JPH0343927A - Alloy thermal fuse - Google Patents

Alloy thermal fuse

Info

Publication number
JPH0343927A
JPH0343927A JP17838389A JP17838389A JPH0343927A JP H0343927 A JPH0343927 A JP H0343927A JP 17838389 A JP17838389 A JP 17838389A JP 17838389 A JP17838389 A JP 17838389A JP H0343927 A JPH0343927 A JP H0343927A
Authority
JP
Japan
Prior art keywords
melting point
flux
low melting
metal piece
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17838389A
Other languages
Japanese (ja)
Other versions
JPH0766728B2 (en
Inventor
Ritsu Nishide
西出 律
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP17838389A priority Critical patent/JPH0766728B2/en
Publication of JPH0343927A publication Critical patent/JPH0343927A/en
Publication of JPH0766728B2 publication Critical patent/JPH0766728B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To secure smooth melting of a fuse by a method wherein specific relation is given among the outer diameter of a flux layer, the outer diameter of a metal piece soluble at low melting point, length of the metal piece soluble at low melting point and length of each lead conductor in an insulation cylinder. CONSTITUTION:Relation expressed by expression I is given among the outer diameter R of a flux layer 3, the outer diameter R1 of a metal piece 2 soluble at low melting point, length l1 of the metal piece 2 soluble at low melting point and length l2 of each lead conductor 1 in an insulation cylinder. In the expression l, k refers to ratio of the amount of flux required for contacting fused metal and activating when the alloy 2 soluble at low melting point is fused to the amount of the alloy soluble at low melting point where k=0.3 to 0.9. Thus the flux layer 3 on a fuse element is fused by heat cycle of an electric machine and even if this spreads along the lead conductor 1, the amount of flux required for activating the flux can be remained on the fuse element thereby securing smooth and rapid function of the fuse.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は直線式の合金型温度ヒユーズに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a linear alloy type temperature fuse.

〈従来の技術〉 合金型温度ヒユーズにおいては、ヒユーズエレメントに
低融点可溶合金を用いている。第3図は従来公知の直線
式の合金型温度ヒユーズを示し、同一直線上にて相対向
せるリード導体1′ ・1′間に低融点可溶合金片2′
を橋設し、低融点可溶合金片上にフラックス3′を被覆
し、絶縁筒4′を低融点可溶合金片上に挿通し、絶縁筒
各端と各リード線との間を接着剤5′によって封止して
いる。
<Prior Art> In alloy type temperature fuses, a low melting point fusible alloy is used for the fuse element. Fig. 3 shows a conventionally known linear alloy type temperature fuse, in which lead conductors 1' and 1' are opposed to each other on the same straight line, and a low melting point fusible alloy piece 2' is placed between the lead conductors 1' and 1'.
The flux 3' is coated on the low melting point fusible alloy piece, the insulating tube 4' is inserted over the low melting point fusible alloy piece, and adhesive 5' is applied between each end of the insulating tube and each lead wire. It is sealed by.

この合金型温度ヒユーズの作動機構は、保護すべき電気
機器が過電流によって発熱すれば、その発生熱によって
低融点可溶合金が溶融し、溶融金属が各リード導体端部
に親和力により吸引され、そして、溶融金属が分断され
、表面張力により球状化が進行して分断距離が増大し、
この距離の増大によって分断間アークが削減し、通電が
遮断されるに至る。
The operating mechanism of this alloy type temperature fuse is that when the electrical equipment to be protected generates heat due to overcurrent, the generated heat melts the low melting point fusible alloy, and the molten metal is attracted to the end of each lead conductor by affinity. Then, the molten metal is divided, spheroidization progresses due to surface tension, and the dividing distance increases.
This increase in distance reduces inter-interval arcing, leading to interruption of current flow.

上記において、低融点可溶合金片が酸化され、その酸化
皮膜が不溶状態のまま存在すれば、酸化皮膜が固い鞘と
なって溶融金属の球状化を阻害することになる。このた
め、低融点可溶合金片上にフラックス層を設け、低融点
可溶金属片を空気がら遮断して酸化皮膜の形成を防止し
、たとえ、多少の酸化が生じても低融点可溶合金の溶融
高温下、溶融フラックスの活性力により酸化物を可溶化
して、上記球状化を保証している。しかしながら、フラ
ックス量を余り多くすると、上記アーク熱によるガスの
発生量が多量となって絶縁筒内に過大な内圧が発生し、
温度ヒユーズ作動時に絶縁筒が爆裂飛散したり、あるい
は爆裂飛散に至らなくても、フラックスの大量炭化のた
めに完全な通電遮断を行い難い。フラックスの炭化に基
づく低絶縁性の問題は、回路基板におけるハンダ付けで
も生じ、通常フラックス量をハンダ量の約0.5〜1.
0にしており、この規制は、上記合金型温度ヒユーズに
おける低融点可溶合金量またはフラックス量にも適用さ
れている。
In the above, if the low melting point fusible alloy piece is oxidized and its oxide film remains in an insoluble state, the oxide film becomes a hard sheath and inhibits the spheroidization of the molten metal. For this reason, a flux layer is provided on the low melting point fusible alloy piece to block the low melting point fusible metal piece from air and prevent the formation of an oxide film. At high melting temperature, the oxide is solubilized by the active force of the molten flux, thereby ensuring the above-mentioned spheroidization. However, if the amount of flux is too large, a large amount of gas will be generated due to the arc heat, and excessive internal pressure will occur in the insulating cylinder.
When the temperature fuse is activated, the insulating cylinder explodes and scatters, or even if it does not explode and scatter, it is difficult to completely cut off the current because of the large amount of carbonization of the flux. The problem of low insulation due to carbonization of flux also occurs when soldering on circuit boards, and the amount of flux is usually about 0.5 to 1.5 times the amount of solder.
This regulation is also applied to the amount of low melting point fusible alloy or flux in the alloy type temperature fuse.

く解決しようとする課題〉 ところで、温度ヒユーズにおいては、作動温度、すなわ
ち、低融点可溶合金の融点以下の温度範囲において、電
気機器のヒートサイクルに曝される。
Problems to be Solved> By the way, temperature fuses are exposed to the heat cycle of electrical equipment at operating temperatures, that is, in a temperature range below the melting point of the low melting point fusible alloy.

この場合、低融点可溶合金は溶融しないが該合金線片上
のフラックスが溶融し、溶融フラックスがリード導体を
伝って流動し、低融点可溶合金片のフラックスの量が次
第に減少し、低融点可溶合金片が溶融した時点では、こ
の溶融金属に接しているフラックスの量が少な過ぎ、上
記フラックスの活性力による酸化皮膜の可溶化が不完全
となって、温度ヒユーズの溶断作動の円滑化が阻害され
るおそれがある。
In this case, the low melting point fusible alloy does not melt, but the flux on the alloy wire piece melts, the molten flux flows along the lead conductor, the amount of flux on the low melting point fusible alloy piece gradually decreases, and the low melting point When the fusible alloy piece melts, the amount of flux in contact with the molten metal is too small, and the oxidation film is incompletely solubilized by the active force of the flux, making it difficult to blow the temperature fuse smoothly. may be inhibited.

本発明の目的は、直線式の合金型温度ヒユーズにおいて
、電気機器のヒートサイクルによりヒユーズエレメント
上のフラックス層が溶融し、これがリード導体を伝って
拡布しても、ヒユーズエレメント上に所定量のフラック
ス量を確実に存在させて、フラックスの活性作用を良好
に営ませ、ヒユーズの円滑な溶融作動を保証することに
ある。
It is an object of the present invention to provide a linear alloy type temperature fuse, in which even if the flux layer on the fuse element melts due to the heat cycle of the electrical equipment and spreads along the lead conductor, a predetermined amount of flux remains on the fuse element. The purpose is to ensure that the flux is present in a sufficient amount to allow the active action of the flux to work well and to ensure smooth melting operation of the fuse.

く課題を解決するための手段〉 本発明に係る合金型温度ヒユーズは、同一直線上にて相
対向せるリード導体間に線状の低融点金属片を橋設し、
該低融点金属片上に7ラツクスを被覆し、絶縁筒を線状
の低融点金属片上に挿通し、絶縁筒各端と各リード導体
との間を接着剤によって封止せる温度ヒユーズにおいて
、フラックス層の外径R5低融点金属片の外径R1、リ
ード導体の外径R2、低融点金属線片の長さQl、絶縁
筒内における各リード導体の長さQ2との間に、R2=
R,′n + 1 > + 2 R+’に−L8+2−
gL2−(R1”−R,’)Ql Q−。
Means for Solving the Problems> The alloy type temperature fuse according to the present invention includes a linear low melting point metal piece bridged between lead conductors facing each other on the same straight line,
In a temperature fuse, the low melting point metal piece is coated with 7 lux, an insulating cylinder is inserted over the linear low melting point metal piece, and each end of the insulating cylinder and each lead conductor is sealed with an adhesive. R2=
R,'n + 1 > + 2 -L8+2- to R+'
gL2-(R1''-R,')Ql Q-.

の関係(ただし、k=0.3〜0,9)を付与したこと
を特徴とする構成である。
This configuration is characterized by giving the following relationship (k=0.3 to 0.9).

〈実施例の説明〉 以下、図面により本発明の実施例について説明する。<Explanation of Examples> Embodiments of the present invention will be described below with reference to the drawings.

第1図において、1・1は断面円形のリード導体であり
、同一直線状にあって相対向している。
In FIG. 1, reference numerals 1 and 1 indicate lead conductors having a circular cross section, which are arranged in the same straight line and are opposed to each other.

2は断面円形の線状低融点可溶合金片であり、リード導
体間に溶接によって橋設しである。3は低融点可溶合金
片上に被覆したフラックスであり、ロジンを主成分とし
必要に応じて活性剤(例えば、ジエチルアミンの塩酸塩
)を添加したものを使用できる。4は絶縁筒である。5
・5は絶縁筒各端とリード導線との間を封止せる接着剤
である。この接着剤には、パテ状接着剤(例えば、エポ
キシ樹脂)を使用しており、絶縁筒内側におけるリード
導体と接着剤との接触界面並びに絶縁筒と接着剤との接
触界面には接着剤のまわり込みのない入隅間隙51が存
在している6 上記リード導体1の直径R2は通常0.5〜l 、 O
mmφ、低融点可溶合金片2の直径R1は通常(0,4
〜1.0)R2、低融点可溶金属片2の長さQ、1は通
常2,5〜5 、0mm、絶縁筒内における各リード導
体1の長さQ、2は通常1.5〜4.0mm、絶縁筒4
の長さは通常6.0〜12.0mm、絶縁筒4の内径は
通常1.0〜2.5mmφである。
2 is a linear low melting point fusible alloy piece with a circular cross section, which is bridged by welding between the lead conductors. 3 is a flux coated on a piece of a low melting point fusible alloy, and a flux containing rosin as a main component and optionally an activator (for example, diethylamine hydrochloride) can be used. 4 is an insulating cylinder. 5
- 5 is an adhesive that seals between each end of the insulating tube and the lead conductor. This adhesive uses a putty-like adhesive (e.g. epoxy resin), and the adhesive is applied to the contact interface between the lead conductor and the adhesive on the inside of the insulating tube, as well as the contact interface between the insulating tube and the adhesive. There is an inner corner gap 51 that does not wrap around.6 The diameter R2 of the lead conductor 1 is usually 0.5 to l, O.
mmφ, the diameter R1 of the low melting point fusible alloy piece 2 is usually (0,4
~1.0) R2, the length Q of the low melting point fusible metal piece 2, 1 is usually 2.5~5.0 mm, the length Q of each lead conductor 1 in the insulating cylinder, 2 is usually 1.5 ~ 4.0mm, insulation tube 4
The length of the insulating cylinder 4 is usually 6.0 to 12.0 mm, and the inner diameter of the insulating cylinder 4 is usually 1.0 to 2.5 mmφ.

本発明においては、フラックス層3の直径Rと上記の各
寸法R8、R2、Q□並びにQ2との間には次の関係を
付与しである。
In the present invention, the following relationship is given between the diameter R of the flux layer 3 and the above-mentioned dimensions R8, R2, Q□, and Q2.

R2=R,” (k+ 1 ) +2R,”k魁+2 
Q 2 < R+2.、>−■Q s  Q s ここにkは、低融点可溶合金2が溶融したときに、その
溶融金属に接触して活性作用を営むに必要なフラックス
量の当該低融点可溶合金量に対する割合であり、k=0
.3〜0.9である(当該技術分野において経験的に確
立された値)。
R2=R,"(k+1)+2R,"kkai+2
Q2<R+2. ,>-■Q s Q s Here, k is the amount of flux required to contact the molten metal and carry out an active action when the low melting point soluble alloy 2 is melted, relative to the amount of the low melting point soluble alloy. is a proportion, k=0
.. 3 to 0.9 (a value established empirically in the technical field).

上記低融点可溶合金片の融点は保護すべき電気機器の許
容温度に応じて設定する。フラックスの融点は低融点可
溶合金の融点よりも低温であり、通常50〜100℃の
範囲である。
The melting point of the low melting point fusible alloy piece is set depending on the allowable temperature of the electrical equipment to be protected. The melting point of the flux is lower than that of the low melting point fusible alloy, and is usually in the range of 50 to 100°C.

上記温度ヒユーズは保護すべき電気機器に取付けて使用
する。この使用においては、電気機器の許容温度以下で
、従って、低融点可溶合金が溶融していない通常の状態
で電気機器のヒートサイクルにより繰り返えし加熱を受
け、その加熱温度がフラックスの融点を越えるときは、
フラックスが溶融し、この溶融フラックスがリード導体
を伝って拡布し、接着剤封止部の入隅間隙に達し、この
間隙でトラップされるに至る。而して、第2図に示ずよ
うにフラックスがケース内のリード導体上に拡がり、そ
の拡がりはほぼ一様とみなし得るから、第2図における
フラックス外径をXとすれば、従って となる。
The above temperature fuse is used by being attached to the electrical equipment to be protected. In this use, the low melting point fusible alloy is repeatedly heated by the heat cycle of the electrical equipment at a temperature below the allowable temperature of the electrical equipment, and therefore the low melting point fusible alloy is not melted in its normal state, and the heating temperature reaches the melting point of the flux. When exceeding the
The flux melts, spreads along the lead conductor, reaches the corner gap of the adhesive seal, and becomes trapped in this gap. Therefore, as shown in Figure 2, the flux spreads over the lead conductor inside the case, and the spread can be considered to be almost uniform, so if the outer diameter of the flux in Figure 2 is set to X, then .

また、第2図において低融点可溶合金片2の体積(π/
4・R1” Q、、)と低融点可溶合金片2直上のフラ
ックス量(r/4 ・X2Q 1  yr/4 ・R+
2Q 1)との比Aは A=xffi−1□■ 12 0式と■式、■式より A=k   □■ となる。
In addition, in FIG. 2, the volume (π/
4・R1” Q, ) and the amount of flux directly above the low melting point fusible alloy piece 2 (r/4 ・X2Q 1 yr/4 ・R+
The ratio A to 2Q 1) is A=xffi-1 □■ 12 From the 0 equation, the ■ equation, and the ■ equation, the ratio A is A=k □■.

すなわち、フラックスがヒートサイクルにより溶融、拡
布しても、低融点可溶合金片直上のフラックスについて
、活性作用を営むに必要な量を保証し得る。従って、ヒ
ユーズエレメントとしての低融点可溶合金片の分断・球
状化を円滑に行なわしめ得、温度ヒユーズ作動時までの
熱履歴に左右されることなく、温度ヒユーズを迅速に作
動させることができる。また、上記ヒートサイクル前に
おいては、低融点可溶合金片上にフラ・ソクスを集めて
あり、フラックス層厚みを厚くでき、空気遮断性能を増
大できるから、それだけ低融点可溶合金片の酸化をよく
防止でき、かかる点からも、溶融ヒユーズエレメントの
変形流動性をよく保証でき、温度ヒユーズの円滑・迅速
な作動を期待できる。
That is, even if the flux melts and spreads due to heat cycles, the amount of flux directly above the low-melting point fusible alloy piece can be guaranteed to be sufficient to perform the activation action. Therefore, the low melting point fusible alloy pieces used as the fuse element can be smoothly divided and spheroidized, and the temperature fuse can be operated quickly without being influenced by the thermal history up to the time of operation of the temperature fuse. In addition, before the heat cycle mentioned above, flux is collected on the low melting point fusible alloy pieces, which makes it possible to thicken the flux layer and increase air barrier performance, which makes it easier to oxidize the low melting point fusible alloy pieces. From this point of view, the deformation fluidity of the melting fuse element can be well guaranteed, and smooth and quick operation of the temperature fuse can be expected.

〈発明の効果〉 本発明に係る直線式の合金型温度ヒユーズは上述した通
り、フラックス層がヒートサイクルによって溶融・拡布
することを勘案し、拡布したのちでも、ヒユーズエレメ
ント上にフラックスの活性作用に必要な量のフラックス
を存在させ得るようにしてあり、直線式の合金型温度ヒ
ユーズの円滑・迅速な作動を保証できる。
<Effects of the Invention> As mentioned above, the linear alloy type temperature fuse according to the present invention takes into consideration that the flux layer melts and spreads due to heat cycles, and even after spreading, the linear alloy type temperature fuse does not have a layer on the fuse element due to the active action of the flux. The necessary amount of flux can be present to ensure smooth and quick operation of the linear alloy type temperature fuse.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す説明図、第2図は同上実
施例のし−トサイクル後の状態を示す説明図、第3図は
従来例を示す説明図である。 1・・・・・・リード導体 2・・・−・−線状の低融点可溶金属片3・・・・・・
フラックス 4・・・・・・絶縁筒 5・・・・・・接着剤
FIG. 1 is an explanatory diagram showing an embodiment of the present invention, FIG. 2 is an explanatory diagram showing the state of the same embodiment after a shutdown cycle, and FIG. 3 is an explanatory diagram showing a conventional example. 1... Lead conductor 2... - Linear low melting point fusible metal piece 3...
Flux 4... Insulation tube 5... Adhesive

Claims (1)

【特許請求の範囲】  同一直線上にて相対向せるリード導体間に線状の低融
点金属片を橋設し、該低融点金属片上にフラックスを被
覆し、絶縁筒を線状の低融点金属片上に挿通し、絶縁筒
各端と各リード導体との間を接着剤によって封止せる温
度ヒューズにおいて、フラックス層の外径R、低融点金
属片の外径R_1、リード導体の外径R_2、低融点金
属片の長さl_1、絶縁筒内における各リード導体の長
さl_2との間に、 R^2=R_^2(k+1)+2R_1^2k(l_2
/l_1)+2(l_2/l_1)(R_1^2−R_
2^2)の関係(ただし、k=0.3〜0.9)を付与
したことを特徴とする合金型温度ヒューズ。
[Claims] A linear low-melting point metal piece is bridged between lead conductors facing each other on the same straight line, the low-melting point metal piece is coated with flux, and the insulating cylinder is made of a linear low-melting point metal piece. In a thermal fuse that is inserted over one piece and seals between each end of an insulating tube and each lead conductor with adhesive, the outer diameter R of the flux layer, the outer diameter R_1 of the low melting point metal piece, the outer diameter R_2 of the lead conductor, Between the length l_1 of the low melting point metal piece and the length l_2 of each lead conductor in the insulating cylinder, R^2=R_^2(k+1)+2R_1^2k(l_2
/l_1)+2(l_2/l_1)(R_1^2-R_
2^2) (where k=0.3 to 0.9).
JP17838389A 1989-07-10 1989-07-10 Alloy type thermal fuse Expired - Fee Related JPH0766728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17838389A JPH0766728B2 (en) 1989-07-10 1989-07-10 Alloy type thermal fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17838389A JPH0766728B2 (en) 1989-07-10 1989-07-10 Alloy type thermal fuse

Publications (2)

Publication Number Publication Date
JPH0343927A true JPH0343927A (en) 1991-02-25
JPH0766728B2 JPH0766728B2 (en) 1995-07-19

Family

ID=16047534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17838389A Expired - Fee Related JPH0766728B2 (en) 1989-07-10 1989-07-10 Alloy type thermal fuse

Country Status (1)

Country Link
JP (1) JPH0766728B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099827A1 (en) * 2001-06-05 2002-12-12 Matsushita Electric Industrial Co., Ltd. Temperature fuse, and battery using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099827A1 (en) * 2001-06-05 2002-12-12 Matsushita Electric Industrial Co., Ltd. Temperature fuse, and battery using the same
US7473487B2 (en) 2001-06-05 2009-01-06 Panasonic Corporation Temperature fuse, and battery using the same
US7718308B2 (en) 2001-06-05 2010-05-18 Panasonic Corporation Temperature fuse and battery using the same

Also Published As

Publication number Publication date
JPH0766728B2 (en) 1995-07-19

Similar Documents

Publication Publication Date Title
US4652848A (en) Fusible link
JP2819408B2 (en) Alloy type temperature fuse
JPH0343927A (en) Alloy thermal fuse
JPH06325670A (en) Alloy type temperature fuse
JPS6030020A (en) Temperature fuse
JPH086354Y2 (en) Alloy type thermal fuse
JP2750891B2 (en) Alloy type thermal fuse
JP2762129B2 (en) Alloy type thermal fuse
JPH07107823B2 (en) Method for manufacturing alloy type thermal fuse
JPH086353Y2 (en) Thermal fuse
JP2504294Y2 (en) Temperature fuse
JPH03254033A (en) Alloy type thermal fuse
JPH03230441A (en) Alloy type temperature fuse
JP4230313B2 (en) Cylindrical case type alloy type thermal fuse
JPH03236132A (en) Alloy type temperature fuse
JPH0755790Y2 (en) Thermal fuse
JPH07192593A (en) Alloy type thermal fuse and its manufacture
JPS6314357Y2 (en)
CA1247172A (en) Fusible link
JPH02288126A (en) Return method of alloy type temperature fuse
JP2001243861A (en) Fuse with flux
JPH076677A (en) Substrate type thermal fuse
JPH0357122A (en) Alloy type temperature fuse
JPH02288125A (en) Temperature fuse
JP2004213928A (en) Alloy for thermal fuse

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees