance is 69 cm.

第4図に示すように、圧力が高いほどスペクトルのピー
クが低い。10To r rで反転吸収が起こっている
ところからこの原因は、自己吸収による影響が大きいも
のと考えられる。
As shown in FIG. 4, the higher the pressure, the lower the peak of the spectrum. Since inversion absorption occurs at 10 Torr, it is thought that this is largely due to self-absorption.

第5図はキセノンガスが0.85Torrの時の照度分
布図である。なお、この発光の照度分布を測定するZ)
に、キセノンガスが0.85Torrの時の250 n
m前後の発光強度を、出願人製作の紫外線照度計Ul−
MO2を用いた。この照度分布により直径80mmにお
ける強度比としてを得ることができた。
FIG. 5 is an illuminance distribution diagram when xenon gas is 0.85 Torr. Note that Z) measures the illuminance distribution of this light emission.
250 n when xenon gas is 0.85 Torr
The luminescence intensity around m was measured using an ultraviolet light meter Ul-
MO2 was used. This illuminance distribution made it possible to obtain the intensity ratio at a diameter of 80 mm.

これにより、本発明の短波長紫外光発生装置を用いれば
、実用上十分な強度比が得られる。
As a result, if the short wavelength ultraviolet light generator of the present invention is used, a practically sufficient intensity ratio can be obtained.

〔発明の効果] 以上本発明によれば、電磁波を放射するアンテナ部を導
波管部の大気部とは分離密封された型で、直径80mm
以上の大面積の光照射を可能とする窓材を有し、また、
窓材の劣化を防止し、放電ガスを常に一定の圧力と流量
で流すように構成したから、放電ガスの放電による温度
上昇を防止し、定の所望のスペクトル線を取り出すこと
ができる。
[Effects of the Invention] According to the present invention, the antenna part that radiates electromagnetic waves is of a sealed type separated from the atmospheric part of the waveguide part, and has a diameter of 80 mm.
It has a window material that enables light irradiation over a large area, and
Since the window material is prevented from deteriorating and the discharge gas is configured to always flow at a constant pressure and flow rate, temperature rise due to discharge of the discharge gas is prevented and a certain desired spectral line can be extracted.

即ち、ガスの種類や圧力を変えることにより、発光波長
を選択することができる。また、大電力の1 マイクロ波パワーの投入が可能となる。
That is, the emission wavelength can be selected by changing the type and pressure of the gas. In addition, it becomes possible to input a large amount of microwave power.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の短波長紫外光発生装置の概略説明図、
第2図は本発明の一実施例である短波長紫外光発生装置
の全体図、第3図はこの短波長紫外光発生装置の要部説
明図、第4図はキセノンガスの147nm共鳴線のプロ
ファイル、第5図はキセノンガスが0.85Torrの
時の照度分布図、第6図乃至第8図は従来の短波長紫外
光発生装置の概略説明図である。 1・・・導波管、     2・・・高真空部、3・・
・アンテナ部、   4・・・ガス放出ノズル、5・・
・ガス放電空間部、6・・・ガラス隔壁、7・・・短波
長光透過窓材、 8・・・マイクロ波、  9・・・放電発光、11・・
・マグネトロン、12・・・ザーキュレーサー14・・
・スリースタブチューナ、 19・・・真空チャンバ。
FIG. 1 is a schematic explanatory diagram of the short wavelength ultraviolet light generator of the present invention,
Fig. 2 is an overall view of a short wavelength ultraviolet light generator which is an embodiment of the present invention, Fig. 3 is an explanatory diagram of the main parts of this short wavelength ultraviolet light generator, and Fig. 4 is a diagram of the 147 nm resonance line of xenon gas. FIG. 5 is an illuminance distribution diagram when xenon gas is at 0.85 Torr, and FIGS. 6 to 8 are schematic explanatory diagrams of a conventional short wavelength ultraviolet light generator. 1... Waveguide, 2... High vacuum section, 3...
・Antenna part, 4... Gas discharge nozzle, 5...
・Gas discharge space part, 6...Glass partition, 7...Short wavelength light transmitting window material, 8...Microwave, 9...Discharge light emission, 11...
・Magnetron, 12...Zerkyracer 14...
- Three stub tuner, 19... vacuum chamber.

Claims (1)

【特許請求の範囲】  導波管部と、この導波管部側の大気とは分離密封され
、かつ高抵抗な真空層を有する高真空部と、この高真空
部内にあって、前記導波管部側よりマイクロ波を放射す
るアンテナ部と、前記高真空部と隣接し、マイクロ波に
対して発光する放電ガスをガス放出ノズルより封入して
なるガス放電空間部と、このガス放電空間部と前記高真
空部との境界にあって、マイクロ波に対しては透明で、
かつ放電ガスに対しては不透過なガラス材によるガラス
隔壁と、このガラス隔壁と前記ガス放電空間部を挾む反
対側にあって、短波長光を放出する短波長光透過窓材を
有してなり、 前記ガラス隔壁を透過したマイクロ波が前記放電ガスと
ガス放電空間部内のガラス隔壁側近傍において放電発光
する位置に前記ガス放出ノズルを配設したことを特徴と
する短波長紫外光発生装置。
[Claims] A waveguide section and the atmosphere on the side of the waveguide section are separated and sealed, and a high vacuum section having a high-resistance vacuum layer is provided. an antenna section that radiates microwaves from the tube section side; a gas discharge space section that is adjacent to the high vacuum section and is formed by sealing discharge gas that emits light in response to microwaves through a gas discharge nozzle; and this gas discharge space section. It is located at the boundary between the area and the high vacuum area, and is transparent to microwaves.
and a glass partition wall made of a glass material that is impermeable to the discharge gas, and a short-wavelength light-transmissive window material that emits short-wavelength light, located on the opposite side sandwiching the glass partition wall and the gas discharge space. The short-wavelength ultraviolet light generating device is characterized in that the gas discharge nozzle is disposed at a position where the microwave transmitted through the glass partition causes discharge light emission between the discharge gas and the vicinity of the glass partition in the gas discharge space. .
JP17844489A 1989-07-11 1989-07-11 Short wavelength light and ultraviolet ray generating apparatus Granted JPH0343951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17844489A JPH0343951A (en) 1989-07-11 1989-07-11 Short wavelength light and ultraviolet ray generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17844489A JPH0343951A (en) 1989-07-11 1989-07-11 Short wavelength light and ultraviolet ray generating apparatus

Publications (2)

Publication Number Publication Date
JPH0343951A true JPH0343951A (en) 1991-02-25
JPH0568062B2 JPH0568062B2 (en) 1993-09-28

Family

ID=16048631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17844489A Granted JPH0343951A (en) 1989-07-11 1989-07-11 Short wavelength light and ultraviolet ray generating apparatus

Country Status (1)

Country Link
JP (1) JPH0343951A (en)

Also Published As

Publication number Publication date
JPH0568062B2 (en) 1993-09-28

Similar Documents

Publication Publication Date Title
US6559460B1 (en) Ultraviolet lamp system and methods
JP4553995B2 (en) Remote microwave plasma equipment
US4877997A (en) High brightness and viewed gas discharge lamp
JPS61208743A (en) Ultraviolet treatment device
EP0843337B1 (en) Method of producing optical radiation and a discharge lamp for that purpose
US5144199A (en) Microwave discharge light source device
JPH0343951A (en) Short wavelength light and ultraviolet ray generating apparatus
JPH0562649A (en) Microwave-excited type ultraviolet lamp device
JP5493100B2 (en) Discharge lamp
EP3168860A1 (en) Device and method for producing uv radiation
US20070132408A1 (en) High frequency driven high pressure micro discharge
JPH06232056A (en) Treatment method using dielectric barrier discharge lamp
JPH07169444A (en) Dielectric barrier electric discharge lamp apparatus
JP2005285349A (en) Microwave electrodeless discharge lamp device
Hirose et al. Basic performance of VUV exposure systems using head-on type Ar2* and Kr2* DBD excimer lamps
JPH07105347B2 (en) Photochemical vapor deposition method
JP2602801Y2 (en) UV generator
JP3981240B2 (en) Apparatus and method for generating microwave plasma
Yoshizawa New light source using microwave discharge
JPS622446A (en) Microwave discharge power supply device
JP2003115281A (en) Dielectric barrier discharge lamp
JP4363059B2 (en) Microwave discharge light source device
JPS61104559A (en) Microwave electric-discharge light source
JPH0461741A (en) Light source device with microwave discharge
JPS61240562A (en) Microwave discharge light source device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees